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Abstract

Tables are fundamental for presenting infor-
mation in research articles, technical docu-
ments, manuals, and reports. One key chal-
lenge is accessing the information in tables that
are embedded in Portable Document Format
(PDF) files or scanned images. It requires ac-
curately recognising table structures in diverse
table layouts and complex tables. Table Struc-
ture Recognition (TSR) task aims to recognise
the internal structure of table images and con-
vert them into a machine-readable format. We
propose a flexible multi-modal framework for
image-based TSR. Our approach utilises two-
stream transformer encoders in conjunction
with task-specific decoders for extracting table
structures and detecting cell bounding boxes.
Experiments on benchmark datasets demon-
strate that our model achieves highly com-
petitive results compared to strong baselines,
outperforming single-modality approaches by
5.4% on the FinTabNetd dataset.

1 Introduction

Tables commonly present and summarise informa-
tion in a structured format. They are widely used
in various texts, such as scientific literature, books,
business documents, manuals, and technical doc-
uments, due to their easier readability in present-
ing data. Managing, understanding, and analysing
table data have become increasingly important, es-
pecially with the rapid growth of digitised data
and the demand for intelligent document process-
ing (Cui et al., 2021; Yu et al., 2023). However,
table data are often restricted to digitised docu-
ments or images. While humans can easily inter-
pret them, they are not readily processed by ma-
chines. The digitised table can be easily converted
into a table image, but recognising its structure is
challenging due to the complex styles. Therefore,
extracting table data while preserving its structure
in a machine-readable format is a fundamental step
in table understanding.

Data Mean Std.
11 August| 40.23 177.3
12 August| -66.78 167.90
13 August| 16.52 +189.23
14 August| 66.91 +175.68
15 August| 16.58 +143.55
16 August| -58.69 163.20
Data Mean Study
11 August 4022 177.22
12 Augulga 167.90
13 Augulga 16252 @l

14 Mugulat

< underline >+ underline > 175, gé

46.59 4-14255
162.20
Figure 1: Examples of failures in an end-to-end method
include cases where the model identifies the correct

table structure but incorrect content (Ly and Takasu,
2023).
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Table Structure Recognition (TSR) is the task
of automatically recognising table structures and
extracting table content as free text for machine
processing, which is a key step in table understand-
ing. The table structure could follow pre-defined
formats, such as HTML or JSON. Once the ta-
ble structure is recognised, the table content can
be extracted by any optical character recognition
(OCR) tool, allowing the reorganisation of data into
a table as it was originally presented in the table
image. The structured table data, consisting of free
text, enables machine processing and analysis of
table data, and it is a crucial step for table-related
downstream tasks, such as table-based question
answering (TQA) (Iyyer et al., 2017; Chen et al.,
2020b; Gupta et al., 2023), table-based fact veri-
fication (Chen et al., 2020a; Xie et al., 2022), in-
formation retrieval (Chen et al., 2020c; Engelmann
et al., 2023), and text mining (Xie et al., 2020).

Tables have diverse structures and styles, which
pose significant challenges for accurate recognition.
For instance, tabular data is often organised with
cells spanning multiple rows and columns. Such ta-
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bles may include complex headers, cells containing
multi-line text, empty cells, and varying line sizes
or shapes used to separate cell contents. Moreover,
table size introduces an additional challenge for the
TSR task, as large tables may extend across multi-
ple pages, particularly in certain scientific domains
or technical documents.

Models based on deep neural networks have
been proposed to address challenges in the TSR
task. Recent methods for TSR can be divided into
two strategies: the end-to-end and the non-end-to-
end approach. The end-to-end method aims to use
a single pipeline to process a given table image
and output all table information, including the ta-
ble structure, table cell bounding boxes, and table
cell content (Schreiber et al., 2017; Ly and Takasu,
2023). This method is straightforward to under-
stand, but its effectiveness is often unsatisfactory,
especially when complex characters are present in
the cell content. For example, as shown in Figure 1,
the table structure can be identified well, but some
content may be lost or incorrectly recognised.

On the other hand, the non-end-to-end method
divides the TSR task into two sub-tasks: (1) recog-
nising the table structure and table cell bounding
boxes; and (2) extracting the cells’ contents (Qiao
et al., 2021; Nassar et al., 2022). Table cell con-
tent recognition can be considered an OCR task,
which means we only need to extract the content
rather than understand its semantic meaning. Many
off-the-shelf OCR tools can be utilised instead of
being integrated into the model training process to
increase the training complexity.

We explore the efficacy of pre-training a multi-
modal model for TSR. We propose a novel multi-
modal approach for the TSR task, which differs
from previous studies that only consider single
modality pixel-based images (e.g., (Chi et al., 2019;
Xing et al., 2023)). Our approach uses both the
table image and its content as inputs for two
transformer-based encoders, followed by separate
decoders to generate the table structure and bound-
ing boxes for non-empty table cells. This method
aims to enhance the accuracy and robustness of
TSR by integrating multiple data modalities, ad-
dressing the limitations of single-modality mod-
els for the task. Our main contributions are sum-
marised as follows:

* Exploring and comparing the effectiveness
of multi-modal models compared to vision-
based models for the TSR task.
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Figure 2: Our proposed two-stream multi-modal model
architecture.

* Proposing a novel multi-modal approach for
the TSR task, and the experimental results
demonstrate that the approach is efficient.

2 Related Work

Early work on the TSR task relied on heuristic rule-
based methods. These approaches required hand-
crafted features and designed rules or templates to
cover specific table layouts for structure recogni-
tion. For example, ruling lines were used to detect
horizontal and vertical lines in tables, and the ar-
rangement of text components followed a top-down
approach to recognise table structures (Ramel et al.,
2003; Hassan and Baumgartner, 2007). These ap-
proaches work well with simple tables, but struggle
with complex table structures.

Machine learning-based methods are widely
used for the TSR task. Early methods involved
statistical machine learning techniques, such as
using Support Vector Machines (SVM) to clas-
sify tables based on line information (Kasar et al.,
2013), or clustering word segments in a bottom-up
manner (Kieninger and Dengel, 1999). Recently,
with the availability of large datasets, deep learn-
ing methods have been preferred. One common
approach considers TSR as an object detection
task, employing well-known detection frameworks
such as Faster R-CNN (Girshick, 2015), Mask R-
CNN (He et al., 2017), and YOLO (Redmon and
Farhadi, 2018). Another approach frames TSR
as an image-to-sequence task using transformer-
based encoder-decoder methods (Khang and Hong,
2024), for example, applying Convolutional Neural
Networks (CNN) as the encoder for image fea-
ture representation and Recurrent Neural Networks
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(RNN) as the decoder for structure sequence gener-
ation (Li et al., 2020a), or using vision transformers
for TSR (Nassar et al., 2022; Chen et al., 2023).
Graph Neural Networks (GNN) have also been ap-
plied to TSR, leveraging text cells as graph vertices
and employing graph attention mechanisms to gen-
erate their representations (Xue et al., 2019; Chi
et al., 2019). More recently, Vision Large Lan-
guage Models (VLLMs) (Zhou et al., 2025) have
been explored for TSR as well.

3 Methodology

We consider the TSR task as an image-to-sequence
generation task. We propose a framework that uses
vision and text transformer as two-stream encoders,
with the fused multi-modal feature representation
for sequence generation through two decoders. The
model generates a machine-processable sequence
S from a given table image I. The generated se-
quence S includes the table structure T = [{1, ...,
t,], and the non-empty table cell bounding box B =
[b1, ..., by ]. The table cell contents C = [c1, ...Cp, ]
are obtained using an off-the-shelf OCR (Smith,
2007). The table cell contents correspond to the
table bounding boxes, but may differ from the table
structure sequence due to empty cells in the ta-
ble. The table structure is represented using HTML
tags, which can be converted into various formats
depending on the requirements.

3.1 Encoder

We use two stream encoders to extract visual and
textual features, aiming to obtain better cross-
modal representations from table images. For the
visual encoder, inspired by ViT (Dosovitskiy et al.,
2021), the input table image is resized and split
into non-overlapping P x P patches, which are
then reshaped into flattened 2D patches. These
patches are linearly projected into a D-dimensional
sequence, serving as the input to a stack of trans-
former encoder layers. The final output is encoded
visual sequence features of the table image. The
textual encoder follows the approach of Roberta
(Liu et al., 2019). It takes word embeddings of the
table’s textual content as input. The global tokens
[CLS] and [SEP] are added at the beginning and
the end of each text sequence, and [PAD] tokens
are appended to the end to match the maximum
sequence length L. The textual encoder outputs the
textual representation. Finally, the outputs of both
encoders are integrated using an element-wise sum.

This allows the model to learn the complex relation-
ships between visual and textual features to obtain
contextual text-and-image representations.

3.2 Decoder

The decoder is built on a standard transformer de-
coder that takes embedded features from the fused
encoder outputs. It consists of a stack of four de-
coder layers, each containing multi-head attention
and feed-forward layers. We employ separate de-
coders with the same architecture to decode the ta-
ble structure and the table cell bounding boxes. The
structure decoder generates HTML tags represent-
ing the table structure, including starting tags such
as <thead>, <tbody>, <tr>, etc. The bounding box
decoder generates coordinates for each non-empty
table cell in the format [Z,in, Ymin, Tmaz, Ymaz -
We apply teacher forcing during model training and
use beam search for inference.

Since the pre-trained vision encoder is not
trained on table images, we continue to train it with
the TableBank dataset (Li et al., 2020b), along with
the aligned table text encoder, to enhance table fea-
ture representation. Masked image modeling (Bao
et al., 2022) is applied to the visual encoder during
pre-training. We fine-tune the entire TSR model
during the fine-tuning process.

4 Experimental Setup

The pre-trained Swin-tiny transformer (Liu et al.,
2021) is used for visual embedding initialisa-
tion, and the text embedding is initialised from
Roberta (Liu et al., 2019). We use Adam opti-
miser (Kingma and Ba, 2015) with an initial learn-
ing rate of 2e—>5, which decays by 0.02 after the
3rd epoch. We trained the encoder for 10 epochs
with a batch size of 16. The decoder includes 4
layers with an input feature size of 512 and 4 atten-
tion heads for table structure and cell bounding box
decoding. Similar to the encoder, the decoder uses
the Adam optimiser but with an initial learning rate
of 2e—4, trained for 10 epochs with a batch size
of 16. We use Tesseract OCR ! to obtain table cell
content from the table image.

4.1 Datasets

We evaluate our approach on three benchmark
datasets for the TSR task.

PubTabNet (Zhong et al., 2020) contains 509k
table images extracted from scientific literature and

"https://github.com/tesseract-oct/tesseract
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provides annotation for table structure in HTML
format, table cell bounding boxes, and table cell
content. This dataset also provides evaluation
metrics such as Tree-edit-distance-based similarity
(TEDS) for both table structure and table cell con-
tent evaluation. We use the validation dataset as the
test dataset since the test dataset is not available.

FinTabNet (Zheng et al., 2021) is created from
the annual reports of the S&P 500 companies in
PDF format. It includes 113k table images from
1,600 different types of financial tables and is an-
notated for table structure (in HTML), table cell
bounding box, and table cell content. This dataset
is reviewed manually, making it more reliable.

SciTSR (Chi et al., 2019) contains 15k tables
extract from scientific PDF files. It provides cor-
responding structure labels obtained from LaTeX
source files. The dataset is split into 12k tables
for training and 3k tables for testing. Because Sc-
iTSR does not provide tables in HTML format,
we convert the structure labels into HTML for S-
TEDS evaluation. We use the bounding box co-
ordinates to recover the logical row and column
layout, place each cell into the correct position in a
two-dimensional grid, and produce an HTML table
that reflects the original structure.

4.2 Evaluation Metrics

For evaluation, we use Intersection over Union
(IoU) with COCO average precision (AP) (Lin
et al., 2014) to measure the overlap between ground
truth and predicted bounding boxes. The APs5g
is reported as the evaluation result for table cell
bounding box detection. The structure-only Tree-
Edit-Distance-Based Similarity or S-TEDS (?) is
used for table structure-based evaluation. It con-
verts table HTML tags into a tree structure and
measures the edit distance between the prediction
and ground-truth tree structures. Higher similarity
corresponds to a shorter edit distance, leading to a
higher TEDS score.

5 Experimental Results

We compared our models with six baselines—
Cascade R-CNN (Cai and Vasconcelos,
2018), Deformable-DETR (Zhu et al., 2021),
TSRDet (Xiao et al., 2025), VAST (?),
TABLET (Hou and Wang, 2025), and NGTR (Zhou
et al., 2025)—on three TSR task-related benchmark
datasets (PubTabNet, FinTabNet, and SciTSR),

Model Dataset APso  S-TEDS(%)
Cascade R-CNN PubTabNet 95.38 83.78
Deformable-DETR  PubTabNet 97.43 95.73
TSRDet PubTabNet  98.26 96.58
VAST PubTabNet  94.80 97.23
TABLET PubTabNet — 97.67
Ours PubTabNet 97.90 97.69
Cascade R-CNN FinTabNet  97.53 87.49
Deformable-DETR  FinTabNet  98.42 97.81
TSRDet FinTabNet  98.33 99.05
VAST FinTabNet  96.20 98.63
TABLET FinTabNet — 98.99
Ours FinTabNet  98.97 98.96
Cascade R-CNN SciTSR 95.27 79.09
Deformable-DETR  SciTSR 97.39 97.30
TSRDet SciTSR 96.79 98.41
Ours SciTSR 98.32 98.52
Table 1: Comparing our method with baselines on

PubTanNet, FinTanNet, and SciTSR datasets.

Model AP5o S-TEDS(%)
Swin-T  92.36 93.56
Ours 98.97 98.96

Table 2: Ablation results for vision-only and multi-
modal approaches on the FinTabNet dataset.

using AP5g and S-TEDS metrics. We utilised
structure-based S-TEDS as the primary evaluation
metric to avoid the noise of table cell content that
is generated by OCR. Our multi-modal approach
outperformed almost all visual-only baseline
methods and achieved highly competitive results
on table structure recovery, as shown in Table 1.
In particular, the multi-modal approach showed a
clear improvement in S-TEDS compared with the
vision-only Deformable-DETR, which suggests
that using text information helps the model better
handle confusing layouts and cells that look similar
in table images. The ablation study on FinTabNet
(Table 2) demonstrates that incorporating the
visual modality leads to a significant gain in
S-TEDS (+5.4), indicating that visual and textual
features work together and complement each
other for TSR. We note that our approach also
outperforms the VLLM approach (NGTR) (Zhou
et al., 2025) (Table 3) as per reported results on the
same datasets.

6 Conclusions

We present a multi-modal approach with two
stream encoders and separate decoders for the Ta-
ble Structure Recognition (TSR) task. The pro-
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Model Dataset S-TEDS(%)
NGTR  PubTabNet 92.31
Ours PubTabNet 97.69
NGTR  SciTSR 95.78
Ours SciTSR 98.52

Table 3: Comparing our TSR method and reported
results on VLLMs (Zhou et al., 2025).

posed model integrates features from both visual
and textual modalities, generating table structure
and table cell bounding boxes simultaneously. Our
experimental results on three different datasets
from scientific and financial domains show that the
effectiveness of the proposed model is competitive
compared to visual-only approaches.

7 Limitations

The proposed multi-modal approach demonstrated
its effectiveness with regular table images, but it
is worthwhile to further explore irregular table im-
ages in real-world scenarios, such as table images
from scanned books, wired tables in the wild, and
handwritten tables. Meanwhile, training a unified
framework to integrate all sub-tasks of TSR (table
structure, table cell bounding boxes, and table cell
content) also presents opportunities for exploration.
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