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Abstract

Scientific literature in astronomy is rapidly ex-
panding, making it increasingly important to
automate the extraction of key entities and con-
textual information from research papers. In
this paper, we present an encoder-based sys-
tem for extracting knowledge from astronomy
articles. Our objective is to develop models
capable of classifying telescope references, de-
tecting auxiliary semantic attributes, and recog-
nizing instrument mentions from textual con-
tent. To this end, we implement a multi-task
transformer-based system built upon the SciB-
ERT model and fine-tuned for astronomy cor-
pora classification. To carry out the fine-tuning,
we stochastically sample segments from the
training data and use majority voting over the
test segments at inference time. Our system,
despite its simplicity and low-cost implementa-
tion, significantly outperforms the open-weight
GPT baseline.

1 Introduction

Evaluating the scientific influence of an astronom-
ical observatory often relies on quantitatively re-
viewing publications that use its data, typically by
constructing bibliographies that link datasets to
scholarly articles (Kurtz et al., 2000; Accomazzi,
2011; Henneken and Accomazzi, 2011; Grezes
et al., 2023). This process enables bibliometric
analyses and supports scientific reproducibility, al-
though it remains labor-intensive and depends heav-
ily on expert knowledge. While some tools for lit-
erature curation offer inexpensive solutions by rely-
ing on keyword matching (Dai and Karimi, 2022),
others have used recent generative transformer-
based models (Vaswani et al., 2017; Feng et al.,
2025). Their self-attention mechanism enables the
modeling of long-range dependencies in text, and
their ability to generate and classify human-like
language has led to successful cross-domain appli-
cations (Chae and Davidson, 2023; Aly et al., 2025).

However, while LLMs offer some advantages in
accurately extracting general and fine-grained in-
formation from domain-specific astrophysical texts
(Shao et al., 2024), they are computationally ex-
pensive to deploy and are not always optimized
for specialized scientific concepts. As a result,
a lightweight, domain-adapted method that can
support large-scale curation without prohibitive re-
source costs is needed. In this work, we present
a simple, low-cost approach for classifying and
inferring instrumentation information from astro-
physical literature. We show that it significantly
outperforms the 20B-parameter LLM baseline! on
this task, demonstrating the value of domain align-
ment over sheer model size. Our contributions are
twofold: (1) we implement an efficient model that
can be deployed at scale; and (2) we provide em-
pirical evidence that lightweight, domain-specific
methods can surpass much larger general-purpose
LLMs. By enabling accurate and scalable link-
age between observational data and the scholarly
record, our approach supports both bibliometric
evaluation and scientific reproducibility and high-
lights the importance of tailored NLP solutions for
scientific domains.

2 Task Description

The Telescope Reference and Astronomy Catego-
rization Shared Task (TRACS) at JCNLP-AACL
2025 (Grezes et al., 2025) presents us with a unique
opportunity to apply natural language processing
techniques to astrophysical literature and derive
actionable insights to assist the scientific method.

2.1 Objective

The objective of the given task is that given an as-
trophysical text, we need to train a language model
that can infer the information about the telescope
instrument being used. The model should be able

"https://huggingface.co/openai/gpt-oss-20b
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Figure 1: System design for the shared task. Input documents are chunked into equal segments with 512 tokens.
Each segment is given the same label as the original input and is used to fine-tune the model. At inference time, we

use majority voting to assign the test labels.

to identify the telescope being used in the text and
also in what capacity it is being used. To quantify it,
the text needs to be classified into 4 boolean labels,
which are "science", " mention",

and "not_telescope".

"non

instrumentation",

2.2 Dataset

The dataset provided for the TRACS @ WASP task
is full papers or fragments of papers that are taken
from SciX? and are meticulously annotated by the
domain experts. The dataset is provided in a CSV
format. Each row consists of the following ele-
ments:

* "bibcode": A unique string for entry identifica-
tion in the SciX database, which is necessary
for organization and traceability.

* "telescope": The name of the telescope, which
is referenced in the entry.

* "author", "year": The metadata on the re-
searchers and the time of publication of the

entry.
» "title", "abstract", "body", "acknowledg-
ments", "grants": The textual content of the

entry, which are essentially different parts of
the research document, is split according to
these labels.

e "science", 'instrumentation", "mention",
"not_telescope": These are boolean labels
which classify the entry according to how the
papers use the data from the telescopes.

For the training dataset, the annotated labels that
the model needs to train and predict are the mul-

Zhttps://www.scixplorer.org

Model |Optimizer| LR |Scheduler|Batch Size |Epochs
SciBERT| AdamW [2e-5| linear | 8 | 4

Table 1: Model training hyperparameters

ticlass label "telescope” and the four boolean la-
bels "science", "instrumentation”, "mention", and
"not_telescope". The data for training, as one can
infer, is the textual information for the research pa-
per split into "title", "abstract", "body", "acknowl-

edgments"”, and "grants".

2.3 Data Statistics and Preprocessing

Diving into the statistics of the provided dataset,
it consists of 80385 unique entries spanning 4
decades for three telescopes. These are the Hub-
ble Space Telescope (HST), the Chandra X-ray
Observatory (CXO), and the James Webb Space
Telescope (JWST). Also, among the four boolean
labels, "science" and "mention" are fairly evenly
distributed, but the remaining two are quite skewed,
with the majority of entries being the boolean label
"FALSE". For the full entry text to be processed
by our model, we convert the dataset into multiple
JSON files. First, we concatenate the content of
the fields "title", "abstract", "body", "acknowledg-
ments", and "grants". Then, we split this string
into chunks of 512 tokens, which were then saved
in the JSON format along with the labels. Each
JSON file contains 1000 entries, which are chunked
in the manner described. Finally, for 80385 rows
in the CSYV file, we get 81 JSON files, which are
then used for training purposes (Figure 1). These
preprocessed JSON files are used as training data.
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3 Experiments and Results

3.1 Model Selection

To perform the task, we opted for the SCiBERT
model (Beltagy et al., 2019) since it is a pretrained
language model designed to enhance natural lan-
guage understanding within the scientific domain.
Built upon the foundational BERT architecture (De-
vlin et al., 2019), SciBERT extends its capabilities
by being trained on a large corpus of scientific
publications sourced from the Semantic Scholar
database (Ammar et al., 2018). This domain-
specific pretraining enables SciBERT to capture
the specialized vocabulary, structure, and linguistic
patterns prevalent in scientific writing, which are
often underrepresented in general-domain corpora.

The model maintains the same architecture as
BERT-Base but introduces a newly constructed vo-
cabulary, SciVocab, tailored to the scientific do-
main. This vocabulary shares only about 42%
overlap with BERT’s original WordPiece vocab-
ulary, highlighting the substantial linguistic differ-
ences between general and scientific texts (Beltagy
et al., 2019). Through this adaptation, SCiBERT
demonstrates superior performance across a range
of scientific NLP tasks, including named entity
recognition, relation classification, sentence clas-
sification, and dependency parsing, outperforming
general-domain models on domain-specific bench-
marks. Its advantages are particularly pronounced
in biomedical and life science applications, where
scientific terminology and context play crucial
roles in comprehension and information extraction.

3.2 Experiments and Results

We report the results for two sets of experiments
that showed a marginal difference in their perfor-
mance. Both these experiments achieved the 6™
rank in the competition leaderboard.

In our approach, we initially do a baseline run
to measure the scope of improvement. The pre-
trained SciBERT encoder was used without any
fine-tuning, while the classification heads remained
randomly initialized. The [CLS] token represen-
tations from each chunk were processed by the
random classification heads to generate logits for
both telescope and boolean labels. Predictions were
then aggregated across all chunks to produce final
outputs. We call this experiment SCiBERT_v1.

Following this, we begin our training procedure.
In the first experiment, we use the first 512 tokens
from each entry, along with the entry-level classifi-

Model Macro F1 score
SciBERT _base 0.18
Random baseline 0.24
Openai-gpt-0ss-20b> 0.31
SciBERT _vi 0.72
SciBERT_v2 0.73

Table 2: Performance metrics. Here, ’_base’ represents
the baseline run, ’_v1’ is the SciBERT model trained
with the initial 512 tokens, and °_v2’ is the SciBERT
model trained on the 10 random chunks from each entry.

cation labels. This results in a dataset comprising
approximately 41 million tokens. The training hy-
perparameters used are listed in Table 1. The loss
function governing this training process is the sum
of the cross-entropy loss for the multiclass label
(e.g., the “telescope” label) and the BCEWithLog-
its loss for the four boolean labels.

Next, we carry out a similar experiment, but in-
stead of using just the first 512 tokens, we use 10
random chunks from each entry (if an entry has
fewer than 10 chunks, we consider all of them).
We call this experiment SCiBERT_v2. All the re-
sulting chunks get labeled the same as the full entry
itself. This was done to give a fair chance to the
other chunks of the same entry to contribute to
the training part, specifically the acknowledgment
and grants, which often contain direct references
to instrumentation. For this experiment, the dataset
comprises approximately 410 million tokens. The
remaining part of the training process (the hyper-
parameters, loss function, etc) was similar to the
previous experiment.

These models were tested on the test dataset,
which consisted of 9194 entries. These were
also preprocessed in the same way as the train-
ing dataset. To quantify the model’s classification
capability appropriate metric is needed. For clas-
sification tasks where there is label imbalance F1
score is most widely used. The F1 score provides
a balanced measure of a model’s precision and re-
call, which is especially important for imbalanced
datasets, which we have as we discussed in the 2.3
already. Now, since we have 5 classes to predict,
we will have an F1 score per class. So we con-
sider the macro F1 score as the model performance

3https://ui.adsabs.harvard.edu/WIESP/2025/
shared_task
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Paper ID | Telescope | Science | Instrument | Mention | Not_telescope

| GT | Pred | GT | Pred | GT | Pred | GT | Pred | GT | Pred
2014H...6C_CHANDRA | CHANDRA | CHANDRA v 1 1v 0 0v 0 0v 0 0v
2001t...7M_CHANDRA CHANDRA | CHANDRA v 0 0v 0 0v 1 1v 0 0v
20081...8S_HST HST HST v 1 1v 0 0v 0 0v 0 0v
2012A..4S_CHANDRA | CHANDRA | CHANDRA v 0 0v 0 0v 1 1v 0 0v
2011A...1IM_CHANDRA | CHANDRA | CHANDRA v 1 0Xx 0 0v 0 1X 0 0v
2020S...9M_HST HST JWST x 0 0v 0 0v 0 1X 1 0x
2022s...1W_CHANDRA | CHANDRA | CHANDRA v 1 0Xx 0 0v 0 1X 0 0v
2000H...7S_CHANDRA | CHANDRA | CHANDRA v 1 0x 0 0v 0 1X 0 0v

Table 3: Model prediction examples
metric given as:
0.2 0.4

multiclassp1 + + >, boolry ;
2

where multiclass is for the "telescope" label and
bool for the four boolean classes "science", "instru-
mentation", "mention", and "not_telescope". The
metrics of the trained model are compared to the
baseline in Table 2. As we can see, the results from
our two experiments are similar (0.72 and 0.73).
However, they significantly outperform the LLM
baseline, which has a performance of 0.31, as well
as our own baseline, which is the same model with-
out fine-tuning (0.18). This can be attributed to
the domain-specific fine-tuning, which allowed our

trained models to be specialized classifiers.

Modelr; = (D

4 Error Analysis

To gain deeper insights into the limitations of our
approach, we perform an error analysis. Since
ground-truth labels for the test set are not avail-
able, this analysis is conducted on the validation
split of the training data, which was also used for
evaluation during model development.

In Table 3, we present selected example pre-
dictions from our best-performing model, SciB-
ERT_v2. In the misclassified cases, we observe that
the boolean labels “science” and “mention” tend
to be mispredicted more frequently. This behavior
is likely because these labels are highly context-
dependent, requiring a nuanced understanding of
the surrounding textual semantics. In contrast, the
labels “instrument” and “not_telescope” are gen-
erally easier to predict correctly, as their identifi-
cation primarily depends on the explicit mention
of instrument names rather than broader contextual
cues. This issue could be alleviated by employing
models capable of handling longer context win-
dows or those pretrained on domain-specific astro-
nomical corpora. Furthermore, for the telescope
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Figure 2: Telescope predictions confusion matrix

classification, a clear trend emerges (Figure 2): the
model achieves the highest accuracy for CHAN-
DRA, followed by HST, and then JWST. Also, we
see increased false predictions, i.e., more confusion
for the HST and JWST classes. The reason behind
this could be the naming scheme of the classes for
this label. The classes of the Hubble Space Tele-
scope (HST) and the James Webb Space Telescope
(JWST) share the words "Space" and "Telescope"
that might have confused the model predictions,
while CHANDRA is more distinct.

5 Conclusion and Future Work

We introduced our system for the telescope refer-
ence and astronomy categorization. Leveraging
the SciBERT model, our method utilizes domain-
adapted language representations to automatically
identify telescope mentions and their contextual
roles within astrophysical literature. We showed
that fine-tuning SciBERT on random segments
selected from the article data considerably im-
proves model performance and significantly out-
performs the LLM baseline. Looking ahead, we
aim to further enhance the framework by exploring
transformers with extended context windows and
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models pretrained on astronomy-specific corpora,
which could help capture the nuanced contextual
cues required for labels such as science and men-
tion. We also plan to investigate data balancing
strategies and contrastive learning methods to miti-
gate class skewness in telescope categories and im-
prove robustness across less frequent instruments.

6 Limitations

The limitations of this work primarily stem from
the inherent challenges of modeling complex scien-
tific text and the class imbalance in the dataset. Al-
though our framework effectively captures domain-
specific semantics, the context-dependent nature
of certain labels makes it prone to misclassifica-
tion, suggesting that the current model’s context
window may be insufficient to fully capture subtle
relationships between telescope usage and scien-
tific context. Furthermore, the reliance on weakly
supervised labels may introduce annotation noise,
affecting the precision of the boolean attribute de-
tection. The telescope classification results also
reflect dataset skewness, where classes such as
CHANDRA are overrepresented, leading to uneven
performances across telescope types.
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