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Abstract
We present a dataset of 408,590 astrophysics
papers from arXiv (astro-ph), spanning 1992
through July 2025. Each paper has been pro-
cessed through a multi-stage pipeline to pro-
duce: (1) structured summaries organized into
six semantic sections (Background, Motivation,
Methodology, Results, Interpretation, Implica-
tion), and (2) concept extraction yielding 9,999
unique concepts with detailed descriptions.
The dataset contains 3.8 million paper-concept
associations and includes semantic embeddings
for all concepts. Comparison with traditional
ADS keywords reveals that the concepts pro-
vide denser coverage and more uniform dis-
tribution, while analysis of embedding space
structure demonstrates that concepts are seman-
tically dispersed within papers—enabling dis-
covery through multiple diverse entry points.
Concept vocabulary and embeddings are
publicly released at https://github.com/
tingyuansen/astro-ph_knowledge_graph.

1 Introduction

A frontier application of large language models is
their deployment as autonomous agents that reason
about scientific literature, plan research strategies,
and execute multi-step retrieval tasks (Brown et al.,
2020; Wang and Zeng, 2025). Such systems, al-
ready demonstrated in materials science and chem-
istry for autonomous experimentation (Szymanski
et al., 2023; Boiko et al., 2023; Bran et al., 2023;
Caldas Ramos et al., 2024), require structured
knowledge representations to function—moving
beyond language processing to operate on seman-
tically organized information. While LLMs can
process raw text, their utility as research agents
depends on access to curated intermediate repre-
sentations that bridge unstructured documents and
formal knowledge structures (Lewis et al., 2020).

Astronomy presents an advantageous testing
ground: most papers are archived on arXiv (astro-
ph since 1992), and the open-sky policy enables

databases to link astronomical objects directly to
papers. The combination of papers, observed ob-
jects, and their properties provides an ecosystem
where structured representations could enable agen-
tic research and autonomous discovery.

However, text as a modality remains under-
curated in the astronomy literature. Current re-
sources are either too complete (full source, which
is difficult to extract insights) or too sparse (ab-
stracts only). Both extremes limit downstream ap-
plications. Useful scientific ideas emerge from
holistic understanding of concepts rather than di-
rect processing of individual words—this is how
humans engage with literature. Keywords were
designed to bridge this gap, but when present, are
rarely mapped to controlled vocabularies like the
Unified Astronomy Thesaurus (UAT) and exhibit
sparsity—most keywords appear in very few pa-
pers and many papers have very few keywords,
rendering them unsuitable for systematic analysis.

LLMs can extract such structured representa-
tions from papers, but this is cost-intensive. Indi-
vidual researchers performing this task separately
would waste computational resources. A single,
centralized effort provides economies of scale and
ensures consistency across the literature.

To address this, we organize all astro-ph papers
into structured summaries and concepts—two inter-
mediate layers that bridge the gap between raw text
and knowledge representation. Our work builds
on recent developments in applying LLMs to astro-
nomical research, including domain-specific mod-
els like AstroLLaMA (Pan et al., 2024) and As-
troSage (de Haan et al., 2025), complementary ef-
forts in knowledge graph construction (Sun et al.,
2024; Kau et al., 2024), and the development of rec-
ommender systems (Geng et al., 2022; Chu et al.,
2023; Zhao et al., 2023; Vats et al., 2024). We
present a comprehensive dataset spanning 408,590
papers with 9,999 unique concepts, their semantic
embeddings, and structured summaries.
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2 PDF to Text: OCR Pipeline

Converting astrophysics PDFs to machine-readable
text presents challenges due to the prevalence of
mathematical equations, multi-column layouts, and
figures with embedded captions. We chose to use
OCR rather than LaTeX source files because La-
TeX sources are not uniformly structured across
papers and many papers use custom macros that
complicate parsing.

Our pipeline initially used Nougat (Blecher et al.,
2023)1, an academic document OCR model that
converts PDFs to markdown format for ease of
processing. Processing each paper requires approx-
imately 1 minute on a V100 GPU, representing a
substantial computational investment—processing
over 350,000 papers required about 6,000 V100
GPU-hours. Starting in November 2024, we tran-
sitioned to Mathpix OCR API2 as it proved more
reliable than Nougat.

Both Nougat and Mathpix preserve mathemati-
cal notation in LaTeX format within the OCR out-
put. For section detection, Nougat outputs mark-
down headers (###) while Mathpix preserves La-
TeX section commands (\section). The transi-
tion to Mathpix was motivated by Nougat’s occa-
sional failure mode where approximately 1 in 500
pages would produce repetitive text; such corrupted
pages are naturally excluded during the summa-
rization stage, though this may result in missing
information at a subdominant level. For Mathpix
OCR (covering approximately 50,000 papers from
November 2024 onward), author team inspection
of randomly sampled pages revealed no systematic
OCR errors at levels that would impact summary
quality.

3 Multi-Stage Summarization

3.1 Chunk-Based Compression

During early development, we found that process-
ing entire papers at once led to incomplete sum-
maries, with LLMs often omitting important de-
tails or providing superficial coverage. This was
problematic for generating organized summaries
with properly populated sections—methodological
details, for instance, were frequently under-
represented. Processing single abstracts typically
missed useful information like detailed derivations
and technical implementation specifics. This moti-

1https://github.com/facebookresearch/nougat
2https://mathpix.com/ocr

vated our chunk-based approach, which processes
papers in manageable segments while maintaining
context across chunks.

We split each paper into approximately 10,000-
character chunks using section-aware boundaries
to avoid mid-sentence breaks. Papers are split
at section boundaries (detecting either markdown
headers from Nougat or \section commands from
Mathpix), with adjacent small sections merged up
to the 10,000-character limit. Each chunk is sequen-
tially compressed with context from previously
compressed chunks, ensuring coherence across the
full paper. This approach increases token costs
several-fold compared to single-pass processing,
but when this project started in late 2023, this was
necessary to achieve adequate quality. We main-
tained this approach for subsequently processed
papers to ensure consistency.

The compression system prompt emphasizes: (1)
retaining LaTeX formulas, (2) focusing on motiva-
tions and methods, (3) highlighting key results and
connections to other works, (4) preserving tech-
nical jargon for expert readers, and (5) excluding
acknowledgments and references. As language
models improved, we adopted the most affordable
versions while maintaining quality. Different pa-
pers were processed with GPT-4o, GPT-4o-mini,
o1-mini, and DeepSeek-v3 depending on availabil-
ity. The complete summarization process for all
408,590 papers required over $50,000 in API costs,
not including OCR costs.

3.2 From Raw Summaries to Structured
Organization

Abstract sections often jumble information chrono-
logically or by importance, making systematic anal-
ysis difficult. We reorganize raw summaries into
seven semantic sections that follow the logical flow
of scientific papers: Title and Author, Background,
Motivation, Methodology, Results, Interpretation,
and Implication. This structured format enables
targeted queries and facilitates knowledge repre-
sentation by clearly separating context, methods,
and outcomes. Appendix A shows a complete ex-
ample demonstrating all six sections.

4 Concept Extraction and Vocabulary

4.1 Extraction Methodology

For each organized summary, we prompt the LLM
to extract approximately 10 key concepts focusing
on novel contributions. The target of 10 concepts
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provides finer granularity than traditional keyword
systems (where author-supplied keywords typically
number 3-5 per paper) while remaining tractable
for LLM extraction. The system prompt empha-
sizes: (1) identifying innovations and novel meth-
ods, (2) covering both scientific concepts (obser-
vational phenomena, theoretical frameworks) and
technological concepts (computational techniques,
instrumentation), and (3) avoiding generic field
names or overly specific parameters.

This approach leverages the capacity of mod-
ern language models (Achiam et al., 2023; Belt-
agy et al., 2019; Ting et al., 2025) to understand
domain-specific scientific contexts. Each concept
includes three components: a Name (3-4 word con-
cise label), a Class (Cosmology & Nongalactic
Physics, High Energy Astrophysics, Instrumental
Design, Galaxy Physics, Numerical Simulation,
Statistics & AI, Solar & Stellar Physics, or Earth
& Planetary Science), and a Description (∼100-
word technical explanation). The final concept
vocabulary was generated homogeneously using
a combination of GPT-4o and o1-mini to ensure
consistency across all papers.

4.2 Vocabulary Construction and Clustering
LLM-extracted concepts lack a priori control over
consistency—different papers may use different
terminology for the same concept, and there is no
guarantee of controlled vocabulary. To address this,
following the methodology of Sun et al. (2024), we
employ a multi-stage clustering process. For each
extracted concept in each paper, we combine the
organized summary with the concept name to gen-
erate detailed descriptions. These descriptions are
then embedded using OpenAI’s text-embedding-
3-large model. We perform K-means clustering
(k=10,000) in the cosine similarity space to consoli-
date similar concepts, merging semantically equiva-
lent variants into single unified entries. The cluster-
ing maximizes inter-cluster distances while group-
ing semantically similar extractions. The clustering
process synthesizes new unified concept descrip-
tions that capture the full semantic range across
papers.

We experimented with different vocabulary gran-
ularities in log space (3,000, 10,000, and 30,000
concepts). We found 10,000 concepts to provide
the most useful balance. All 10,000 concepts and
descriptions were manually reviewed by the author
team, during which one null concept (represent-
ing rare OCR failure cases) was identified and re-

Category Count

Cosmology & Nongalactic Physics 2,192
High Energy Astrophysics 1,606
Instrumental Design 1,295
Galaxy Physics 1,267
Numerical Simulation 1,050
Statistics & AI 1,020
Solar & Stellar Physics 930
Earth & Planetary Science 639

Table 1: Distribution of 9,999 concepts across research
categories.

moved, leaving the final vocabulary of 9,999. The
concepts have been used in various downstream
analyses (Sections 5-6) providing ongoing valida-
tion. Given the dataset scale, our validation strategy
prioritized full vocabulary review over exhaustive
paper-by-paper evaluation, and users should ex-
ercise appropriate scrutiny when employing the
dataset for specific applications.

Each concept retains its detailed description syn-
thesized from multiple papers, providing more con-
text than typical keyword systems. The concept
distribution across categories is shown in Table 1.
Each concept appears in an average of 383 papers
(median: 223), making them statistically robust
while maintaining sufficient specificity. As we will
see in Section 5, this granularity avoids both the
overly broad categories and overly specific identi-
fiers that plague traditional keyword systems.

5 Quality Evaluation

5.1 Comparison with Traditional Keywords
To evaluate our concept vocabulary, we compare
it with traditional ADS keywords extracted via the
NASA ADS API for all 408,590 papers. ADS key-
words are author-supplied and not systematically
checked against controlled vocabularies like the
Unified Astronomy Thesaurus. We performed cu-
ration by removing arXiv classification keywords
(e.g., "Astrophysics - Cosmology"), normalizing to
lowercase, and filtering overly common keywords
(>20,000 occurrences) and rare keywords (<10 oc-
currences). After curation, ADS keywords cover
73% of papers (298,658) with 6,909 unique key-
words and 1.27M associations.

Figure 1 shows two key differences. First, ADS
keywords suffer from severe sparsity: 44% of pa-
pers have ≤3 keywords and 62% have ≤4 key-
words—insufficient for effective semantic search
or recommendation systems. This primarily re-
flects different generation mechanisms: author-
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Figure 1: Distribution of keywords/concepts per paper (left) and frequency distribution (right). ADS keywords
show high sparsity with many papers having few keywords, while our concepts provide consistent coverage. The
frequency distribution (right) reveals a large pile-up of overly generic terms and an extended tail of overly specific
identifiers, while our concepts maintain more balanced intermediate granularity.

supplied keywords are known to be sparse partly
because authors often do not systematically check
controlled vocabularies, and different journals have
varying keyword standards. In contrast, our extrac-
tion prompt explicitly requests approximately 10
concepts per paper, achieving complete coverage:
all 408,590 papers have structured summaries and
concept associations. The average paper has 9.4
concepts (median: 10) concepts per paper with a
small dispersion.

Beyond coverage, our concepts exhibit more
balanced frequency distribution. While ADS key-
words suffer from extreme imbalances—most com-
mon keywords like "galaxies: evolution" appear in
16,321 papers while 2,658 keywords (38% of the
vocabulary) appear in only 10-20 papers—our con-
cepts maintain intermediate granularity. Table 2 il-
lustrates this problem: the most common keywords
represent overly broad field categories with limited
discriminative power, while rare keywords are of-
ten object-specific identifiers (e.g., "grb 080319b")
rather than research themes.

In contrast, our concepts balance these extremes
through systematic curation and maintain seman-
tic meaningfulness across all frequency ranges,
through the clustering and consolidation process.
Table 3 demonstrates this: high-frequency con-
cepts represent general methodologies applicable
across subfields (e.g., "Monte Carlo Simulations"
with 13,671 papers) that retain semantic specificity
and discriminative power for retrieval, medium-
frequency concepts capture well-established re-
search areas (e.g., "Stellar Evolution Models" with
2,751 papers), and low-frequency concepts identify

Keyword Papers %

Most Common (Overly Broad)

galaxies: evolution 16,321 5.5
galaxies: active 14,121 4.7
accretion 12,540 4.2
methods: numerical 12,510 4.2
stars: formation 9,172 3.1
dark matter 9,032 3.0
methods: data analysis 8,384 2.8
galaxies: formation 8,313 2.8

Rare (Overly Specific) - 2,658 keywords with 10-20 papers

gamma-ray burst: individual: grb 080319b
stars: individual: alphanumeric: hd 209458
galaxies: individual: alphanumeric: ngc 1275
pulsars: individual: alphanumeric: psr j1614-2230
x-rays: binaries: individual: alphanumeric: cygnus x-1

Table 2: Examples of overly broad and overly specific
ADS keywords. The most common keywords represent
broad field categories with limited discriminative power,
while rare keywords are often object-specific with mini-
mal value for thematic analysis.

emerging or specialized topics while remaining
thematic rather than object-specific (e.g., "Inter-
pretable Machine Learning in Astronomy" with
49 papers). The median concept appears in 223
papers—more balanced than the median of 28 for
ADS keywords.

These limitations of traditional keywords make
content-based recommendation systems difficult
to implement. This dataset provides an alternative
that enables more robust semantic search and rec-
ommendation algorithms, which may be useful for
platforms like NASA ADS. Our concept vocabu-
lary includes many terms not present in the UAT,
including in emerging areas like deep learning ap-
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Frequency Concept Papers Class

High Monte Carlo Simulations 13,671 Numerical Simulation
N-Body Simulation Dynamics 12,041 Numerical Simulation
Astronomical Spectral Energy Profiles 9,590 Galaxy Physics
Cosmic Microwave Background 9,166 Cosmology & Nongalactic Physics

Medium-High Stellar Evolution Models 2,751 Solar & Stellar Physics
Dynamic Cosmological Constant 2,692 Cosmology & Nongalactic Physics
Galaxy Morphological Study 2,485 Galaxy Physics
High-Redshift Quasars 1,626 Cosmology & Nongalactic Physics

Medium Gravitational Lensing Surveys 278 Instrumental Design
CMB Simulation Methodologies 276 Numerical Simulation
Marginalization in Bayesian Inference 268 Statistics & AI
Neural Inference Methods 202 Statistics & AI

Low Interpretable Machine Learning in Astronomy 49 Statistics & AI
Neutrino-Driven Supernova Simulations 48 Numerical Simulation
Exoplanetary Companion Systems 44 Solar & Stellar Physics
Gravitational Wavefront Interactions 35 Cosmology & Nongalactic Physics

Table 3: Examples of our concepts across frequency ranges. Unlike traditional keywords that become meaningless
at extremes (overly broad or object-specific), our concepts remain scientifically meaningful across all frequencies,
maintaining thematic coherence rather than becoming object-specific identifiers.

plications in astronomy. While our concepts can
be mapped to UAT for compatibility with existing
systems, we also propose this vocabulary as a po-
tential foundation for extending or complementing
the UAT with contemporary research terminology.

5.2 Concepts for Discovery

Beyond coverage and frequency balance, why are
concepts superior to abstracts for discovery tasks?
While abstracts provide summaries of papers, they
operate at a narrative level that is not optimal for
discovery. Novel ideas often emerge from specific
methodological details, intermediate results, or con-
ceptual connections that are embedded within a
paper but not prominently featured in its abstract.
Furthermore, current language models process con-
tinuous text rather than discrete conceptual tokens,
limiting their ability to generate novel hypotheses
through systematic exploration of the idea space.

To demonstrate why concepts are critical for dis-
covery, we analyze the embedding space structure
of 10,000 randomly sampled papers. Each concept
in our vocabulary has a detailed description (see
Table 3), from which we extract embeddings us-
ing OpenAI’s text-embedding-3-large. We perform
the same embedding extraction for each paper’s
abstract and for the six individual sections of its
structured summary.

Figure 2 shows UMAP projections of four repre-
sentative papers—two with high concept dispersion
(top row) and two with low dispersion (bottom row).
The faint gray background represents all 9,999 con-

cepts in our vocabulary, providing spatial context.
Even in cases labeled as "low dispersion" (bottom
row), the concepts assigned to individual papers
(bold gray circles with labels) remain dispersed
across semantic space.

This dispersion occurs because papers contain
multiple distinct ideas spanning different domains.
For example, the top-right panel shows a paper
on fractional cosmology that discusses concepts
including "Hubble Data Analysis Diagnostics",
"Variational Principles in Physics", "Fractional
Calculus in Physics", and "Riccati Equations in
Physics"—concepts that occupy distant regions of
semantic space, bridging observational analysis,
theoretical cosmology, and mathematical physics.
Such concepts cannot be recovered from abstract
embeddings alone; some are embedded deeply
in methodological sections and never explicitly
mentioned in abstracts. In stark contrast, the six
summary sections (colored diamonds) and abstract
(gold star) cluster tightly together in all cases, as all
sections describe the same paper from different an-
gles—they are semantically coherent because they
narrate a single research story.

This analysis does not diminish the value of
structured summaries—quite the contrary. It re-
veals the complementarity of concepts and sum-
maries in our knowledge graph. Concepts are dis-
persed across semantic space, assigned to papers
based on diverse topical content, making them ideal
for discovery. A researcher exploring "Variational
Principles in Physics" can find relevant papers,
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Figure 2: UMAP projections of concept (grey symbols) and summary embeddings (colored diamonds) and the
abstract (gold star) for four representative papers. Faint gray background shows all 9,999 concepts in the vocabulary.
Even papers classified as "low dispersion" (bottom row) have concepts spread across distinct semantic regions,
showing that abstracts (and summaries) cannot capture the full conceptual diversity present in papers, unlike
concepts.

even if this concept appears only in a methodologi-
cal subsection and not in the abstract. Summaries,
conversely, cluster together because all sections
describe the same paper. This narrative coherence
makes them valuable for understanding context
after relevant papers are identified through concept-
based discovery.

6 Applications

Having established the quality advantages of our
concept vocabulary, we now demonstrate its utility
through two applications that leverage these prop-
erties: temporal analysis of concept emergence and
co-occurrence analysis of research themes.

6.1 Temporal Evolution of Concepts

The granular and semantically meaningful nature
of our concepts enables precise tracking of how
ideas emerge, evolve, and connect across different
research areas. This application demonstrates the
value of our vocabulary for constructing knowl-
edge graphs (Kau et al., 2024) that trace research
evolution. We analyze concept emergence by iden-
tifying when each concept first appeared in at least
5 papers (a threshold ensuring stability rather than
single-paper anomalies). Figure 3 shows the tem-
poral evolution across three decades, with new con-
cepts per year (left) and cumulative growth (right).

The declining rate of new concept emergence in
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Figure 3: Temporal evolution of concept vocabulary across three decades. (a) Number of new concepts emerging
each year (crossing the 5-paper threshold). (b) Cumulative growth of the concept vocabulary. The rapid expansion
in the early years reflects foundational concepts when arXiv began. A secondary peak in 2007 corresponds to
cross-listing policy changes.

recent years does not necessarily indicate reduced
innovation. Several factors contribute to this pat-
tern. First, many fields have matured, with research
increasingly focused on connections between es-
tablished concepts rather than entirely new topics.
Second, our 5-paper threshold means concepts can
appear earlier than their peak importance—for ex-
ample, concepts about the Gaia mission and the
James Webbs Space Telescope emerged earlier than
their launch, when early planning papers crossed
the threshold, despite these missions becoming
prominent only after launch. Third, our clustering
methodology itself may exhibit systematic bias: be-
cause clustering aims to consolidate semantically
similar terms across all papers, genuinely novel
concepts appearing in recent years may be merged
into established clusters from earlier periods if suf-
ficiently similar in embedding space, suppressing
the apparent emergence rate.

A notable secondary peak occurred in 2007, cor-
responding to arXiv expanding cross-listing poli-
cies to allow papers from other disciplines to in-
clude astro-ph as a secondary category. Analy-
sis of these 2007 concepts reveals their origin:
51% are classified as Cosmology & Nongalactic
Physics and 13% as High Energy Astrophysics,
dominated by theoretical topics including Loop
Quantum Gravity, Holographic Duality, Einstein-
Gauss-Bonnet Gravity Theories, Quantum Entan-
glement Entropy, Conformal Field Theory, and
Type IIB and Heterotic String Theories. These
reflect contributions from theoretical physics and
general relativity research that began appearing in
astro-ph through cross-listing.

Over the past decade (2015-2025), 190 new con-
cepts emerged (Appendix B, Tables 5 and 6). Deep

learning dominates recent emergence: Astronomi-
cal CNN Applications (1,676 papers), Deep Learn-
ing in Astronomy (604 papers), Residual Neural
Networks (402 papers), U-Net Variants in Astron-
omy (373 papers), Transformer Architectures in As-
tronomy (185 papers), and Physics-Informed Neu-
ral Networks (120 papers). Recent concepts also in-
clude observational capabilities—including JWST
Deep Extragalactic Surveys (75 papers, emerged
2022) and GW170817 Multimessenger Merger
(324 papers, emerged 2017), which by our metric
are considered "new" when they first crossed the
5-paper threshold, even though JWST’s scientific
impact continues to grow. Appendix B provides
representative astronomy-relevant examples from
the full list.

6.2 Concept Co-occurrence

While temporal analysis reveals when individual
concepts emerge, understanding how concepts ap-
pear together in papers provides complementary
insights into the thematic structure of research. Un-
like traditional citation analysis which tracks paper-
to-paper relationships, concept co-occurrence re-
veals how different methodologies, observations,
and theories interconnect within the field, identify-
ing which ideas are commonly explored together
and how these patterns shift as the field develops.

We quantify co-occurrence using the Ochiai co-
efficient, which normalizes by concept popularity.
Intuitively, if two concepts i and j appear together
in Nij papers, and appear individually in Ni and
Nj papers respectively, the Ochiai coefficient is:

Ochiai(i, j) =
Nij√
Ni ·Nj

(1)
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Figure 4: Evolution of concept co-occurrence in astrophysics. Darker colors indicate stronger co-occurrence. (a)
Early period (1992–2003): established domain structure. (b) Recent period (2023–2025): computational domains
(Statistics/AI, Numerical Simulation) show increased internal coherence and enhanced cross-domain integration
with traditional astrophysical domains, reflecting the field’s evolution toward data-intensive research.

This normalization is important because differ-
ent subfields have vastly different publication vol-
umes—this ensures we measure genuine concep-
tual relationships rather than simply reflecting
which fields are most active.

Co-occurrence analysis is a rich topic with many
dimensions to explore. Here we present a simple
comparison between two time periods to illustrate
the utility of our concept vocabulary. Figure 4
compares the earliest window (1992–2003, 40,000
papers) with the most recent window (2023–2025,
40,000 papers). Using fixed-size temporal windows
removes field growth bias—later periods do not
appear artificially stronger simply due to increased
publication volume.

For visualization, we apply spectral clustering
within each of the 8 predefined domains (Table 1)
using 2025 data to identify subclusters, producing
the fine-grained structure visible in Figure 4. To ag-
gregate the 9,999×9,999 concept matrix into this
manageable visualization, we compute the 10th
percentile of co-occurrence scores within each sub-
cluster block (capturing robust signal while filter-
ing noise), and use the spread between 10th and
30th percentiles to set transparency (indicating con-
sistency of patterns). These percentile choices en-
hance dynamic range: the 10th percentile provides
a stable color metric that is less sensitive to out-
liers than the median, while the 30th-10th spread
reveals whether co-occurrence within a block is
consistent (low spread, high transparency) or het-
erogeneous (high spread, lower transparency). This
hierarchical structure is held fixed across all tem-

poral windows, enabling direct comparison.
As shown in the figure, the technical do-

mains—Statistics/AI, Numerical Simulation, and
to some extent Instrumentation—exhibit more
cross-domain interactions in the recent period com-
pared to the early period. In the recent period,
the Statistics/AI domain shows prevalent integra-
tion with all astrophysical domains, reflecting the
widespread adoption of machine learning and data-
driven methods across subdisciplines. The Numeri-
cal Simulation domain displays increased internal
coherence, consistent with the field’s growing re-
liance on computational methods. These patterns
show that computational and statistical approaches
have evolved from peripheral tools to core compo-
nents of the research ecosystem.

Concepts in science domains (Galaxy Physics,
High Energy, Solar/Stellar) maintain relatively sta-
ble internal structure and interdomain connections
across both periods. The Cosmology domain
shows notable internal growth along with increased
cross-connections to High Energy. This growth
is partly attributable to the 2007 cross-listing pol-
icy expansion discussed previously, which brought
theoretical physics concepts into astro-ph. The
Earth/Planetary domain shows increased internal
coherence in the recent period, consistent with the
expansion of exoplanet research enabled by mis-
sions such as Kepler and TESS in recent years.

This analysis demonstrates how our concept vo-
cabulary enables quantitative study of field evo-
lution in ways that would be difficult or impos-
sible with traditional keyword systems. The pat-
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terns revealed—computational integration, method-
ological shifts, and domain stability—provide em-
pirical evidence for narratives about how astro-
physics research has changed over three decades.
Appendix C provides representative examples of
within-domain and cross-domain concept pairs
with strong co-occurrence, demonstrating fine-
grained thematic structure. More sophisticated tem-
poral analyses are beyond the scope of this paper,
but the released dataset supports such investiga-
tions.

7 Dataset Release

We release the dataset on GitHub at
https://github.com/tingyuansen/astro-ph_
knowledge_graph which covers all astro-ph
papers from 1992 through July 2025. The public
release prioritizes the concept vocabulary and
embeddings to enable reproducibility and support
downstream applications. For structured sum-
maries, we adopt a more conservative distribution
policy detailed in Appendix A. The public release
includes: Concept vocabulary as CSV with
labels, names, classes, and descriptions; concept
embeddings using text-embedding-3-large; paper
metadata including year, arXiv ID, and ADS
bibcodes; and Python scripts for data loading,
verification, and analysis. A complementary
citation network extracted from NASA ADS API
is also provided, with 1.67M unique identifiers
covering both internal references (between astro-ph
papers) and external citations (to other disciplines).
Table 4 summarizes the dataset statistics.

8 Conclusion

This work presents a dataset of 408,590 astro-
physics papers from arXiv astro-ph (1992-2025)
with structured six-section summaries, 9,999 AI-
generated concepts with detailed descriptions, and
semantic embeddings.

The key contribution is a systematically gen-
erated concept vocabulary that addresses limita-
tions of traditional keyword systems. Unlike
author-supplied ADS keywords that suffer from
extreme sparsity and frequency imbalances, our
AI-generated concepts provide consistent coverage
across all papers with balanced distributions. Each
concept includes a detailed description that pre-
serves scientific context, enabling more effective
discovery than single-word keywords. Our em-
bedding space analysis demonstrates that concepts

capture dispersed semantic information within pa-
pers that abstracts alone cannot represent, making
them critical for scientific discovery rather than
merely navigation.

Metric Value

Total papers 408,590
Unique concepts 9,999
Total concept associations 3,827,232
Avg concepts per paper 9.4 (median: 10)
Avg papers per concept 383 (median: 223)

Table 4: Summary statistics of the astro-ph knowledge
graph dataset (Table 1). All 408,590 papers have com-
plete structured summaries, concept associations, and
semantic embeddings.

Temporal analysis reveals how the concept vo-
cabulary captures field evolution. Recent emer-
gence (2015-2025, 190 concepts, Tables 5 and 6) is
dominated by machine learning adoption, while
also tracking major observational facilities and
theoretical developments. Co-occurrence analysis
demonstrates the increasing integration of compu-
tational domains (Statistics/AI, Numerical Simula-
tion) with traditional astrophysical research areas,
revealing the field’s evolution toward data-intensive
methodologies. These analyses show the vocab-
ulary’s ability to capture both enduring founda-
tions and emerging research frontiers across three
decades of astrophysics.

This dataset enables applications including se-
mantic search systems, research trend analysis,
knowledge graph construction, and training lan-
guage models for scientific understanding. The
combination of structured summaries, comprehen-
sive concept vocabulary, and semantic embeddings
makes this resource suitable for advancing AI-
assisted scientific discovery. Recent work has
demonstrated the potential of LLM agents in astro-
nomical analysis (Sun et al., 2025; Wang and Zeng,
2025), and our structured representations provide
the foundation for developing autonomous systems
in astronomical research.

While this paper focuses on dataset creation and
preliminary analysis, extrinsic evaluation through
task-based applications is an important next step.
We are actively exploring integration with recom-
mender systems and semantic search platforms to
enable concept-based paper discovery and citation
network analysis. Such applications will provide
quantitative evaluation of utility through user stud-
ies in production environments.
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Code and Data Availability

All code, system prompts, and data pro-
cessing pipelines are publicly available at
https://github.com/tingyuansen/astro-ph_
knowledge_graph. This includes OCR processing
scripts, multi-stage summarization prompts,
concept extraction and clustering code, embedding
generation, co-occurrence calculation, and data
verification scripts. While the proprietary APIs are
not open-source, all prompts and processing logic
are fully documented to enable replication with
alternative models.
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A Example Structured Summary

This appendix provides a representative example
of our structured summaries to demonstrate their
comprehensive nature and systematic organization.
Unlike traditional abstracts that prioritize brevity,
our summaries (typically 600-900 words, averaging
740 words) systematically separate six semantic
sections: Background (observational and theoret-
ical context), Motivation (scientific questions and
goals), Methodology (technical approach and data),
Results (empirical findings), Interpretation (theo-
retical analysis), and Implication (broader signifi-
cance). This structure enables targeted information
retrieval—a researcher can directly access method-
ological details or theoretical interpretations with-
out reading the entire paper. While paper summa-
rization is now routine with LLMs, we provide
these structured summaries upon request rather
than through public release out of caution at this
scale (0.4M papers). Researchers interested in ac-
cessing the summaries should contact the authors.

Title: Usco1606-1935: An unusually wide low-

mass triple system?
Author: Adam L. Kraus et al. (arXiv:0704.0455)

Background: The study of multiple star sys-
tems is crucial for understanding star formation
processes. Surveys have shown that binary frequen-
cies and properties vary significantly with mass.
Solar-mass stars exhibit high binary frequencies
(>60%) and can have separations up to ∼104 AU.
In contrast, M dwarfs have lower frequencies (30-
40%) and fewer companions beyond ∼500 AU,
while brown dwarfs show even lower frequencies
(∼15%) with few companions exceeding 20 AU.
The observed decline in maximum binary separa-
tion with decreasing mass has been described by
empirical functions, suggesting that this limit is
established early in stellar lifetimes. Surveys of
young stellar associations have identified a few un-
usually wide systems, but not enough to analyze
their properties statistically.

Motivation: To address the scarcity of unusu-
ally wide low-mass systems, we utilized archival
2MASS data to search for candidate wide binary
systems among known members of three nearby
young associations, including Upper Sco. Our find-
ings aim to align with the standard paradigm, re-
vealing a deficit of wide systems among very low-
mass stars and brown dwarfs, while also identi-

fying a few candidates, such as USco1606-1935,
a wide pair of stars with similar fluxes and col-
ors. This study seeks to evaluate the probability
of USco1606-1935 being an unusually wide, low-
mass binary, thereby contributing to the understand-
ing of multiple system formation and evolution in
young stellar associations.

Methodology: We identified USco1606-1935
AB as a candidate binary using 2MASS data, lever-
aging its bright and resolved components to gather
additional photometry and astrometry from vari-
ous surveys, including DENIS, USNO-B, and SSS.
The analysis focused on 2MASS JHK magnitudes
and USNO-B I magnitudes, ensuring consistency
through comparisons with DENIS data... Opti-
cal spectroscopy was conducted using the Dou-
ble Spectrograph at Palomar Observatory, process-
ing the spectrum with standard IRAF tasks and
comparing it with spectral standards from Upper
Sco and Taurus to confirm the spectral type. High-
resolution imaging was achieved with laser guide
star adaptive optics on the Keck-II telescope, ob-
taining nearly diffraction-limited images in both
narrow and wide camera modes to measure pho-
tometry and astrometry for the components.

Results: High-resolution images revealed that
USco1606-1935 A comprises two sources, Aa and
Ab, with the probability of an unbound bright
source near A being extremely low, suggesting
that Aa and Ab form a bound binary system. Pho-
tometric data confirmed that USco1606-1935 B
aligns with known members of Upper Sco, sup-
porting its membership, although its position in
color-magnitude diagrams raised questions about
potential differential reddening or unresolved com-
panions. Astrometric analysis summarized the rel-
ative positions of the system components and field
stars, with proper motion indicating that B is likely
a comoving member... Stellar and binary proper-
ties for the Aa-Ab and A-B systems were estimated
using isochrones and temperature scales to derive
component masses and spectral types.

Interpretation: Identifying pre-main sequence
binaries presents challenges in distinguishing gravi-
tationally bound pairs from coeval, comoving stars.
To assess clustering among PMS stars, we calcu-
lated the two-point correlation function (TPCF),
which quantifies the number of excess pairs at a
given separation compared to a random distribu-
tion. Utilizing a Monte Carlo approach, the TPCF
revealed significant clustering of stars at small sep-
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arations. The analysis indicated that the expected
surface density of unbound companions is ∼60
deg−2, suggesting a 25% chance of chance align-
ments among low-mass members. Consequently,
while the detection of Aa and Ab as a close binary
is highly probable, the physical association of Aab
and B cannot be assumed based solely on prob-
abilistic grounds, highlighting the complexity in
confirming wide binary status in such systems.

Implication: If Aab and B are gravitationally
bound, USco1606-1935 would represent one of
the rare young multiple systems with wide separa-
tions comparable to field systems of similar mass.
However, the significant probability of chance
alignment necessitates caution in such classifica-
tions. This underscores the need for systematic
searches for wide binaries in the Upper Sco as-
sociation and similar young stellar environments
to better understand the frequency and properties
of wide, low-mass multiple systems. Enhanced
observational strategies and comprehensive data
analyses are essential to distinguish truly bound
systems from coincidental alignments, thereby
refining our knowledge of star formation and
the dynamical evolution of multiple star systems.

B Recent Concept Emergence
(2015-2025)

A total of 190 concepts emerged during 2015-2025,
defined as crossing the 5-paper publication thresh-
old during these years. This represents approxi-
mately 2% of our total vocabulary, reflecting the
maturation of the field where new research increas-
ingly builds connections between established con-
cepts rather than introducing entirely new topics.
Tables 5 and 6 present representative astronomy-
relevant examples from this emergence, focusing
on concepts that reflect genuine recent develop-
ments in astrophysics methodology, observations,
and theory.

The dominance of machine learning and deep
learning concepts (46 concepts emerged in 2015
alone) reflects the rapid adoption of AI methods
across astrophysics during this period. Traditional
methodologies like Monte Carlo simulations and N-
body dynamics had already been well-established
in the 1990s, but their application within modern
neural network architectures represents a distinct
conceptual development. The examples shown cap-
ture major observational events (GW170817 Multi-

messenger Merger in 2017) and the scientific im-
pact of new facilities (JWST Deep Extragalactic
Surveys in 2022, Gaia-Sausage-Enceladus Merger
in 2018).

The declining number of new concepts in very re-
cent years (2 in 2025, 4 in 2024, 7 in 2023) reflects
several factors discussed in the main text. First,
many fields have matured, with research increas-
ingly focused on connections between established
concepts rather than entirely new topics. Second,
our 5-paper threshold means concepts can appear
earlier than their peak importance—papers from
2024-2025 have had less time to accumulate the
required citations. Third, our clustering methodol-
ogy may exhibit systematic bias: genuinely novel
concepts appearing in recent years may be merged
into established clusters from earlier periods if suf-
ficiently similar in embedding space. However,
the continued emergence of new concepts demon-
strates that even mature fields continue generating
new research directions.

C Subcluster Co-occurrence Patterns

The co-occurrence analysis in Section 6 reveals
fine-grained substructure within each primary do-
main. Table 7 presents representative concept pairs
exhibiting strong co-occurrence within domains
and across domain boundaries, illustrating the the-
matic patterns visible in Figure 4. The Ochiai coef-
ficients quantify co-occurrence strength normalized
by concept frequency.

These patterns demonstrate the rich thematic
structure within the concept vocabulary. Within-
domain pairs reveal specialized research areas: cos-
mological theories (axion-like particles, Bianchi
models), AGN dynamics (reverberation mapping,
episodic jets), stellar physics (sunspot dynam-
ics, variable stars), and computational methods
(molecular spectroscopy, hydrodynamic simula-
tions). Cross-domain pairs reveal methodological
connections: cosmological dynamics linking with
numerical stability analysis, radiative transfer sim-
ulations connecting Galaxy Physics with Numer-
ical methods, neutrino and gamma-ray detection
bridging High Energy physics with specialized in-
strumentation, helioseismology connecting Solar
physics with time-series analysis, and gravitational
wave template matching linking Numerical simula-
tions with statistical inference methods.
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Concept Papers Concept Papers

2015

Astronomical CNN Applications 1676 Extremely Randomized Trees 50
Deep Learning in Astronomy 604 Odd Radio Circles 46
Astronomical Data Augmentation 403 Planetary Similarity Metrics 41
Autoencoder Architectures 281 Global 21-cm Signal 38
Astronomical Transfer Learning 273 Planetary Weather Simulation Systems 37
Exoplanet Atmospheric Retrieval Systems 162 MeerKAT Data Pipelines 32
Cosmic Reionization Simulations 144 CMB Interaction Effects 25
Precision-Recall Evaluation 127 Millimeter-Wave Technology Integration 22
Skill Score Metrics 108 Protostellar Evolutionary Metrics 18
Rapid Bayesian Sky Localization 84 Gravitational Wave Data Systems 17
Astronomical Anomaly Detection Pipelines 54 Plasma Momentum Dynamics 15
Nuclear Matter Meta-Modeling 54 CORDIC-based Signal Processing 13
Detection Metric Balance 53 Nonlinear Supersymmetry and Gravity Theories 9

2016

Gravitational Wave Mergers 202 Planetary Robotic Mobility Systems 43
Exoplanet Radiative Transfer Codes 198 Non-Minimal Coupling Models 31
Recurrent Neural Networks 169 Trust Region Optimization Methods 29
t-SNE and Topological Data Analysis 157 OPTICS Clustering Techniques 28
No-U-Turn Sampling 117 Low-Noise Transistor Technologies 26
Astronomical Classification Techniques 106 Snow Uncertainty Mitigation in Ice Detection 26
Synthetic Minority Oversampling 88 Infrared Stellar Outbursts 22
Data-Driven Spectral Inference 86 Asteroid Exploration Missions 21
Joule-Thomson Thermodynamics 77 Solar ALMA Integration 14
Sub-Threshold Signal Analysis 57
Continuous Wave Detection Algorithms 54
Mars Atmospheric and Thermal Studies 44

2017

Residual Neural Networks 402 Interstellar Object Dynamics 100
GW170817 Multimessenger Merger 324 Probabilistic Neural Networks 100
S8 Clustering Discrepancy 240 Batch Normalization in Neural Networks 78
Adversarial Neural Architectures 196 Thermal Protection Systems 34
DHOST Theories 167 Titan Aeolian Dynamics Exploration 29
Deep Learning Frameworks 159 SOXS Optical and Control Architecture 23
Graph Neural Networks in Astronomy 121
Electron Lepton Number Dynamics 102
Kilonova Emission Modeling 101

2018

U-Net Variants in Astronomy 373 Rapid Blue Transients 41
Gaia-Sausage-Enceladus Merger 215 Particle Spray Simulation 38
LSTM Neural Architectures 160 Dirac-Fermion Stars 37
PHANGS Astronomical Surveys 118 FLASK Cosmological Simulation and Web Framework 31
Inception-Based Neural Networks 96 Protoplanetary Disk Substructure Research 29
EDGES 21-cm Anomaly 56 SPHINX Cosmological Simulations 28
Astronomical Data Sonification 52
Interpretable Machine Learning in Astronomy 49
CubeSat Scientific Missions 43
Remote Sensing Indices and Nighttime Imaging 42

Table 5: Recent concept emergence (2015-2018): Part 1 showing representative astronomy-relevant examples.
Concepts sorted by total papers within each year.
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Concept Papers Concept Papers

2019

Probabilistic Transformation Flows 288 VGG-based Neural Networks 63
Neural Inference Methods 202 SH0ES Hubble Constant Measurement 45
Variational Autoencoders 176 Dataset Tension and Suspiciousness Metrics 37
Quantum Entanglement Islands 139 Neutrino Event Reconstruction Methods 30
Physics-Informed Neural Networks 120 Primordial Black Hole Dynamics 26
Explainable AI Visualization Techniques 79 Lyman-Alpha Tomography 26
Deep Learning for Astronomy 79 Atmospheric Refraction and Polarimetry Models 11
Astronomy-Focused AI Language Models 69 Helium Suppression Phenomena 8
Commensal Radio Astronomy Surveys 67

2020

Advanced Attention Mechanisms 154 Gaia Black Hole Binaries 22
Barrow Entropy in Cosmology 77 ALMA Protoplanetary Chemistry Studies 15
Yebes 40m QUIJOTE Survey 76 Seismic Noise Mitigation for Gravitational Observatories 11
Satellite Brightness Mitigation 61
Bern Planetary Formation Model 25

2021

Transformer Architectures in Astronomy 185 T-ReX Cosmic Analysis 19
Astronomical Image Datasets 36 YSO Characterization Techniques 9
Photon Propagation Simulations 21

2022

JWST Deep Extragalactic Surveys 75 Cosmology Data Efficiency Techniques 13
Lyman-Alpha Forest Correlations 19 Stingray Astrophysical Analysis 11
Lorentz Violation in High-Energy Phenomena 13

2023

Astrochemical Molecular Analysis 8 Pulsar Signal Analysis Methods 6

2024

Adaptive Neural Architectures 17 Galactic Foreground Contamination 10
Distributed Sampling Efficiency 12

2025

Rotating Outflow Dynamics 6

Table 6: Recent concept emergence (2019-2025): Part 2 showing representative astronomy-relevant examples.
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Domain Pair Concept 1 Concept 2 Ochiai

Within-Domain Co-occurrence

Cosmology & Nongalactic Axion-Like Particle Phenomenon Photon-ALP Oscillations 0.594
Complexity-Volume Conjecture Holographic Complexity 0.538
Anisotropic Cosmology Bianchi Cosmological Models 0.420
Einstein-Cartan Theories Spacetime Torsion Dynamics 0.406

Galaxy Physics AGN Reverberation Mapping Broad-Line Region Dynamics 0.377
Double-Double Radio Galaxies Episodic AGN Jet Activity 0.368
Galactic Pattern Speeds Tremaine-Weinberg Methods 0.360
Quasar Broad Absorption Dynamics Quasar Outflow Dynamics 0.347

High Energy Astrophysics Superhump Dynamics SU UMa-Type Dwarf Nova Superoutbursts 0.560
Double Degenerate SN Progenitors Single Degenerate SN Progenitors 0.455
GZK Cosmic Ray Limit Ultra-High Energy Cosmic Rays 0.447
Black Hole Entropy Dynamics Quantum Entanglement Islands 0.434

Solar & Stellar Physics Sunspot Flow Dynamics Sunspot Penumbra Dynamics 0.516
Cepheid Variable Stars Variable Star Distance Scaling 0.421
Blazhko Effect Dynamics RR Lyrae Stars 0.386
Standard Solar Model Solar Neutrino Dynamics 0.378

Earth & Planetary Science Light Pollution Dynamics Night Sky Brightness Quantification 0.562
Extraterrestrial Signal Assessment Technosignature Detection 0.450
Graphene Curvature Dynamics Graphene Quantum Analogues 0.428
Geomagnetic Activity Metrics Geomagnetic Storm Dynamics 0.404

Numerical Simulation Molecular Dipole Moments Molecular Spectroscopy Computation 0.317
Molecular Spectroscopy Computation Partition Functions in Astrophysics 0.292
Astrophysical Hydrodynamic Simulations FARGO Numerical Simulation Suite 0.280
Potential Energy Surfaces Quantum Coupled Interactions 0.279

Instrumental Design Acoustic Neutrino Detection Underwater Acoustic Positioning Systems 0.368
Satellite Brightness Mitigation Satellite Astronomical Interference 0.353
Atmospheric Seeing Instrumentation Atmospheric Turbulence Dynamics 0.348
Axion Haloscope Detection Resonant Cavity Systems 0.333

AI/Statistics Neural Inference Methods Simulation-Based Inference 0.491
Transformer Architectures in Astronomy Advanced Attention Mechanisms 0.432
Nonextensive Statistical Mechanics Nonextensive Tsallis Thermodynamics 0.343
Astronomical CNN Applications Astronomical Data Augmentation 0.296

Cross-Domain Co-occurrence

Cosmology ↔ Numerical Simulation Cosmological Dynamical Systems Fixed and Critical Points Stability 0.417
Poisson Sprinkling in Causal Sets Causal Set Quantum Gravity 0.375
Fuzzy Dark Matter Mechanics Schrödinger-Poisson Dynamics 0.346
Bose-Einstein Condensate Phenomena Gross-Pitaevskii-Poisson Dynamics 0.309

Galaxy ↔ Numerical Simulation Sersic Light Distribution Galaxy Modeling Software 0.208
Lyman Alpha Line Profiles Lyman Alpha Radiative Transfer 0.204
Ionization State Dynamics Photoionization Models 0.201
Gas-Grain Surface Chemistry Astrochemical Modeling Systems 0.196

High Energy ↔ Instrumental High-Energy Cosmic Neutrinos IceCube Neutrino Observatory 0.403
Black Hole Shadow Phenomenon Global Interferometric BH Imaging 0.340
Very High Energy Gamma Rays Imaging Atmospheric Cherenkov Telescopes 0.259
Cosmic Ray Air Showers Cosmic Ray Radio Detection 0.255

Solar/Stellar ↔ AI/Statistics Skill Score Metrics Solar Cycle and Flare Prediction 0.302
Helioseismic Signal Correlations Helioseismic Travel-Time Kernels 0.296
Stellar Flare Frequency Dynamics Automated Flare Detection 0.279
Mass-to-Flux Ratio Dynamics Davis-Chandrasekhar-Fermi Method 0.233

Earth/Planetary ↔ Instrumental Meteor Stream Dynamics Global Meteor Observation Networks 0.358
VLF/ULF Electromagnetic Phenomena VLF Electromagnetic Observation Systems 0.357
Mesospheric Sodium Layer Dynamics Guide Stars in Adaptive Optics 0.293
Meteoroid Trajectory Analysis Global Meteor Observation Networks 0.274

Numerical ↔ AI/Statistics Cellular Automaton Systems Self-Organized Criticality 0.239
Gravitational Wave Template Banks Gravitational Wave Matched Filtering 0.213
Kernel-Based Seismic Inversion Regularized Inversion Methods 0.180
Poincaré Analysis Lyapunov Measures in Chaos 0.172

Table 7: Representative concept co-occurrence patterns within and across primary domains. Within-domain pairs
show specialized research themes with multiple representative examples per domain from actual co-occurrence
analysis. Cross-domain pairs reveal methodological connections between fields, including the integration of
computational and statistical methods with traditional astrophysics domains. All pairs extracted from empirical
co-occurrence across 408,590 papers (1992-2025) using Ochiai normalization.
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