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Abstract

Telescope bibliographies record the pulse of
astronomy research by capturing publication
statistics and citation metrics for telescope facil-
ities. Robust and scalable bibliographies ensure
that we can measure the scientific impact of our
facilities and archives. However, the growing
rate of publications threatens to outpace our
ability to manually label astronomical literature.
We therefore present the Automated Mission
Classifier (amc), a tool that uses large language
models (LLMs) to identify and categorize tele-
scope references by processing large quantities
of paper text. A modified version of amc per-
forms well on the TRACS Kaggle challenge,
achieving a macro F7 score of 0.84 on the held-
out test set. amc is valuable for other telescopes
beyond TRACS; we developed the initial soft-
ware for identifying papers that featured scien-
tific results by NASA missions. Additionally,
we investigate how amc can also be used to
interrogate historical datasets and surface po-
tential label errors. Our work demonstrates
that LLM-based applications offer powerful
and scalable assistance for library sciences. ©)

1 Introduction

Telescope bibliographies provide one way to mea-
sure the scientific productivity of our astronomical
facilities. Bibliometrics can quantify how often
telescopes are discussed in scientific publications,
e.g., through passing mentions or via detailed scien-
tific analyses that originate from data taken by each
telescope. Although these quantitative analyses are
vital for assessing the impact of our scientific invest-
ments, they hinge on complete, homogeneous bib-
liographies, which can be expensive and onerous to
manually curate. Librarians, archive scientists, and
bibliographers maintain telescope bibliographies
by consistently tracking publications, extracting
metadata, and labeling the scientific intent of each
telescope reference for all papers (see, e.g., Lager-
strom, 2015; Observatory Bibliographers Collab-

oration et al., 2024). Complete observatory bibli-
ographies enable us to investigate publication rates,
and citation statistics, links between publications
and observing proposals, data product usage met-
rics, and archival science impact (e.g., Apai et al.,
2010, for HST).

There is more scientific literature than ever be-
fore (notwithstanding gender-disparate impacts
from the recent pandemic, Bohm and Liu, 2023).
Some of this increase accompanies a general rise
of publication rates throughout academia (Hanson
et al., 2024). Additionally, very recent growth in
publication rates may stem from the advent of large
language models (LLMs), which can lower the bar-
rier to writing papers (e.g., Astarita et al., 2024).
These trends suggest that we need a sustainable so-
lution for producing telescope bibliographies amid
the deluge of astronomy papers.

LLMs can also be useful for compiling telescope
bibliographies at scale: artificial intelligence (Al)
systems are highly scalable, and are now adept
at processing large amounts of text inputs. Mod-
ern LLMs can complete many tasks without any
optimization, instead relying solely on emergent
capabilities like in-context learning (e.g., Brown
et al., 2020). With frontier Al labs now deploying
LLMs as a service, we can easily leverage simple
API (Application Programming Interface) calls and
design software around cutting-edge LLMs.

Before deploying an automated bibliography sys-
tem, we must first ensure that its performance
is robust. To this end, we present and evalu-
ate the Automated Mission Classifier (amc), an
LLM-powered, bibliometric tool for identifying
telescopes or NASA missions in the literature.
We adapt amc for a specific shared task, TRACS
(Section 2); in the Appendix, we note that sim-
ilar systems are already in operations for JWST
(Appendix B) and can be used for archival sci-
ence with other telescopes (Appendix C). In Sec-
tion 3, we describe the software’s system design,
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and we present results in Section 4. In Section 5,
we discuss how observatory bibliographers can
leverage Al to compute bibliometrics at scale,
assess (historical) data quality, and upgrade the
LLM systems. We provide publicly available code
on Github: https://github.com/jwuphysics/
automated-mission-classifier.

“To LLMs! The cause of, and solution to,
all of bibliographers’ problems.”!

2 The TRACS Shared Task

The Telescope Reference and Astronomy Cate-
gorization Shared task (TRACS) is a data chal-
lenge organized as part of the 2025 Workshop for
Artificial Intelligence for Scientific Publications
(WASP; Grezes et al. 2025) at ICNLP-AACL.?
The task consists of classifying astronomy pa-
pers into at least one of four categories: science,
instrumentation, mention, or not_telescope.

In this data challenge, papers are decomposed
into several fields (including the title, abstract, and
“body” full text) and, based on keyword filtering,
labeled with a candidate telescope name (CHANDRA,
HST, JWST, or NONE). The objective is to predict
the boolean labels for all paper categories for each
of the provided bibcode + telescope combinations.
However, it is important to note that the candidate
telescope name may be mislabeled, and that certain
paper categories impose constraints on the others
(i.e., a single paper + telescope can have True la-
bels for both science and instrumentation, but
cannot for both science and not_telescope).

Training and test data sets, in CSV format with
80,385 and 9,194 entries respectively, are provided
for the shared task. To participate in the challenge,
entrants must submit 9,194 test-set predictions via
Kaggle® and have their predictions evaluated. The
test outputs are scored according to the average
between the macro F score of the telescope la-
bels and the macro F} score of paper labels; each
class is weighted equally. Note that NONE is a valid
telescope class and not_telescope is a valid pa-
per class. In the subsections below, we note some
details that we considered important for our sub-
mission.

'Quote adapted from The Simpsons (Swartzwelder and
Anderson, 1997).

2For details on The International Joint Conference on Nat-
ural Language Processing & Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics (IJCNLP-AACL), see
https://2025.aaclnet.org/.

3https://www.kaggle.com/competitions/
tracs-wasp-2025

2.1 Input Data

The full list of columns in the train data set in-
clude: (0) ID, (1) bibcode, (2) telescope, (3) au-
thor, (4) year, (5) title, (6) abstract, (7) body, (8)
acknowledgments, and (9) grants, (10) science,
(11) instrumentation, (12) mention, and (13)
not_telescope. The test dataset does not include
column (2) or columns (10) through (13). However,
a preliminary telescope label is implicitly named in
column (0), as the ID is simply the concatenation
of {bibcode}_{telescope}.

Some rows in the datasets are missing: 3% of
the test data set is missing an abstract, 19% does
not have full-body text, and > 90% does not have
text under the grants column. Incomplete data are
likely due to a combination of parsing errors (e.g.,
correctly parsing out grants/acknowledgments) and
publisher restrictions. Issues with publisher agree-
ments tend to impact certain journals or publication
venues (i.e., demarcated by their “bibstem” entries);
in many of these cases, the body text is completely
absent. Nonetheless, classifications can sometimes
still be made on the basis of just the title and ab-
stract (but see Appendix C).

Some of the input data may not be helpful. For
example, the list of authors is unlikely to yield
useful indicators of the paper classification, and
may even produce false positives, as “Webb” or
“Chandra” can show up as (sub-word) names of au-
thors. Likewise, “Hubble” can often show up in the
acknowledgments, e.g. due to funding acknowledg-
ments from the NASA Hubble Fellowship Program.
Thus, it is imperative to design a language model-
ing system that can flexibly understand the context
surrounding telescope detections.

2.2 Paper Types

Establishing a common definition for paper types
is a nontrivial task. When tasking human bibliog-
raphers to classify papers, e.g., identify science
papers, disagreements often arise about the precise
definition of a science paper.

In order to implement a useful LLM system for
automated classification, it is necessary to unam-
biguously define the labels. Observatory Bibliogra-
phers Collaboration et al. (2024) issue the follow-
ing guidance on science papers:

“To qualify as a science paper, it must be
apparent that data or data product(s) from
the observatory were used and that the
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data or data product(s) formed the basis
for reaching a new scientific conclusion.”

The authors recognize that these definitions must
be continually updated.

Indeed, the taxonomy should serve the telescope
or mission. Existing schemes may not be suffi-
cient to characterize all of the edge cases, and
new categories may arise. As a concrete exam-
ple, STScl established a data-influenced category
in 2019 for papers that indirectly rely on data or
products, but do not directly analyze data or use
data products. In the TRACS challenge taxonomy,
data-influenced papers would generally be labeled
under the mention category.

As part of the shared task, the TRACS website
provided a narrative format description of the dif-
ferent paper types (Grezes et al., 2025). We used
an LLM (claude-sonnet-4. 1) to process this text
in order to create a user prompt that includes def-
initions and examples of each paper type (which
is manually updated and described in more detail
in Section 3). The full prompts can be found in
the Github repository, and we have copied the pa-
per type definitions here (note that we remove the
markdown text formatting for human readability):

* science: Paper directly uses {{telescope}}
data (new or published) to obtain new scien-
tific results in this paper.

e instrumentation: Paper describes new in-
strument science or engineering.

* mention: Paper references the telescope but
does not produce new scientific results.

* not_telescope: Paper includes references
that are false positives — names that look like
the telescope but refer to something com-
pletely different.

3 The Automated Mission Classifier (amc)

Figure 1 shows a high-level overview of the amc
system. The system classifies a single paper and a
single telescope at a time.

First, amc performs a keyword search to filter
all mentions of telescope-related keywords, and
we include surrounding context (£3 sentences).
This step effectively converts the body into a list of
telescope-specific text snippets (Section 3.1). Text
snippets are then ranked by their relevance to the
core question of “is this a {telescope} science pa-
per?”, and we only keep the most relevant snippets

(Section 3.2). These top-ranked snippets are sub-
sequently passed to an LLLM, which is prompted
to classify the paper types and provide quotes
and supporting reasoning for its predictions (Sec-
tion 3.3). The specialized code used for TRACS
is forked from amc and can be found at https:
//github.com/jwuphysics/tracs_wasp2025.

Finally, we note that our LLM system design
is strongly influenced by a prior task: classifying
whether arXiv paper preprints contained JWST sci-
ence. In Appendix B, we describe how these earlier
motivations shaped (and biased) the design of the
amc. Additional discussion of the limitations of
amc are discussed in Section 4.4.

3.1 Keyword Filtering on Full Text

We concatenate the title, abstract, and body as a
single text input. We extract only the most rele-
vant portions of the text by searching for keywords.
First, we divide text into sentences by using the
Punkt sentence tokenizer (Kiss and Strunk, 2006)
in the NLTK package (Bird and Loper, 2004). We
then use a simple Python case-insensitive string
search to identify sentences with keywords for the
relevant telescope. We expand snippets to include
the n = 3 prior and following sentences (i.e., such
that each snippet contains 2n + 1 sentences). If no
keywords are found, then we automatically classify
the paper as not_telescope.

We note that our keywords prioritize high recall
at the expense of low precision; in other words,
we value keyword completeness to make sure that
no important keywords are missed. However, this
means that false positives are expected. For exam-
ple, our simple string matching over “COS” (an in-
strument on the Hubble Space Telescope) will also
trigger matches on the words “cosmic” or “cosine.”
Therefore, it is essential that we guard against false
positives by ranking text snippets according to their
relevance.

3.2 Reranking Excerpts

Rerankers are typically LLMs that determine the
relevance of some text snippet for answering a spe-
cific question. In information retrieval systems
or retrieval-augmented generation (RAG), a first-
stage algorithm usually produces an initial ranking
or filtering over relevant documents/snippets (e.g.
via semantic similarity in an embedding space).
Rerankers provide a second-stage ranking between
the query and a smaller set of snippets; recent
works have demonstrated them valuable for LLM
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Figure 1: Schematic showing the system design for amc. Note that the version of amc adapted for TRACS does not
separate the LLM generation of quotes, reasoning, and predictions; rather they are all output together. See the text
in Section 3 and Appendix B for a full discussion of differences.

systems in astronomy and science more broadly
(Iyer et al., 2024; Chen et al., 2025; Xu et al., 2025).

We implement a custom reranker solution* that
achieves similar performance to leading com-
mercial products (e.g., Cohere Reranker v3.5;
based on a few informal assessments). We
use a lightweight, general-purpose, non-thinking
model (gpt-4.1-nano) with a restricted vocab-
ulary (“Yes” and “No”) that outputs logits (log-
probabilities) between 0 and 1. Using a short
reranker prompt, we task this model to identify
whether each individual snippet discusses the tele-
scope in a way that may be used to classify the
paper type. One of the main goals of this step is to
remove accidental and unrelated keyword matches.

Once every snippet has a reranker score, we can
sort them and/or filter out irrelevant snippets. We
keep up to k = 15 top-ranked snippets in order to
reduce the amount of text that is sent to the next
LLM call.

3.3 LLM Classifications

We combine the filtered text snippets together along
with their reranker scores. The scores can serve as

*We were unaware (until the time of writing) that this
reranking approach had been proposed in the literature before
(see e.g. Liang et al., 2023).

another reference for whether snippets are useful
for determining the paper type.

We use gpt-5-mini with minimal reasoning ef-
fort to make the final classification as a structured
output. The LLM prompt contains the top-ranked
snippets and their scores, and it defines the different
paper types and provides some examples. In addi-
tion to predicting boolean classes for the science,
instrumentation, mention, and not_telescope
paper types, the LLM is also prompted to sup-
ply the most relevant quotes and justify its reason-
ing. All structured outputs and their data types are
constrained via a pydantic model schema (e.g.,
boolean predictions, a list of strings for the quotes,
and a single text string for the reasoning).

In the amc package, the quotes and justification
are provided first, followed by a separate LLM call
to predict the final score on these lines of thinking
(see, e.g., Figure 1). However, because TRACS
requires multiple classifications, we simplify the
system so that all predictions and quotes/reasoning
are output at the same time. The original amc also
supports floating point values between 0 and 1 for
scoring science paper types, which allows another
hyperparameter to control the threshold for scoring
science papers. For TRACS, we simplified the
system by using boolean values for each prediction.
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4 Results

We briefly present some limited results on the
TRACS test set. Our best score in terms of Fj
is 0.84 on the held-out test set, enough for a
third-place rank according to the Kaggle leader-
board. In Appendix A, we show the amc JSON-
formatted outputs, including paper type examples
for science (Listing 1), instrumentation (List-
ing 2), mention (Listing 3), and not_telescope
(Listing 4). Based on a cursory review, these out-
puts seem accurate, the quotes do not suffer from
hallucinations (although the risk is still present),
and the provided reasoning largely appears to be
faithful to its classification.

4.1 Evaluating amc

In order to understand our system’s strengths and
weaknesses, we select N = 100 random entries
from the training set, comprising 25 rows per tele-
scope. This small, non-representative evaluation
set enables us to investigate why our LLM system
tended to make incorrect predictions. This random
set is also able to surface potential issues with the
dataset (see Section 4.3).

In Figure 2, we show confusion matrices display-
ing amc predictions on the limited validation set,
for all telescopes except NONE. Each column shows
a paper type (denoted “True”) against all other pa-
per types (denoted “False”). We note that some
combinations of missions and paper types tend to
succeed (e.g., CHANDRA/science) or fail more fre-
quently (e.g., CHANDRA/mention). These confusion
matrices are based on the same version of amc as
the final TRACS submission. However, we caution
against overinterpreting results on this relatively
small evaluation set.

4.2 Performance on TRACS

Our first submission to TRACS achieved a macro
F1 score of 0.80. At the time, the system included a
few suboptimal settings, e.g., slightly misspecified
prompts, or a non-zero reranker threshold which
caused weak mention classes to occasionally be
mislabeled (since the threshold might cause all text
snippets to be filtered out, rendering a default ver-
dict of not_telescope).

After removing the reranker threshold and updat-
ing the prompts, we saw a modest increase in macro
F score to 0.84. We examined two of our higher-
scoring sets of predictions, and used an LLM as
ajudge (gpt-5-mini) to resolve discrepancies be-
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tween them and to issue final predictions; the per-
formance remained at '} = 0.84.

The final LLM system took less than 24 hours in
wall-clock time to run, and incurred roughly $10 in
OpenAl costs. About 22% of the cost is for rerank-
ing snippets with gpt-4.1-nano, 37% is for pro-
cessing top-ranked inputs with gpt-5-mini, and
41% is for generating outputs with gpt-5-mini).
Batch processing could lower some costs, but
would necessitate an asynchronous pipeline, where
we first perform all reranker calls, followed by all
LLM classifications.

4.3 Missing Data and Label Errors

The dataset likely contains errors or uncertain clas-
sifications due to the imperfect nature of manually
annotating bibliographic data, and the somewhat
subjective nature of label distinctions. However, it
is not possible to capture this uncertainty in the dis-
crete classes. We also cannot measure the error rate
directly, as there is no golden sample against which
we can compare. A golden sample would consist
of papers that have been independently classified
by multiple reviewers, where cases of disagree-
ment are subject to deliberation and re-review until
consensus is reached. Therefore, the error rate or
uncertainty is unknown.

Through repeated evaluation, we can surface po-
tential errors in the TRACS dataset. While testing
our LLM system on a small (N = 100) subsam-
ple from the training data, we inspected all cases
where the LLM prediction disagreed with the target
label. Some of these appeared to be genuine error
or ambiguity in the ground truth dataset, and we
display them in Table 1.

We find that one paper is labeled as both
science and mention, which (we assume) should
not be possible. This classification may have re-
sulted from human annotation error, or perhaps an
accidental combination of a HST mention (as the
paper is about the Hubble Deep Field) and CHAN-
DRA science. Simultaneously conflicting labels
like this can be easily filtered out by using boolean
logic and some set rules. We find another paper
that mentions the “Next Generation Space Tele-
scope,” the original name for JWST. Arguably, this
paper should be considered a JWST mention, but
is instead labeled as not_telescope.

Three papers are missing their body text; they
are only described by their titles, abstracts, and
other metadata. For each of these three entries, we
verify that (within the TRACS data) there is no
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Figure 2: Binary confusion matrices, over a randomized subsample of 25 TRACS training set examples for each
telescope (rows), shown for each paper type (columns) as a one-vs-all classification. Each confusion matrix shows
true negatives (fop left), false positives (top right), false negatives (bottom left), and true positives (bottom right).

Table 1: Potential dataset issues found in a random selection of 100 labeled examples.

Bibcode Notes

2001AJ....122..598D

Labeled as both CHANDRA/science and CHANDRA/mention.

2001ApJ...550..104Y

Missing body text, making it impossible to correctly classify as HST/science.

2002IJMPA. .17.3446T

Mentions “Next Generation Space Telescope” (the placeholder name for JWST),

but the label is JWST/not_telescope rather than JWST/mention.

2004RMxAC. .20..215S

Missing body text, making it impossible to correctly classify as CHANDRA/science.

2004fxra.book. ..89D

Missing body text, making it impossible to correctly classify as CHANDRA/science.

mention or science/instrumentation of the candi-
date telescope presented. Missing full body text is
often a symptom of complex publisher licensing
agreements, and it may not always be possible to
procure the full data. In any event, such entries
do not contain sufficient data for making accurate
predictions.

4.4 Limitations of amc

As noted above, the amc system is designed to be
general. Although we have specialized the code for
the TRACS task, there are additional adjustments
that could lead to improved performance. For ex-
ample, the multiclass predictions would benefit
from dedicated prompts for each paper type. The
current system effectively uses the same prompts

for each telescope, which might also limit its per-
formance.

We also note that amc is at the mercy of our
keyword filtering. If we miss any telescope key-
words, then it is possible to filter out relevant snip-
pets, which could jeopardize the prediction task
performance. Frequent keywords could be empiri-
cally learned using traditional NLP techniques like
term frequency (TF; Spark Jones 1972) normalized
by its document frequency (i.e., TF-IDF; Salton
et al. 1975. The reranker step could potentially
be replaced by a simple first-pass classifier using
TF-IDF or another data-driven approach.
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5 Discussion

LLMs are becoming pervasive throughout astron-
omy. Quantitative benchmarks (Carrit Delgado
Pinheiro et al., 2025; Joseph et al., 2025; Ting
et al., 2025) and human-centered studies (Foues-
neau et al., 2024; Wu et al., 2024; Hyk et al.,
2025) deliver complementary evaluations for how
to successfully deploy LLMs for real-world ben-
efit in astronomy. There is also rapid adoption of
LLMs for navigating through and interacting with
the astronomy literature (Ciucd and Ting, 2023;
Iyer et al., 2024), which is particularly salient for
WASP/TRACS.

As researchers are in the midst of a fundamental
shift of how they interact with literature, we discuss
a future vision of how the astronomical commu-
nity may leverage LLMs to augment or automate
bibliographies (Section 5.1), how Al systems can
assist in evaluating or improving our ground truth
datasets (Section 5.2), and how the amc software
we presented could be improved further in future
work (Section 5.3).

5.1 Scalable, AI-Supported Bibliographies

We have shown that compiling telescope bibliogra-
phies can be assisted by or partially automated with
LLMs. LLM developments are built on traditional
NLP techniques, which have already been vital for
astronomical literature review (Iyer et al., 2024)
and detecting usage of telescopes/facilities (e.g.,
using TF-IDF, Amado Olivo et al., 2025). While
LLMs can be more expensive to put into production
relative to simple NLP techniques or specialized
fine-tuned models (e.g., SciBERT, Beltagy et al.,
2019), LLMs that have been pre-trained on tril-
lions of tokens of general text are also capable of
in-context learning via zero- or few-shot demon-
strations (Radford et al., 2019; Brown et al., 2020).
Modern LLMs also have longer context windows,
enabling them to ingest multiple text snippets (or
even entire documents at a time). This feature is
particularly valuable if the telescope classification
depends on nuanced text snippets buried within the
body (i.e., often the case for archival data sets, and
rare for flagship NASA missions; see Appendix C).

Al systems can still be extremely useful even
if manual vetting of bibliographies is necessary.
We have designed amc to have high recall, so it
can confidently remove from consideration papers
that have no chance of being mention paper types.
Accurate labels (F7 > 0.8) can dramatically save

human time and mental energy.

5.2 Errors and Ground Truths

When creating LLM-augmented bibliographies at
massive scale, it is imperative to understand how
the LLM is susceptible to errors, and/or if those
errors originate from the LLM or from the dataset.
For TRACS, our analysis of a small subsample in
Section 4.3 resulted in direct performance gains;
we exposed some issues with our system, as well
as errors in the dataset.

We emphasize the value in compiling a golden
sample with consensus reviews, even if this dataset
is much smaller compared to the archival set of
(single-pass) human classifications. In our prior
work (see Appendices B and C), we have relied on
a golden sample with about N ~ 100 examples
to serve as a benchmark for improving the LLM
system (Shaw et al., in prep). Crucially, it also
serves as a measure of human performance, which
is often incorrectly assumed to be perfect. By set-
ting human error rates as the error “floor,” we can
quantify a goal for LLMs to achieve.

Al augmentation can also facilitate a better un-
derstanding of our datasets. For example, LLMs
can easily comb through a large number of nega-
tive classes from historical datasets, and surface
candidate missing papers or other errors (e.g., Sec-
tion 4.3). An LLM can be vital for efficiently con-
structing such a golden sample dataset.

5.3 Future Improvements

Our solution for the TRACS task can likely benefit
from additional optimization. In particular, other
LLMs can help iteratively optimize the prompts
used to guide the (TRACS-specific) amc code, by
using meta-optimizers (see, e.g., Opsahl-Ong et al.,
2024; Agrawal et al., 2025) in a prompt compila-
tion framework like DSPy (Khattab et al., 2023).
Given the large TRACS training data set, meta-
optimization could be costly, and may be precari-
ously sensitive to the training label quality. How-
ever, meta-optimization could also produce (as a
byproduct) empirical definitions of paper types like
science or instrumentation, which could be
valuable for comparing against explicit definitions
that bibliographers have historically adopted.
Another option is to use Al agents: LLMs that
can call tools in a loop in order to accomplish a
task.”> Even though an AI agent might access the

For one definition of an Al “agent” that we like, see
https://simonwillison.net/2025/Sep/18/agents/
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same tools that we have described in Section 3,
e.g., keyword search, reranking, filtering, or sum-
marization, the LLM’s agency means that it can
decide when and how to use such tool calls. The
LLM agent can also maintain a working memory,
allowing it to determine whether it has enough in-
formation to make a classification; for instance, if
it finds immediate evidence that the paper presents
scientific results, then the agent can stop the analy-
sis and classify the paper as science.

Finally, we may wish to deploy smaller, spe-
cialized models for this task because they can be
run locally and perhaps at lower costs. For ex-
ample, our keyword filtering and reranking steps
are somewhat reminiscent of “late-interaction” re-
trieval mechanisms (e.g., ColBERT, Khattab and
Zaharia, 2020), and it may be advantageous to sub-
stitute those steps with more lightweight model like
ColBERT. We might simplify further by substitut-
ing this initial stage with classical NLP algorithms
like TF-IDF. Models with specialized tokenizers
for scientific literature like SciBERT (Beltagy et al.,
2019) may also prove to be beneficial for parsing
the astronomical literature.

6 Summary

We have presented amc, an LLM-based system that
can automatically categorize real astronomical pa-
pers into specific labels. Using a specialized in-
stance of amc, we demonstrate strong performance
(F} = 0.84) and secure third place on the TRACS
shared task (Grezes et al., 2025). Our tool is also
valuable for evaluating labeled data quality, as it
provides reasoning and supporting quotes to justify
its predicted labels. Given the growing volume of
papers, as well as the rising capabilities of LLMs,
we believe that Al tools represent scalable solutions
for accomplishing or assisting with this task.

In the future, however, LLMs may completely
obviate the need for predefined “classifications”
that comprise current paper types; instead, we may
be able to directly ask LLMs questions like: “How
many papers present ground-based follow-up obser-
vations for targets initially discovered with HST?”
or “How did the fraction of Chandra archival sci-
ence papers change between 2010 through 20257
We envision that, by exploiting the capabilities of
Al systems, library scientists can study a broader
range of bibliographic questions than ever before.

Ethical Disclosure

All of this text was written solely by the authors.
The document was partially reviewed by LLMs,
primarily gpt-5 and Gemini 2.5 Pro, in order to
surface issues in clarity and prose. Some of the
code in the associated repository is generated by
LLMs, primarily via Claude Code. Having val-
idated the software and results, the authors take
full responsibility and ownership over the results
presented here.
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A Examples of amc Structued Outputs for the TRACS Test Set

In Listings 1, 2, 3, and 4, we show several representative examples of amc outputs for the TRACS test
dataset.

"2024ApJ...977..173C_IWST": {
"id": "2024ApJ...977..173C_JWST",
"bibcode": "2024ApJ...977..173C",
"telescope": "JWST",
"classification”: {
"telescope": "JWST",
"science": true,
"instrumentation”: false,
"mention”: false,
"not_telescope”: false,
"quotes”: [
"we present JWST MIRI observations of the hydrocarbon-rich source, DoAr 33, a 1.1 M star.”,
"We detect the emission of H 2 0, CO 2 , OH, and C 2 H 2 , including its isotopologue 13 C
— 12CH2, C4H2, and tentatively CH 4 and HC 3 N, for all of which we retrieve co
lumn densities, temperatures, and emitting areas, as described in Section 2 .",
"We detect the presence of H2 0, CO 2, OH, C2H 2 , HCN, C 4 H 2 , and tentatively CH 4
< and HC 3 N in the JWST MIRI-MRS spectrum of the solar-mass star DoAr 33.",
"JWST/MIRI Detection of a Carbon-rich Chemistry in the Disk of a Solar Nebula Analog”,
"Figure 1. JWST MIRI-MRS spectrum of DoAr 33."
]7
"reasoning”: "The excerpts clearly describe original JWST MIRI-MRS observations of the target
< DoAr 33 and report new detections and quantitative retrievals (column densities, te
mperatures, emitting areas) derived in this paper. These are new scientific results based on JWST
— data, so 'science' is True. The text discusses data reduction using a custom JDISCS p
ipeline and calibration references but does not present new instrument design, calibration method
— development as the primary focus or a technical/instrumentation paper, so 'instrument
ation' is False. Because the paper actively uses JWST data to produce new results, it is not
< merely a mention; therefore 'mention' is False. There is no indication that references to
JWST are false positives, so 'not_telescope' is False.”
}
3

Listing 1: amc output for an science paper type.

B The JWST Preprints Automation

The design of amc was initially devised for a specific task: automatically checking whether new arXiv
preprints feature JWST science. While identifying JWST science preprints is useful on its own, it is
also necessary for another goal: determining whether JWST science publications are accompanied by
digital object identifiers (DOIs), which offers downstream benefits to individual scientists (Henneken and
Accomazzi, 2012) and the broader science community (Pepe et al., 2014). Therefore, we built an earlier
version of amc for automatically classifying whether a JWST preprint is science or not.® We achieved
Fy = 0.95 on real-world tests, using a held-out golden sample dataset with N = 114 papers, and this
system is currently being used in production at STScI.

There are two major differences between the JWST preprints automation and the TRACS task: (1) the
former downloads PDF files from arXiv and converts them into a single plain-text body, while the latter
provides more cleanly separated metadata and body text (when available); and (2) the former task is only
concerned with identifying science papers, whereas the latter solicits binary classifications for science,
instrumentation, mention, and not_telescope.

There are several important implications due to distinction #1. For example, we do not have a
programmatic method for separating abstracts or other titles from the body, and so we must always
proceed with the full body text. Another consequence is that the references section is included in the

6https://github.com/spacetelescope/jwst—preprint—automator

167


https://github.com/spacetelescope/jwst-preprint-automator

"1996SPIE.2808..650F_CHANDRA": {
"id": "1996SPIE.2808..650F_CHANDRA",
"bibcode"”: "1996SPIE.2808..650F",
"telescope”: "CHANDRA",
"classification”: {
"telescope": "CHANDRA",
"science": false,
"instrumentation”: true,
"mention”: false,
"not_telescope”: false,
"quotes”: [
"Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings: II",
"In order to characterize the instrumentation on AXAF, each of the science instrument teams
— carries out sub-assembly calibrations.”,
"For the high energy transmission grating (HETG) group, this means individual measurements
— of the diffraction efficiencies of each of the 336 grating elements that goes into t
he completed HETG assembly.”
]7
"reasoning”: "The excerpt discusses calibration and modeling of the AXAF high-energy
transmission gratings (HETG), measurements, data reduction and instrumentation
characterization. AXAF is the original name for the Chandra X-ray Observatory, and the
content is clearly about instrument performance and calibration rather than presenting
new astrophysical results. Therefore instrumentation = True. It does not present new
scientific/astronomical analyses using telescope observations, so science = False.
Because the paper actually discusses the telescope/instrument technical work, it should
not be classified as a mere mention or as not_telescope.”

FEELEELS

Listing 2: amc output for an instrumentation paper type.

plain-text body extract from arXiv preprints. Thus, the body text contains references to titles of other
papers, which can sometimes mimic sentences that appear to support a JWST science classification.

Because we focus only on classifying whether a JWST paper is science (distinction #2), we break
down the LLM output into two stages (see Figure 1. First, we write out a specialized prompt with
in-context examples of low and high science scores, and prompt the LLM to output reasoning and
supporting quotes. Then, given its provided justification and quotes, we force the LLM to output a
science score as a floating point number between 0 and 1.

C Other Mission Bibliographies

We note that NASA flagship missions tend to be mentioned in the paper abstract, or even in the title. Thus,
for TRACS and for JWST preprints automation, it is often possible to accurately classify papers using just
the abstract, a tiny fraction of the available text per entry.

However, we designed amc based on our experience performing bibliometrics for other missions,
including TESS, Pan-STARRS, and GALEX, which all enable archival science well after the telescope
ceases operations (e.g., Peek et al., 2019). However, these telescopes—and, in general, archival science
usage of telescopes—are less likely to appear in the title or abstract. Therefore, parsing the much longer
body text is imperative for correctly predicting those telescopes’ paper types. We design amc so that it can
be used just as easily to compute bibliometrics for non-flagship telescopes and/or archival science.
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"2024A8A. . .691A.352W_JWST": {
"id": "2024A&A...691A.352W_JWST",
"bibcode": "2024A&A...691A.352W",
"telescope”: "JWST",
"classification”: {

"telescope”": "JWST",

"science": false,

"instrumentation”: false,

"mention": true,

"not_telescope”: false,

"quotes": [

"an unbiased mid-infrared survey observing H-dominated metal-enriched white dwarfs making
— use of the much improved sensitivity of JWST, compared to previous facilities, would
— likely reveal the true population of discs.”,

"infrared spectroscopy can identify the mineralogy of discs, with silicates having been
— detected using Spitzer and JWST ( Jura et al. 2007 ; Swan et al. 2024 )."

]’

"reasoning”: "The excerpt discusses JWST in the context of future or potential surveys and
improved sensitivity compared to previous facilities, and cites JWST detections (Swan et
al. 2024) as literature. There is no indication that this paper presents new JWST
observational data or original data analysis; it instead suggests that an unbiased survey
with JWST would be useful and refers to prior JWST detections. This fits the 'mention'
category (discussion of future/planned observations and citing others). It does not
describe instrumentation or calibration, and the references to JWST clearly refer to the
telescope, so not_telescope is false.”

(A A

Listing 3: amc output for a mention paper type.

"2008ApJ...673..657M_HST": {
"id": "2008ApJ...673..657M_HST",
"bibcode”: "2008ApJ...673..657M",
"telescope”: "HST",
"classification”: {
"telescope”: "HST",
"science": false,
"instrumentation”: false,
"mention”: false,
"not_telescope”: true,
"quotes": [
"Hubble diagram showing the magnitude deviation relative to an empty universe, for the three
< models considered.”,
"Fig. 4. — Hubble diagram showing the magnitude deviation relative to an empty universe, for
< the three models considered. The dotted lines separate the Tonry et al. ( 2003 ) data (
< left ) from the mock data ( right ).”
iIp
"reasoning”: "The excerpts discuss a 'Hubble diagram' and cosmological supernova analyses;
there is no mention of the Hubble Space Telescope or HST observations, instruments,
calibrations, or use of HST data. The term 'Hubble' here refers to the Hubble diagram
(relation to Hubble expansion), which is a false positive for the telescope name.
Therefore this is not about the HST telescope (not_telescope = True). Because it does not
discuss any telescope data usage or instrumentation, science and instrumentation are
False. It also is not merely a mention of the telescope, so mention = False. The provided
exact substrings showing 'Hubble diagram' are included as supporting quotes.”

FLEL Ll

Listing 4: amc output for a not_telescope paper type.
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