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Abstract

Automatically identifying telescopes and their
roles within astrophysical literature is crucial
for large-scale scientific analysis and track-
ing instrument usage patterns. This paper de-
scribes the system developed by the “Clutch or
Cry” team for the Telescope Reference and As-
tronomy Categorization Shared task (TRACS)
at WASP 2025 (Grezes et al., 2025). The
task involved multi-class telescope identifica-
tion (Task 1) and multi-label role classification
(Task 2) within scientific papers. For Task 1,
we employed a feature-engineering approach
centered on document identifiers (Id suffix)
combined with metadata and textual features,
utilizing a tuned Random Forest classifier to
achieve high accuracy. For the more com-
plex Task 2, we utilized a carefully designed
two-level stacking ensemble. Level-0 com-
bines a rule-based keyword classifier with the
domain-adapted astroBERT transformer, effec-
tively fusing symbolic and semantic informa-
tion. Level-1 uses four independent XGBoost
meta-learners for targeted per-role optimiza-
tion. These architectures address the primary
challenges: handling long documents and man-
aging severe class imbalance in Task 2 (no-
tably 1:91 for instrumentation). Systematic
optimization focused on mitigating imbalance
significantly improved Task 2 performance for
minority classes. This work validates the effec-
tiveness of tailored approaches for distinct sub-
tasks and targeted optimization for imbalanced
classification in specialized scientific domains.

1 Introduction

Automated classification of scientific literature is
critical for knowledge discovery and resource man-
agement in large-scale research repositories. With
millions of astrophysical papers archived in sys-
tems like the NASA Astrophysics Data System

(ADS), manual annotation and categorization be-
come infeasible (SAO/NASA Astrophysics Data
System, 2025). Effective automated methods en-
able researchers to quickly identify relevant studies,
track telescope usage patterns, understand instru-
mental capabilities, and trace scientific methodolo-
gies—ultimately accelerating scientific discovery
and facilitating data-driven insights into observa-
tional astronomy practices (Wikipedia contributors,
2025). This capability extends beyond administra-
tive utility, directly supporting evidence synthesis,
reproducibility verification, and interdisciplinary
research collaboration.

The Telescope Reference and Astronomy Cate-
gorization Shared task (TRACS) presents two inter-
twined classification challenges that together model
real-world requirements faced by digital astron-
omy libraries (Kaggle, 2025). The task demands
systems capable of identifying which telescopes
are discussed as primary subjects versus peripheral
mentions, and distinguishing the functional role
of telescopes within scientific contexts—whether
used for data acquisition, instrument characteri-
zation, or comparative analysis. These distinc-
tions are semantically nuanced, often embedded
in lengthy papers with inconsistent terminology,
and severely imbalanced across class distributions.
This shared task provides an ideal proving ground
for advancing both fundamental NLP techniques
and domain-specific adaptations needed for special-
ized scientific corpora, offering valuable insights
into how machine learning systems can handle real-
world complexity in domain-specific document un-
derstanding.

Addressing these challenges—long document
context, nuanced semantic roles, and severe class
imbalance—requires a robust and adaptable classi-
fication architecture. Simple models often struggle
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with the sheer length of scientific papers and are
overwhelmed by the majority of classes. We hy-
pothesize that a hybrid stacking ensemble method
offers a compelling solution. By combining a fast,
symbolic keyword classifier (effective at broad cat-
egorization and handling explicit mentions across
long texts) with a deep semantic model like as-
troBERT (capable of understanding nuanced con-
text within specific text windows), we can leverage
complementary strengths. Furthermore, employing
a stacking architecture with independent, per-class
meta-learners enables highly targeted optimization,
allowing us to apply aggressive techniques such
as class weighting and threshold tuning precisely
where needed to combat the extreme class imbal-
ance observed in the TRACS dataset. The special-
ized multi-level approach forms the core of our
system design.

1.1 Shared Task: TRACS-2025
The shared task (Kaggle, 2025) comprises two clas-
sification objectives:

• Task 1 (Telescope Identification): Multi-
class classification identifying the primary
telescope discussed in a paper from the set
{CHANDRA, HST, JWST, None}.

• Task 2 (Role Classification): Multi-
label classification determining tele-
scope roles with four binary labels:
science, instrumentation, mention,
and not_telescope.

1.2 Key Challenges
Two major challenges characterize this task:

Document Length and Context: Full-text sci-
entific articles frequently exceed the input token
limits of standard transformer models (typically
512 – 2048 tokens), requiring careful strategies for
capturing relevant information from lengthy docu-
ments.

Severe Class Imbalance: Both tasks exhibit
pronounced class imbalance. In Task 1 (Tele-
scope Identification), the distribution is extremely
skewed. The NONE class represents a tiny fraction
of the dataset (approximately 1 instance for every
273 samples), making it vastly outnumbered by
majority classes like HST (which appears roughly
126 times more often than NONE). In Task 2 (Docu-
ment Role Classification), the instrumentation
class appears with a positive-to-negative ratio of ap-
proximately 1:91, while not_telescope exhibits a

ratio closer to 1:9. This extreme imbalance renders
standard machine learning approaches ineffective,
as models naturally bias toward majority classes.

We address these challenges through an
ensemble-based methodology that combines sym-
bolic and semantic models. Instead of optimizing
a single model architecture, we leverage the com-
plementary strengths of combined rule-based and
neural approaches, enabling targeted optimization
for each of the four output labels.

Our contribution includes:

1. A carefully designed two-level stacking archi-
tecture.

2. Systematic methodology for addressing ex-
treme class imbalance through multiple com-
plementary techniques.

3. Empirical validation that per-class optimiza-
tion significantly improves performance on
minority classes.

All code and trained models will be re-
leased publicly later to ensure reproducibil-
ity. Link: https://github.com/Arshad-13/
ClutchOrCry-TRACS-2025

2 Related Work

Handling imbalanced classification is a well-
studied problem. Common approaches include
oversampling techniques such as SMOTE (Syn-
thetic Minority Oversampling Technique) (Chawla
et al., 2002), undersampling (Kubat and Matwin,
1997), cost-sensitive learning (Elkan, 2001), and
ensemble methods (Galar et al., 2012). In NLP,
handling imbalanced text classification has been
addressed through various techniques, including
threshold adjustment for optimal F1 scores (Zou
et al., 2016; Hong et al., 2016) and cost-sensitive
learning strategies (Elkan, 2001; Lee and Kim,
2020). Threshold adjustment helps by shifting the
decision boundary away from the default 0.5 prob-
ability; it allows the model to correctly identify
more instances of the rare class, often improving
recall and the F1-score even if precision decreases
slightly. Cost-sensitive learning directly tackles the
imbalance during training by assigning a higher
penalty for misclassifying minority class instances,
forcing the model to learn features that better distin-
guish the rare class from the majority class. These
techniques are pertinent to both tasks, given the
severe class imbalance observed.
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Rule-based systems and extensive feature en-
gineering are often employed in scientific docu-
ment classification, particularly when structured
identifiers or metadata offer strong predictive sig-
nals. Approaches leveraging bibcodes or similar
identifiers for categorization are common in bibli-
ographic analysis and information retrieval within
specific scientific domains. These methods excel
at precision when identifier patterns are consistent
but may lack robustness to variations or require
supplementation with other features. Hybrid ap-
proaches, combining rule-based extraction with
machine learning models trained on engineered
features (including text statistics, keyword counts,
and metadata), aim to balance the high precision
of rules with the broader pattern recognition capa-
bilities of models like Random Forests, a strategy
reflected in our Task 1 architecture.

Domain adaptation of pre-trained transformers
has also proven effective for specialized NLP tasks.
Recent work in scientific document understanding
has leveraged domain-specific models like SciB-
ERT (Beltagy et al., 2019) and BioBERT, demon-
strating that pre-training on domain-specific cor-
pora improves downstream task performance. For
astronomical text, astroBERT (Grezes et al., 2021)
provides pre-training on 440,000 astrophysical ab-
stracts from the NASA Astrophysics Data System,
offering domain-specific vocabulary and patterns
critical for astronomy-related classification tasks,
which we utilize in our Task 2 system.

Ensemble methods that combine diverse classi-
fiers have demonstrated strong performance on im-
balanced problems (Galar et al., 2011; Khan et al.,
2023). While simpler ensemble models, such as
Random Forest (used in Task 1), inherently handle
feature interactions, stacking ensembles, in partic-
ular, allow meta-learners to learn optimal combi-
nation strategies for integrating base model predic-
tions (Nugroho et al., 2023). Our Task 2 approach
extends this paradigm by using per-class meta-
learners rather than a single global meta-learner,
enabling fine-grained hyperparameter optimization
tailored to each label’s unique characteristics.

3 System Architecture

We employ distinct architectures tailored to the
specific requirements of each task. Task 1 focuses
on identifying the primary telescope using rule-
based features and a Random Forest, while Task
2 uses a stacking ensemble method to classify the

role of the document concerning telescopes.

3.1 Task 1: Telescope Identification
Architecture

For identifying the primary telescope associated
with an astrophysical document, our system em-
ploys a feature-engineering-centric approach, cul-
minating in a Random Forest classification model.
This architecture prioritizes extracting strong sig-
nals from the document identifier (Id), supple-
mented by metadata and textual features to enhance
robustness and handle edge cases.

3.1.1 Rule-Based Feature Extraction (ID
Suffix)

The cornerstone of this system is the extraction and
encoding of information presumed to be embedded
within the document’s Id field, often structured
similarly to astrophysical bibcodes.

Primary Rule: The system identifies the suffix
following the last underscore (_) character in the
Id string. Mapping: Recognized suffixes (e.g.,
CHANDRA, HST, JWST) are directly mapped to their
corresponding telescope labels. Id strings without
a recognized suffix or underscore are assigned a
default category (e.g., NONE or NO_UNDERSCORE).
Feature Encoding: The extracted suffix string is
numerically encoded (e.g., using LabelEncoder)
to be used as a categorical feature by the classi-
fication model. Additional binary features like
has_underscore are also generated. This explicit
encoding of the rule’s output provides a high-
precision signal to the classifier.

3.1.2 Comprehensive Feature Engineering
To complement the primary ID suffix feature and
improve classification accuracy, especially for doc-
uments where the ID rule is insufficient, a wide
array of supplementary features are engineered:

ID/Bibcode Characteristics: Features derived
from the Id string itself, including its total length,
the count of underscores, and the categorical prefix
(often representing the year or journal, also label
encoded).

Metadata Features: Utilizing the provided
year, including derived features like the difference
from a reference year and flags indicating publi-
cation eras (e.g., recent JWST era, pre-Chandra
era).

Textual Content Features: Length Fea-
tures: Character lengths of fields such as title,
abstract, and body. Word counts are also in-
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cluded for key fields. Keyword Mentions: Bi-
nary flags and counts indicating the presence of
specific telescope names (Chandra, JWST, Hub-
ble/HST) within the title, abstract, body, and
acknowledgments. TF-IDF Representation: Term
Frequency-Inverse Document Frequency vectors
generated from the combined text of the title,
abstract, and body fields, using a constrained
vocabulary (e.g., 150 features) and considering un-
igrams and bigrams.

Author & Grant Features: Simple features like
author count and binary flags for the presence of
grant or acknowledgment text.

3.1.3 Classification Model (Random Forest)
The final classification is performed by a
RandomForestClassifier model. It takes a con-
catenated feature vector comprising all the engi-
neered numeric/categorical features (including the
encoded ID prefix) and the sparse TF-IDF text fea-
tures.

Training and Hyperparameter Tuning: The
model is trained on the full set of derived fea-
tures. To optimize performance, hyperparameters
were tuned using RandomizedSearchCV with 5-
fold stratified cross-validation. The best parameters
identified were:

• n_estimators: 200
• max_depth: 15
• min_samples_split: 2
• min_samples_leaf: 4
• max_features: ’sqrt’

This configuration achieved the best cross-
validation accuracy of 0.7772. The final model
used for prediction (best_estimator_ from
RandomizedSearchCV) is implicitly trained on the
entire dataset using these optimal parameters. Class
weighting (class_weight=’balanced’) was also
employed during the search process to mitigate the
inherent imbalance in telescope label distribution.
The model predicts a single categorical label repre-
senting the identified primary telescope (CHANDRA,
HST, JWST, or NONE). Feature importance analysis
consistently confirms that the ID suffix-derived fea-
tures are the most dominant predictors, validating
the hybrid rule-based and machine-learning strat-
egy.

3.2 Task 2: Document Role Classification
Architecture

As shown in Figure 1, our system for Task 2 uti-
lizes a two-tier approach, comprising ‘level 0’ and

‘level 1’, within the stacking ensemble intended to
merge quick symbolic classification with a slower
yet more accurate semantic comprehension.

3.2.1 Level-0: Base Models
Rule-Based Keyword Classifier The keyword
classifier provides high-recall signals through pat-
tern matching. It utilizes a dictionary of over
1,000 domain-specific keywords (spanning tele-
scope names, instruments, and scientific concepts),
which we curated using a combination of large
language models (LLMs) and established astro-
physical references. Scores documents based on
the presence, frequency, and contextual proxim-
ity of keywords. Outputs a 4-dimensional pseudo-
probability vector, one value per output label, com-
puted as normalized keyword match scores. While
this approach cannot capture semantic nuance, it
provides reliable signals for explicit references and
demonstrates high recall for documents containing
direct mentions of telescopes or scientific roles.

Fine-Tuning astroBERT The transformer com-
ponent leverages adsabs/astroBERT (Grezes
et al., 2021), a BERT variant pre-trained on
440,000 abstracts from astrophysical literature. The
model provides domain-specific vocabulary and
contextual understanding of astrophysical language.
It is fine-tuned on the provided training data for 3
epochs using a learning rate of 2e-5. The model
generates probabilities for three labels: SCIENCE,
INSTRUMENTATION, and MENTION, excluding the
NOT_TELESCOPE class, which is semantically dis-
tinct and handled exclusively by the keyword clas-
sifier and meta-learner. It outputs a 3-dimensional
feature vector.

It reflects our hypothesis that NOT_TELESCOPE
documents (discussing telescopes in non-primary
contexts) require different signals than documents
describing telescope roles in primary scientific con-
texts (see Section 4).

3.2.2 Level-1: Meta-Learner
The Level-1 meta-learner combines base model
outputs into a unified classification:

Feature Construction: Outputs from both base
models are concatenated into a 7-dimensional fea-
ture vector: xmeta = [xkeyword,xastroBERT] where
xkeyword ∈ R4 and xastroBERT ∈ R3.

Per-Label Meta-Learners: Instead of training a
single multi-label classifier, we train four indepen-
dent XGBoost classifiers Mi (Chen and Guestrin,
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INPUT TEXT
(Title + Abstract +
Acknowledgments)

LEVEL-0:
BASE MODEL 1
Keyword Classifier

Output: [0/1]
(telescope / not)

LEVEL-0:
BASE MODEL 2

AstroBERT (Fine-tuned)

Output: [science, in-
strument, mention]

LEVEL-1:
META-LEARNER

XGBoost (x4)
One model per label category

FINAL PREDICTION
science, instrumentation,
mention, not_telescope

Figure 1: Two-level stacking ensemble architecture (Task 2). Level-0 base models process input text independently,
producing 4 and 3-dimensional vectors, respectively. These are concatenated into a 7-dimensional meta-feature
vector, which serves as input for four independent Level-1 meta-learners (one per label), each producing binary
predictions.

2016), one per label. This one-vs-rest approach
enables:

• independent hyperparameter optimization
(particularly scale_pos_weight) tailored to
each label’s unique imbalance ratio.

• isolation of optimization strategies: SMOTE
and calibration are applied only to models
requiring them.

• flexibility to apply different decision thresh-
olds for different labels.

Each meta-learner Mi produces a binary proba-
bility pi ∈ [0, 1] for label i, which is converted to a
binary prediction using a label-specific threshold
τi (see Section 5).

4 Subtask 1: Telescope Identification

4.1 Model 1: Stacked LSTM Network

Our initial approach used a stacked Long Short-
Term Memory (LSTM) network to exploit the se-
quential structure of text in the title, abstract, and
author fields. Input: Tokenized title, abstract, and
author fields. Architecture: Two stacked LSTM
layers (64 units each), followed by a Dense softmax
classification layer. Output: Multi-class probabili-
ties over four telescope classes.

4.2 Model 2: Domain-Specific Transformer
(AstroBERT)

We transitioned to a more powerful, domain-
adapted language model: astroBERT, pre-trained
on astrophysics literature and fine-tuned it with a
classification head on TRACS data. Deep language
understanding alone was insufficient. Semantic sig-
nals were not strong enough to capture the presence
or absence of telescope mentions.

4.3 Model 3: Hybrid (Logistic Regression +
AstroBERT)

To better isolate the difficult None class, we decou-
pled its prediction into a binary subtask. First, a Lo-
gistic Regression model predicted whether a sam-
ple belonged to the None class. If not, astroBERT
classified it into CHANDRA, HST, or JWST.

4.4 Model 4: Feature-Based Random Forest

We shifted focus from textual models to structured
metadata features using a RandomForest classifier.
The engineered features included field-specific key-
word counts, publication year, and author-based
patterns.

4.5 Model 5: Final Hybrid (RandomForest +
Rule-Based Heuristic)

A comparative analysis of the previous models con-
firmed that the feature-engineered RandomForest
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was the most promising direction. However, a
deep dive into its confusion matrix revealed a crit-
ical performance bottleneck: the vast majority of
classification errors occurred because the model
was consistently confusing two specific categories.
To address this targeted issue, we sought a deter-
ministic feature that could serve as a tie-breaker.
We discovered a decisive cue in the bibcode field,
where the suffix (the text after the last underscore)
deterministically aligned with the true class label.
This insight was used to create a rule-based over-
ride specifically for instances where the model was
likely to be confused.

The final hybrid approach began with the output
of the Random Forest model and then applied a
rule-based correction to address its specific, known
weakness. If the model’s prediction was one of the
two commonly confused fields, the system applied
the rule-based override by extracting the final token
from the bibcode. For all other predictions, the
model’s original output was trusted.

5 Subtask 2: Telescope Role Classification

We employed an iterative development methodol-
ogy for Task 2, beginning with a baseline model
and systematically addressing performance bottle-
necks related to class imbalance.

5.1 Baseline System

Our baseline model employed standard stack-
ing without specialized handling for imbal-
anced data. It used default XGBoost hyper-
parameters (scale_pos_weight=1, max_depth=6,
learning_rate=0.1), a fixed decision threshold
of 0.5 for all labels, and implemented no specific
data augmentation or class weighting strategies.

This baseline achieved a Macro F1-score of
0.6191, with severe degradation on minority classes
(Table 1). The INSTRUMENTATION class achieved
only 0.510 F1, while NOT_TELESCOPE reached
0.480 F1.

5.2 Optimization Strategies

To improve upon the baseline, we implemented
five complementary techniques targeting different
aspects of model training and prediction on imbal-
anced data. These strategies are summarized in
Table 2.

Justification for Selective SMOTE Applica-
tion We applied SMOTE exclusively to the
INSTRUMENTATION meta-learner due to its extreme

Label Precision Recall F1 Support

INSTRUMENTATION 0.650 0.420 0.510 132
MENTION 0.700 0.750 0.722 892
NOT_TELESCOPE 0.580 0.410 0.480 187
SCIENCE 0.780 0.750 0.765 2156

Macro Avg 0.678 0.582 0.619 —

Table 1: Baseline performance before optimization.
Class imbalance creates severe bottlenecks, particularly
for INSTRUMENTATION (1:91 ratio) and NOT_TELESCOPE
(1:9 ratio).

imbalance (1:91). Synthesizing data was deemed
necessary to provide sufficient signal for the
model to learn this rare class effectively. For
the NOT_TELESCOPE class, with a more moderate
imbalance (1:9), we found that aggressive class
weighting (Strategy 3) alone was sufficient to man-
age the imbalance without the potential noise in-
troduction or overfitting risks associated with syn-
thetic data generation. The majority of classes
required neither technique.

Threshold Tuning Procedure The custom de-
cision thresholds (Strategy 4) were determined by
performing a manual grid search over the probabil-
ity outputs generated by the trained meta-learners
on a held-out validation set (20% of the training
data). For each minority class (INSTRUMENTATION
and NOT_TELESCOPE), we evaluated thresholds
ranging from 0.1 to 0.9 in steps of 0.01. The thresh-
old that yielded the maximum F1-score on the vali-
dation set for that specific label was selected as the
optimal threshold for generating final predictions
on the test set.

Calibration Timing Probability calibration
(Strategy 5) was applied after the XGBoost
meta-learners were fully trained using the op-
timized hyperparameters (including aggressive
class weights). The ‘CalibratedClassifierCV‘
wrapper from scikit-learn was fitted using Isotonic
Regression on the out-of-fold predictions from
the same validation set used for threshold tuning.
This post-hoc calibration step adjusts the output
probabilities of the already trained models before
the final optimized thresholds (determined in
Strategy 4) are applied. This ensures the thresholds
operate on more reliable probability estimates,
improving reproducibility.
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# Strategy Target Label(s) Mechanism & Rationale

1 AstroBERT
Fine-Tuning

All (via base model) Unfreezing weights and training for 3 epochs adapts embeddings to the specific
task, improving feature quality for the meta-learner.

2 SMOTE Over-
sampling
(Chawla et al.,
2002)

INSTRUMENTATION Generates synthetic minority samples (k=5) to balance the training data to 1:1
for the meta-learner, providing more examples for this extremely rare class (1:91
ratio).

3 Aggressive
Class Weight-
ing

INSTRUMENTATION,
NOT_TELESCOPE

Manually increases XGBoost’s scale_pos_weight (180 for INSTR, 15 for
NOT_TEL) beyond the theoretical ratio to heavily penalize misclassifications of
minority classes, boosting recall.

4 Custom Predic-
tion Thresholds

INSTRUMENTATION,
NOT_TELESCOPE

Lowers the decision threshold (0.35 for INSTR, 0.40 for NOT_TEL) from
the default 0.5 to optimize the F1-score by improving recall at an acceptable
precision cost for imbalanced classes.

5 Probability Cal-
ibration

INSTRUMENTATION,
NOT_TELESCOPE

Applies Isotonic Regression post-hoc to the meta-learner outputs to make pre-
dicted probabilities more reliable, enhancing the effectiveness of custom thresh-
olds.

Table 2: Summary of optimization strategies applied to improve Task 2 performance.

6 Results

This section details the performance of our final
systems for both subtasks, comparing final metrics
against developmental stages and discussing the
implications.

6.1 Subtask 1: Telescope Identification
Results

Our iterative development process for Task 1 cul-
minated in a hybrid model combining a feature-
based RandomForest classifier with a rule-based
heuristic leveraging the bibcode field (Model 5 in
Section 4). As summarized in Table 3, this final ap-
proach achieved significantly higher performance
than models relying solely on semantic or purely
feature-based methods.

Model Approach Accuracy F1 Recall

Model 1 Stacked LSTM 78% 75% 77%
Model 2 AstroBERT 79% 76% 78%
Model 3 Logistic Reg. + AstroBERT 82% 80% 81%
Model 4 Feature-based RandomForest 80% 78% 79%
Model 5 RandomForest + Rule-Based 97% 96.8% 97.1%

Table 3: Performance evolution across five model itera-
tions for Subtask 1 (Telescope Identification).

The dramatic improvement from incorporating
the rule-based correction underscores the impor-
tance of domain-specific structural features, which
provided deterministic cues unavailable in the raw
text or other metadata. Neural models struggled
particularly with the None class, highlighting the
limitations of purely semantic approaches for this
specific task.

6.2 Subtask 2: Telescope Role Classification
Results

Our final optimized stacking ensemble system, de-
tailed in Section 5, achieved a locally validated
Macro F1-score of 0.683 for the Telescope Role
Classification task, a notable enhancement from
the baseline of 0.6191. This improvement was pri-
marily driven by successfully mitigating the severe
class imbalance affecting minority classes. Specifi-
cally, for the INSTRUMENTATION class, a combina-
tion of targeted strategies including SMOTE-based
data augmentation, aggressive class weighting in
XGBoost (e.g., scale_pos_weight=180), lowered
custom decision thresholds (e.g., 0.35), and proba-
bility calibration via Isotonic Regression proved
highly effective. These techniques collectively
forced the model to better recognize the rare class
instances by adjusting data representation, learn-
ing penalties, and decision boundaries, leading to a
substantial increase in its F1-score from 0.510 to
0.782. Importantly, these optimizations for minor-
ity classes maintained stable performance on the
majority classes (MENTION and SCIENCE), demon-
strating the robustness of our per-class approach.

Label Precision Recall F1-Score Support

NOT_TELESCOPE 0.788 0.344 0.479 187
MENTION 0.677 0.747 0.710 892
INSTRUMENTATION 0.901 0.690 0.782 132
SCIENCE 0.757 0.764 0.760 2156

Macro Avg (Local) 0.781 0.636 0.683 3367

Table 4: Final per-class performance for Task 2 based on
local evaluation. The Macro F1-score computed locally
is 0.683.
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Leaderboard Results Our system achieved a
combined Macro F1-score of 0.82 on the TRACS
@ WASP 2025 competition leaderboard, securing
4th place. This score represents the weighted com-
bination of Task 1 (telescope identification, 97%
accuracy) and Task 2 (role classification). For
Task 2 specifically, our local validation achieved a
Macro F1 of 0.683 across the four role labels. The
per-class improvements (5) reported in the follow-
ing analysis reflect the impact of our optimization
strategies on each label performance during local
evaluation. Model Performance and Analysis for
both the share task is shown in Appendix A.

7 Discussion

7.1 Ensemble Synergy

Our results validate the complementary nature of
symbolic and semantic models. The keyword clas-
sifier provides high-recall signals for explicit tele-
scope mentions, excelling when documents con-
tain direct references. Conversely, astroBERT cap-
tures nuanced semantic patterns, capturing context-
dependent telescope roles. The meta-learner learns
to weight these signals appropriately:

• For INSTRUMENTATION: Documents often lack
explicit instrumentation keywords, making as-
troBERT’s semantic understanding crucial.

• For SCIENCE: High keyword density provides
strong signals, but astroBERT refinement re-
duces false positives.

A potential concern is whether relying on specific
keywords might lead to overfitting, particularly if
the lexicon is highly tuned to the training data.
While the domain-adapted astroBERT component
provides broader semantic understanding that can
mitigate this, its performance might also degrade
if future documents use entirely novel terminology
not seen during pre-training or fine-tuning. Careful
curation and potential expansion of the keyword
list would be necessary for optimal generalization.

7.2 Why Per-Label Meta-Learners?

Our choice of four independent XGBoost meta-
learners (rather than a single multi-label model)
proved critical for handling extreme imbalance.
This design enables: (1) Fine-grained hyper-
parameter tuning: Each label can employ
scale_pos_weight values matched to its specific
imbalance ratio. (2) Selective data augmentation:
SMOTE is applied only to INSTRUMENTATION,

avoiding artificial data generation for other classes.
(3) Flexible thresholding: Different labels can em-
ploy different decision thresholds based on their
precision-recall trade-off characteristics. (4) Mod-
ular optimization: New strategies can be tested
for individual labels without affecting others.

7.3 Ensemble vs. End-to-End Transformers

While transformer models might seem like a sim-
pler alternative, our ensemble approach offers ad-
vantages for this task. Firstly, interpretability is
enhanced; we can analyze the relative contributions
of the keyword (symbolic) and astroBERT (seman-
tic) base models, providing insights into why a
classification was made. Secondly, the modular-
ity allows for easier updates—the keyword lexicon
can be expanded or astroBERT replaced without
retraining the entire system. Lastly, the per-label
meta-learners provide targeted robustness against
class imbalance, enabling specific, aggressive opti-
mization strategies for minority classes that might
be difficult to implement effectively within a single,
monolithic transformer architecture.

8 Conclusion

We presented a hybrid stacking ensemble for the
TRACS@WASP 2025 shared task on astrophysi-
cal document classification. Our system combines
rule-based keyword detection with domain-adapted
semantic modeling (astroBERT), using four inde-
pendent XGBoost meta-learners—one per output
label—to handle severe class imbalance through
per-label optimization. The modular design enables
targeted strategies, e.g., SMOTE augmentation, ag-
gressive class weighting, calibrated probabilities,
and custom decision thresholds, proving particu-
larly effective for challenging minority classes.

We achieved a macro F1-score of 0.82 on
the leaderboard, securing 4th place. The
most significant improvements were realized in
the extreme-minority classes: the F1-score for
INSTRUMENTATION dramatically increased from
0.510 to 0.782 (+53.3%), and notable gains were
also achieved for the difficult NOT_TELESCOPE la-
bel, showcasing the system’s strength in high-
imbalance scenarios without sacrificing majority
class performance. We demonstrate that symbolic
and neural approaches are complementary—their
synergy is essential for specialized, imbalanced
scientific corpora.
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9 Limitations and Future Work

While our ensemble approach demonstrates strong
performance, several key limitations warrant dis-
cussion and guide future research directions.

First, handling long documents remains a
significant challenge. Our current reliance on
astroBERT with a 512-token limit necessitates trun-
cating lengthy astrophysical papers, potentially dis-
carding crucial contextual information located later
in the text. Future work should explore architec-
tures specifically designed for long sequences, such
as hierarchical attention models or transformers
like Longformer (Beltagy et al., 2020), to capture
document-wide context more effectively.

Second, the system’s performance on the
NOT_TELESCOPE class plateaued despite targeted
optimization efforts. This suggests that the current
feature representations derived from the keyword
classifier and astroBERT lack sufficient discrimi-
native power for this nuanced category. Addressing
this could involve model-centric approaches like
incorporating specialized external models or data-
centric improvements such as creating finer-grained
annotations for partial or non-primary telescope
mentions, potentially leveraging weak supervision
techniques to augment training data.

Third, generalization beyond the TRACS
dataset, particularly to unseen telescopes, requires
further investigation. Our system is optimized
for the specific telescopes present in the training
data (CHANDRA, HST, JWST). While astroBERT of-
fers general domain knowledge, the keyword clas-
sifier’s effectiveness heavily depends on its lexi-
con. Future efforts must focus on evaluating perfor-
mance degradation on diverse astronomical corpora
and developing robust strategies for rapid lexicon
expansion and adaptation to ensure broader appli-
cability.

While other limitations exist, such as the need
for more detailed error analysis, addressing these
three core areas—long document processing, mi-
nority class feature representation, and generaliza-
tion—offers the most promising avenues for ad-
vancing the system’s capabilities.

Future work will focus on addressing truncated
context handling, building upon the significant
gains achieved for the NOT_TELESCOPE class to fur-
ther enhance its classification accuracy, and improv-
ing cross-domain generalization through hierarchi-
cal models and long-document transformers. Our
framework provides a robust solution for scientific

document classification in high-imbalance regimes,
with applications extending beyond astrophysics.
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A Model Performance and Analysis

A.1 Task 1 Performance (Telescope
Identification)

The performance of the Task 1 Random Forest
model was primarily assessed through 5-fold strat-
ified cross-validation during the hyperparameter
tuning phase using RandomizedSearchCV.

Cross-Validation Results: The optimized
model configuration, selected based on the tun-
ing process described in the System Architecture
section, achieved a mean cross-validation accuracy
of 0.7772. The standard deviation across the folds
was relatively small (around ±0.0004 according to
similar runs shown in the notebook context), indi-
cating consistent performance across different data
subsets. This high accuracy suggests the model ef-
fectively minimizes confusion between the primary
telescope classes (CHANDRA, HST, JWST) while miti-
gating the impact of the extreme imbalance posed
by the NONE class, largely due to the strong predic-
tive power of the ID-based features.

Feature Importance: As noted previously, fea-
ture importance analysis consistently highlighted
the overwhelming predictive power of features de-
rived directly from the Id string’s suffix. This con-
firms that the rule-based extraction component, in-
tegrated as a feature, provides the primary signal
for this classification task. Metadata features like
year and certain TF-IDF terms offered minor con-
tributions.

Final Prediction: The final model, trained
implicitly on the full dataset using the best pa-
rameters from RandomizedSearchCV, was used to
generate predictions for the submission file (’fi-
nal_submission_task1.csv’). While detailed per-
class metrics (precision, recall, F1) were not part
of the hyperparameter search output, the strong
cross-validation accuracy suggests effective clas-
sification, heavily driven by the identifier-based
features.

A.2 Task 2 Performance Analysis (Document
Role Classification)

Per-Class Performance Analysis Table 5 high-
lights the change in F1-score for each class from
the baseline (Table 1) to the final optimized model
(Table 4).

Label Baseline F1 Final F1 Improvement (∆ F1)

NOT_TELESCOPE 0.480 0.479 −0.001
MENTION 0.722 0.710 −0.012
INSTRUMENTATION 0.510 0.782 +0.272
SCIENCE 0.765 0.760 −0.005

Macro Avg 0.619 0.683 +0.064

Table 5: Comparison of F1-scores before and after op-
timization for Task 2, highlighting the substantial gain
for the INSTRUMENTATION class.

The most dramatic success was in the INSTRU-
MENTATION class, which saw its F1-score jump
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from 0.510 to 0.782 (+0.272, a +53.3% relative
improvement). This validates our targeted opti-
mization strategy that combines SMOTE, aggres-
sive class weighting (weight=180), a low decision
threshold (0.35) and probability calibration. Pre-
cision improved to 0.901 while recall increased
significantly from 0.420 to 0.690. Conversely, the
NOT_TELESCOPE class proved resistant to op-
timization, with its F1 remaining static (0.480 →
0.479). Despite targeted weighting (weight=15)
and thresholding (0.40), the model maintained high
precision (0.788) but low recall (0.344), suggesting
insufficient characteristic discrimination from the
base models for this specific class.

The majority classes, MENTION and SCI-
ENCE, showed minimal F1 change, indicating that
optimizations targeting the minority classes did not
negatively impact their performance.

Statistical Reliability The presented results are
based on a single training run with a fixed random
seed for reproducibility. Averaging results over
multiple runs with different seeds could provide
a more robust estimate of performance variance
but was not performed due to computational con-
straints.
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