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Abstract

Recent space missions such as Hubble, Chan-
dra, and JWST have produced a rapidly grow-
ing body of scientific literature. Maintaining
telescope bibliographies is essential for mis-
sion assessment and research traceability, yet
current curation processes rely heavily on man-
ual annotation and do not scale. To facili-
tate progress in this direction, the TRACS @
WASP 2025 shared task provides a benchmark
for automatic telescope bibliographic classi-
fication based on scientific publications. In
this work, we conduct a comparative study
of modeling strategies for this task. We first
explore traditional machine learning methods
such as multinomial Naive Bayes with TF–IDF
and CountVectorizer representations. We then
evaluate transformer-based multi-label classi-
fication using BERT-based scientific language
models. Finally, we investigate a task-wise
classification approach, where we decompose
the problem into separate prediction tasks and
train a dedicated model for each. In addition,
we experiment with a limited-resource LLM-
based approach, showing that even without full
fine-tuning and using only a partial subset of
the training data, LLMs exhibit promising po-
tential for telescope classification. Our best
system achieves a macro F1 of 0.72 with BERT-
based models on the test evaluation, substan-
tially outperforming the official openai-gpt-oss-
20b baseline (0.31 macro F1).

1 Introduction

Bibliographic curation plays a central role in sci-
entific knowledge management, enabling mission
impact assessment, citation tracking, and research
traceability. In astronomy, maintaining telescope
bibliographies is essential to quantify the scien-
tific output of major space missions such as Hub-
ble, Chandra, and JWST. However, current biblio-
graphic systems depend predominantly on manual
effort, making large-scale curation impractical.

The TRACS @ WASP 2025 (Grezes et al., 2025)
shared task formalizes this problem by releasing a
benchmark dataset derived from the SAO/NASA
Astrophysics Data System (ADS) and defining a
unified evaluation framework for telescope bibli-
ography classification. The task jointly addresses
telescope detection and scientific intent categoriza-
tion, reflecting real-world curation needs in astro-
physical research.

Automating telescope bibliography classifica-
tion is challenging due to ambiguous telescope
mentions, heterogeneous writing styles across sci-
entific disciplines, and the long-context nature of
research articles. Moreover, each publication may
involve multiple telescopes simultaneously, lead-
ing to a multi-label classification problem under se-
vere label imbalance, where some telescopes (e.g.,
Chandra) dominate the dataset while others appear
rarely. In addition, the dataset contains many hard
negative cases, as papers that merely mention tele-
scope names vastly outnumber those that reflect
genuine telescope usage, making model learning
even more difficult.

In this work, we conduct a systematic study
of modeling strategies for telescope bibliographic
classification. First, we establish classical ma-
chine learning baselines using multinomial Naive
Bayes with TF–IDF and CountVectorizer repre-
sentations, serving as lightweight yet competitive
text classification models. Second, we investi-
gate transformer-based multi-label classification
using domain-adapted BERT variants such as SciB-
ERT and AstroBERT, which were pre-trained or
fine-tuned on large-scale scientific corpora. These
models employ a sigmoid output layer with binary
cross-entropy loss to support multi-label learning.
Third, we explore a task-wise classification strategy
by training separate models for each prediction task
to reduce cross-label interference. To mitigate se-
vere class imbalance, we incorporate focal loss(Lin
et al., 2017) during fine-tuning to better emphasize
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minority labels. Finally, we extend our study with
a limited-resource LLM-based approach, where
open-weight large language models (LLMs) are
evaluated under partial-data and zero-shot settings,
demonstrating competitive performance even with-
out full fine-tuning.
Our contributions are as follows:

• We conduct a systematic comparison of mod-
eling strategies for telescope bibliographic
classification, covering classical machine
learning, transformer-based methods, and
LLM-based approaches.

• We show that domain-adapted BERT variants
(e.g., SciBERT, AstroBERT) significantly out-
perform traditional TF–IDF baselines.

• We propose a task-wise classification pipeline
with focal loss to mitigate label imbalance.

• We demonstrate that limited-resource LLM in-
ference yields competitive performance even
without full fine-tuning.

2 Related work

2.1 Text Representation Methods

Traditional text representation methods have
been fundamental to NLP tasks. TF-IDF
(Term Frequency-Inverse Document Frequency)
weights terms based on their frequency in a docu-
ment relative to their frequency across the corpus,
effectively identifying discriminative terms while
downweighting common words. Count Vectoriza-
tion represents documents as bags-of-words with
raw term frequencies, providing a simple yet effec-
tive baseline for many classification tasks. While
these methods have been widely used in document
classification and information retrieval, they lack
semantic understanding and cannot capture contex-
tual word meanings.

2.2 Pre-trained Language Models

The introduction of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin
et al., 2019) revolutionized NLP by pre-training
deep bidirectional transformers on large text cor-
pora using masked language modeling and next
sentence prediction objectives. BERT’s contextu-
alized word representations enable transfer learn-
ing across diverse downstream tasks through fine-
tuning, achieving state-of-the-art performance on

various benchmarks including GLUE(Wang et al.,
2019) and SQuAD(Rajpurkar et al., 2016).

Building on BERT’s success, DistilBERT (Sanh
et al., 2019) applies knowledge distillation to create
a smaller, faster variant that retains 97% of BERT’s
language understanding while reducing model size
by 40% and inference time by 60%. Through
distillation training, DistilBERT learns to mimic
BERT’s behavior using a student-teacher frame-
work, making it suitable for resource-constrained
environments and real-time applications without
significant performance degradation.

2.3 Domain-Specific Language Models
Recognizing that general-purpose models may not
capture domain-specific terminology and discourse
patterns, researchers have developed specialized
variants. SciBERT (Beltagy et al., 2019) is pre-
trained on 1.14M scientific papers from the Seman-
tic Scholar corpus, using a scientific vocabulary and
achieving significant improvements on biomedical
and computer science tasks.

SPECTER (Scientific Paper Embeddings us-
ing Citation-informed TransformERs) (Cohan
et al., 2020) takes a different approach by leverag-
ing citation graphs during pre-training. It learns
document-level representations by training on
triplets of papers where citing papers should have
embeddings similar to cited papers, effectively en-
coding scientific relatedness. However, SPECTER
relies on discrete citation relations, which enforce
a hard cut-off to similarity and ignore that papers
can be very similar despite lacking direct citations.

SciNCL (Scientific Neighborhood Contrastive
Learning) (Ostendorff et al., 2022) addresses this
limitation by using controlled nearest neighbor
sampling over citation graph embeddings for con-
trastive learning. Instead of discrete citations,
SciNCL learns continuous similarity by sampling
hard-to-learn negatives and positives while avoid-
ing collisions between samples through margin con-
trol. Initialized from SciBERT and trained with
neighborhood contrastive objectives, SciNCL out-
performs previous methods on the SciDocs (Cohan
et al., 2020) benchmark and demonstrates sample-
efficient training capabilities.

AstroBERT (Grèzes et al., 2021) further special-
izes BERT for astronomy by pre-training on astro-
nomical literature from the Astrophysics Data Sys-
tem (ADS). It demonstrates superior performance
on astronomy-specific tasks including named entity
recognition of celestial objects, classification of as-
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tronomical papers, and extraction of observational
metadata. AstroBERT’s domain adaptation makes
it particularly relevant for our telescope bibliogra-
phy curation task.

These document-level embedding models are
particularly relevant to telescope bibliography cu-
ration because they capture semantic relation-
ships between scientific papers beyond simple key-
word matching. The task requires understand-
ing nuanced distinctions between papers that use
telescope data for new scientific results versus
those that merely mention the telescope in pass-
ing. Citation-aware models like SPECTER and
SciNCL can identify papers with similar research
contexts, while domain-specific models like As-
troBERT understand astronomy terminology and
discourse patterns essential for disambiguating tele-
scope references (e.g., distinguishing "Chandra"
as a space telescope from other entities with the
same name). Furthermore, these models’ ability
to generate document-level representations enables
effective transfer learning for our multi-label clas-
sification objectives.

2.4 Fine-tuning Strategies for Transformer
Models

While pre-trained language models have shown re-
markable capabilities, their effective fine-tuning
requires careful consideration of training config-
urations. (Mosbach et al., 2021) investigate the
instability of BERT fine-tuning, revealing that per-
formance can vary significantly across different
random seeds, particularly on small datasets. They
demonstrate that this instability stems from catas-
trophic forgetting and vanishing gradients in early
layers during fine-tuning.

To address these issues, they propose several
techniques:

• Debiased training: Using bias correction in
the Adam optimizer to stabilize early training
steps

• Re-initialization: Selectively re-initializing
top layers to prevent over-fitting to pre-
training tasks

• Learning rate schedules: Employing smaller
learning rates (2e − 5 to 5e − 5) with linear
warmup and decay

• Multiple runs: Averaging predictions across
multiple training runs with different seeds to
reduce variance

These findings have significant implications for
our work, as the telescope bibliography curation

task involves multi-label classification on scientific
texts where training stability is crucial for reliable
performance. We adopt these best practices in our
BERT-based approaches, including careful hyper-
parameter tuning, multiple seed experiments, and
appropriate learning rate scheduling.

2.5 Large Language Models

Recent advances in LLMs have pushed the
boundaries of language understanding. The
Qwen2.5(Yang et al., 2024) series represents ef-
ficient multilingual language models with strong
performance across diverse tasks. Qwen2.5-
1.5B(Yang et al., 2024) and Qwen2.5-3B (Yang
et al., 2024) offer different trade-offs between
model capacity and computational efficiency. De-
spite their smaller size compared to models like
GPT-3(Brown et al., 2020) or GPT-(OpenAI et al.,
2024), these models demonstrate competitive per-
formance on reasoning, question answering, and
classification tasks. Their compact architecture
makes them suitable for resource-constrained envi-
ronments while maintaining strong generalization
capabilities.

3 Problem definition

3.1 TRACS Dataset

We conduct our experiments on the TRACS @
WASP 2025 dataset (Grezes et al., 2025), which
consists of scientific papers from the SciX bib-
liographic database annotated with telescope as-
sociations and usage categories. Each entry in-
cludes textual content from five fields: title, ab-
stract, body, acknowledgments, and grants, along
with four boolean labels (science, instrumentation,
mention, not_telescope) indicating the paper’s re-
lationship to the referenced telescope. The multi-
label classification task requires models to simulta-
neously identify the telescope and categorize how
the paper uses or references it. Following the com-
petition setup, we use the provided train.csv and
test.csv splits. We perform minimal preprocessing
steps to maintain the original text structure:

• Text cleaning: Remove HTML tags, special
characters, and reference markers.

• We concatenate all text fields into a single
input sequence. For transformer-based mod-
els, the input is truncated to a maximum se-
quence length (512 tokens for BERT-based
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models and 1024 tokens for LLM-based archi-
tectures).

• No sequence truncation is applied as the
model handles variable-length sequences au-
tomatically.

3.2 Task Formulation

Given a scientific publication p with associated
metadata and textual content, we define the tele-
scope bibliography curation task as a multi-label
classification problem combined with telescope
identification.

Let D = {(pi, ti,yi)}Ni=1 denote our dataset of
N scientific papers, where:

• pi represents the i-th paper con-
sisting of five textual components:
pi = {ptitle

i , pabstract
i , p

body
i , pack

i , p
grants
i }

• ti ∈ T denotes the associated telescope,
where T is the set of all telescopes in our
taxonomy

• yi = [ysci
i , yinst

i , ymen
i , ynot

i ] ∈ {0, 1}4 repre-
sents the multi-label annotation vector

3.3 Label Definitions

The four binary labels characterize the relationship
between the paper and the referenced telescope.
For each paper p:

• ysci = 1 if p uses telescope data for new sci-
entific results, 0 otherwise

• yinst = 1 if p describes technical or instrumen-
tal aspects, 0 otherwise

• ymen = 1 if p mentions telescope without pro-
ducing new results, 0 otherwise

• ynot = 1 if p contains false positive reference,
0 otherwise

3.4 Objective

Our goal is to predict two components for each
paper p:

1. The telescope identifier: t̂ ∈ T
2. The multi-label vector: ŷ ∈ {0, 1}4

This can be achieved through various modeling
approaches, including joint multi-task learning,
pipeline architectures, or ensemble methods.

4 Methodology

4.1 Classical Machine Learning Approaches

We establish baseline models using classical ma-
chine learning methods with two text representation
strategies: TF-IDF vectorization and count-based

vectorization, combined with Multinomial Naive
Bayes classifiers.

4.1.1 Text Representation
Given a paper p with concatenated text from all
fields, we construct feature vectors using:

TF-IDF Vectorization: For each term w in pa-
per p, the TF-IDF weight is computed as:

TF-IDF(w, p) = TF(w, p)× log
N

DF(w)

where TF(w, p) is the term frequency of word w in
paper p, N is the total number of documents, and
DF(w) is the document frequency of word w.

Count Vectorization: We represent each paper
as a vector of raw term frequencies:

vp = [TF(w1, p),TF(w2, p), ...,TF(w|V |, p)]

where |V | is the vocabulary size.

4.1.2 Classification Strategy
We employ Multinomial Naive Bayes classifiers
with different strategies for telescope identification
and label prediction:

Telescope Identification: For the multi-class
telescope classification problem, we use a One-vs-
Rest (OvR) approach. For each telescope t ∈ T ,
we train a binary classifier:

P (t|vp) =
P (vp|t) · P (t)∑

t′∈T P (vp|t′) · P (t′)

The predicted telescope is:

t̂ = argmax
t∈T

P (t|vp)

Binary Classification: For each of the four bi-
nary labels l ∈ {sci, inst,men, not}, we train in-
dependent binary Multinomial Naive Bayes classi-
fiers:

P (yl = 1|vp) =
P (vp|yl = 1) · P (yl = 1)

P (vp)

Each label is predicted independently, allowing
multiple labels to be assigned to a single paper
when appropriate.

4.2 BERT-based Approaches

We apply transformer models with the following
processing pipeline:
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4.2.1 Tokenization
Input text is tokenized using the tokenizer corre-
sponding to each pre-trained model. Due to the
context length limitation of transformer models,
the model automatically truncates sequences to
the first 512 tokens, which is the maximum se-
quence length for BERT-based models. This typ-
ically includes the entire title and most of the ab-
stract, which contain the most important informa-
tion of the paper.

Given input text x, the tokenization process pro-
duces a sequence of token IDs:

t = Tokenize(x) = [t1, t2, . . . , tn]

where n ≤ 512. These tokens are then converted to
embeddings and processed through the transformer
encoder to obtain contextualized representations:

H = Transformer(t) = [h[CLS],h1, . . . ,hn]

where h[CLS] ∈ Rd is the representation of the
[CLS] token used for classification.

4.2.2 Classification Heads
We train two separate models, each with its own
specialized classification head:

Multi-label Classification Model: A fully-
connected layer with sigmoid activation is attached
to the transformer encoder to predict 4 labels simul-
taneously (each label independently):

pmulti = σ(Wmultih[CLS] + bmulti)

where Wmulti ∈ R4×d, bmulti ∈ R4, and σ is the
sigmoid function applied element-wise.

Telescope Identification Model: A separate
model with a fully-connected layer and softmax
activation is used to classify telescope types:

ptelescope = softmax(Wtelescopeh[CLS] + btelescope)

where Wtelescope ∈ RK×d, btelescope ∈ RK , and K
is the number of telescope types.

Both models share the same transformer encoder
architecture but are trained independently with their
respective loss functions.

4.2.3 Training Objective
We train models independently or jointly for dif-
ferent classification tasks, using task-specific loss
functions optimized for their respective objectives.

Binary Classification. For the four binary la-
bels, we employ binary cross-entropy loss:

Lmulti-label = −1

4

4∑

i=1

[yi log(pi) + (1− yi) log(1− pi)]

Not-Telescope Classification. Due to signifi-
cant class imbalance in the not_telescope cate-
gory, we also employ focal loss when training a
independent dedicated binary classifier.

Lnot-tel =−
[
y · α(1− p)γ log(p)

+ (1− y) · (1− α)pγ log(1− p)
]

Telescope Identification. For multi-class tele-
scope classification over K telescope types, we use
categorical cross-entropy:

Ltelescope = −
K∑

k=1

yk log(pk)

where yk ∈ {0, 1} is the one-hot encoded label
and pk is the predicted probability for telescope
class k.

Each model is trained independently with its
respective loss function, using the same base trans-
former architecture but optimized separately for
its specific classification task. This modular ap-
proach allows task-specific optimization strategies
and hyperparameter tuning.

4.2.4 Inference
At inference time, the model takes the first 512
tokens of a paper as input and forwards through the
encoder. The encoded representation is then passed
through two separate classification heads: one pre-
dicts the telescope type, and the other predicts the
4 classification labels (multi-label classification).

4.3 LLM-based Approach
We leverage large language models through
parameter-efficient fine-tuning using QLoRA
(Quantized Low-Rank Adaptation)(Dettmers et al.,
2023), which enables training on consumer hard-
ware by quantizing the base model to 4-bit preci-
sion while training low-rank adapter matrices.

Model Architecture. We fine-tune Qwen-1B
and Qwen-3B models by freezing the quantized
base parameters W and learning low-rank decom-
positions AB with rank r. The adapted weight
matrix becomes: W′ = W4-bit + α ·AB

Task Formulation. We formulate classification
as structured generation where the model outputs
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JSON with telescope identification and binary la-
bels. Each input consists of concatenated paper
fields with a detailed system prompt encoding:

• Task objectives and label definitions
• Classification rules (e.g., mutual exclusivity

of not_telescope)
• Output constraints (strict JSON schema)
System Prompt. Our prompt explicitly defines

each category:
• science: Uses telescope data for new results
• instrumentation: Describes techni-

cal/engineering aspects
• mention: References telescope without new

contributions
• not_telescope: Contains false positive ref-

erences
The model is trained to generate valid JSON re-
sponses that are parsed during inference to extract
predictions. This approach allows the LLM to rea-
son about complex classification rules while pro-
ducing structured outputs suitable for evaluation.

5 Experiments

5.1 Baselines
The TRACS organizers provide two official base-
line models for comparison. Table 1 presents their
performance on the test set.

Model Macro F1
Random 0.24
openai-gpt-oss-20b 0.31

Table 1: Baseline performance on TRACS test set.

5.2 Experimental Setup
We split the training data into training and valida-
tion sets with an 8:2 ratio for model development
and hyperparameter tuning. We train our models
using adamw_torch optimizer with a learning rate
of 2e-5, batch size of 16, and maximum sequence
length of 512 tokens. For the multi-task models,
training continues for 3 epochs with early stopping
based on validation performance. For per-class bi-
nary classifiers, we train for 1-2 epochs to prevent
overfitting, as single-task models tend to converge
faster and are more prone to overfitting. All ex-
periments are conducted on NVIDIA A100 GPUs
via Google Colab. The primary evaluation metric
is macro F1-score computed across both telescope
identification and the four classification labels, en-
suring balanced performance across all categories.

5.3 Main Results

5.3.1 Per-Class Specialized Models
To further improve classification performance, we
train separate binary classifiers for each of the four
classification categories (science, instrumentation,
mention, not_telescope) and the telescope identifi-
cation task. Table 2 shows the performance of our
best model (SciBERT) when trained independently
for each class.

Classification Task F1 Score
Multi-label Classification
science 0.78
instrumentation 0.76
mention 0.73
not_telescope 0.61
Macro F1 (Classification) 0.72

Table 2: Per-class F1 scores using separate SciBERT
classifiers trained independently for each task. Macro F1
is computed as the average across all four classification
categories.

5.3.2 Instruction-tuned LLM Evaluation
Training Configuration Table 3 presents the hy-
perparameters used for QLoRA fine-tuning. We
employ 4-bit quantization to reduce memory foot-
print while maintaining model performance. The
effective batch size of 8 is achieved through gradi-
ent accumulation, allowing training on consumer-
grade hardware.

Hyperparameter Value

Learning Rate 1× 10−4

Batch Size (per device) 1
Gradient Accumulation 8
Effective Batch Size 8
Max Epochs 3
Max Sequence Length 1024
Quantization 4-bit

Table 3: QLoRA fine-tuning hyperparameters for Qwen
models.

Prompt Design We construct a structured system
prompt that includes:

• Role definition: Positioning the model as an
expert assistant for telescope paper classifica-
tion
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• Category definitions: Explicit descriptions
of science, instrumentation, mention, and
not_telescope

• Classification rules: Constraints such as mu-
tual exclusivity of not_telescope and multi-
label capability for other categories

• Edge cases: Guidelines for handling ambigu-
ous references, name collisions, and grant-
only mentions

• Output format: Strict JSON schema enforce-
ment to ensure parseable predictions

Results The complete prompt template is pro-
vided in Appendix A. This prompt is prepended
to each paper’s content during both training and
inference phases.

Method Parameters Macro F1

Qwen-1B + QLoRA 1B 0.58
Qwen-3B + QLoRA 3B 0.61

Table 4: Performance comparison on the multi-label
classification task, trained for a single epoch. Macro F1
is averaged across all four categories (science, instru-
mentation, mention, not_telescope).

5.3.3 Joint Task Performance
We assess all models on the unified task encom-
passing both telescope identification and publica-
tion classification. The overall leaderboard score is
defined as the arithmetic mean of the F1 score for
telescope identification and the macro-averaged F1
across the four classification categories, formulated
as:

Final Score =
Telescope F1 + Classification Macro F1

2
.

Table 5 summarizes the complete performance
comparison across all evaluated methods.

5.3.4 Ablation Study
To examine the effect of focal loss, we fine-tuned
task-specific models with and without focal loss
on imbalanced tasks. Although focal loss slightly
improved per-task stability, these models still per-
formed worse than the joint multi-task model
trained without focal loss, indicating that task inter-
action contributes more to generalization than loss
reweighting alone.

6 Conclusion

In this work, we presented a systematic study of
modeling strategies for automatic telescope bibli-
ographic classification in the TRACS @ WASP
2025 shared task. We evaluated a diverse range of
approaches, from classical machine learning meth-
ods to transformer-based architectures and limited-
resource LLM-based inference.

Our experiments demonstrate that domain-
adapted BERT variants significantly outperform
traditional ML, with SciBERT achieving the best
performance of 0.73 macro F1 on the leaderboard
evaluation—more than doubling the official base-
line score of 0.31. We show that pre-training on
scientific corpora provides substantial benefits for
this task, as evidenced by the strong performance
of SciBERT and AstroBERT compared to general-
domain models.

While ensemble methods did not yield improve-
ments in our experiments, we attribute this primar-
ily to the multi-label, multi-class complexity of the
task and our computational constraints. Our task-
wise classification approach with focal loss showed
promise in addressing class imbalance, though fur-
ther investigation with larger models and more ex-
tensive hyperparameter tuning could yield addi-
tional gains.

Importantly, our limited-resource LLM experi-
ments suggest that instruction-tuned models can
achieve competitive performance even without full
fine-tuning and with only partial training data. This
opens promising directions for low-resource sce-
narios in scientific bibliography curation.

Future work should explore more sophisticated
long-document processing strategies to better lever-
age complete paper content, investigate advanced
techniques for handling severe class imbalance in
multi-label settings, and examine larger-scale LLM
fine-tuning with expanded computational resources.
Additionally, incorporating metadata such as au-
thor affiliations, publication venues, and citation
networks may further improve classification accu-
racy.

Limitations

This study faces several important constraints:
Computational Resource Constraints: As stu-

dents, we faced significant GPU and computational
limitations. This restricted our ability to experi-
ment with larger models (e.g., full fine-tuning of
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Method Multi-label Classification Telescope Identification Leaderboard
Macro F1 Micro F1 Samples F1 Accuracy Macro F1 Score

Traditional ML
TF-IDF 0.52 0.58 - 0.64 0.51 0.51
CountVectorizer 0.54 0.59 - 0.67 0.56 0.56
Transformer Models
DistilBERT (66M) 0.71 0.73 0.72 0.81 0.68 0.69
SciNCL (110M) 0.71 0.73 0.72 0.80 0.68 0.68
AstroBERT (110M) 0.72 0.73 0.74 0.80 0.69 0.68
SPECTER (110M) 0.70 0.72 0.72 0.81 0.68 0.69
SciBERT (110M) 0.77 0.79 0.78 0.81 0.73 0.72
Ensemble Methods
Soft Voting 0.70 0.72 0.71 0.73 0.65 0.67
Weighted Voting 0.71 0.73 0.72 0.74 0.66 0.68
Hard Voting 0.69 0.71 0.70 0.72 0.64 0.66

Table 5: Comparison of traditional ML, transformer-based models, and ensemble methods on joint telescope
identification and paper classification tasks. The leaderboard score is computed as the average of Telescope Macro
F1 and Classification Macro F1. Ensemble methods combine SciBERT, DistilBERT, and AstroBERT using different
voting strategies but show slight performance degradation compared to the best single model (SciBERT). With
SciBERT, our system achieves a Top-2 ranking on the leaderboard.

models beyond 3B parameters) and limited the hy-
perparameter search space we could explore.

Ensemble Methods Underperformance: De-
spite theoretical advantages, our ensemble ap-
proaches did not yield substantial improvements.
This is likely due to the multi-label, multi-class
nature of the task where predictions must simulta-
neously classify both the telescope type and four
binary labels (science, instrumentation, mention,
not_telescope). The complexity of combining pre-
dictions across these dimensions without introduc-
ing conflicting classifications proved challenging
within our resource constraints.

Class Imbalance: The dataset exhibits signif-
icant class imbalance across both telescope types
and label categories. Certain telescope-label com-
binations are severely underrepresented, making
it difficult for models to learn robust patterns for
minority classes and potentially biasing predictions
toward more frequent categories.

Long Document Processing: Scientific papers
often contain extensive text spanning abstracts, full
body text, and acknowledgments. Processing these
long sequences requires either truncation (risking
information loss) or sophisticated chunking strate-
gies. Our computational constraints limited our
ability to fully leverage the complete textual con-
text, particularly for papers exceeding typical trans-
former input limits (512 tokens).
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A System Prompt for TRACS
Classification

Below is the complete system prompt used to fine-
tune Qwen models and guide their inference on the
TRACS shared task.

You are an expert assistant for the
TRACS (Telescope Reference and Astronomy
Categorization Shared Task) at WASP @
IJCNLP-AACL 2025. Your task is to
classify scientific papers according to
telescope usage categories defined by
the shared task guidelines.

Given the paper content, identify:

1. telescope: The specific telescope
referenced in the paper.

2. science: True if the paper uses
telescope data to produce new scientific
results.

3. instrumentation: True if
the paper describes technical
aspects of the telescope
(hardware/software/calibration/data
pipeline).

4. mention: True if the paper references
the telescope but does not produce new
results nor address technical aspects.

5. not_telescope: True if the paper
contains misleading telescope-like
references or false positives unrelated
to an actual telescope.

Classification Rules:

- A paper can be classified into multiple
categories except ‘not_telescope‘,
which is mutually exclusive.

- If a paper qualifies for ‘science‘, it
must be labeled science=True even if it
also mentions the telescope.

- If a paper discusses telescope
engineering or data processing, label
instrumentation=True.

- Papers that only cite a telescope
historically, in background, or for
comparison → mention=True.

- If the telescope name is used
ambiguously (e.g. name collision with
a person, project, or acronym) →
not_telescope=True.

- Referencing telescope-funded
grants alone without data use →
not_telescope=True.

Output Format:

Respond strictly in valid JSON only:

{

"telescope": "<string>",

"science": <true/false>,

"instrumentation": <true/false>,

"mention": <true/false>,

"not_telescope": <true/false>

}

145


