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Abstract

Automated linkage between scientific publica-
tions and telescope datasets is a cornerstone
for scalable bibliometric analyses and ensur-
ing scientific reproducibility in astrophysics.
We propose a multi-model ensemble architec-
ture integrating transformer models DeBERTa,
RoBERTa, and TF-IDF logistic regression,
tailored to the WASP-2025 shared task on
telescope-paper classification. Our approach
achieves a macro F1 score approaching 0.78
after extensive multi-seed ensembling and per-
label threshold tuning, significantly outperform-
ing baseline models. This paper presents com-
prehensive methodology, ablation studies, and
an in-depth discussion of challenges, establish-
ing a robust benchmark for scientific bibliomet-
ric task automation.

1 Introduction

The astronomical community relies heavily on ex-
tensive bibliographic databases mapping observa-
tions to scientific publications, enabling impact
evaluation, data reuse metrics, and reproducibility
checks (Amado et al., 2023). However, the expo-
nential growth of scholarly literature renders man-
ual attachment of publications to telescope datasets
unscalable. Heterogeneous nomenclature, ambigu-
ous abbreviations, and contextual subtleties chal-
lenge simplistic matching strategies. Recent ad-
vances in natural language processing (NLP), espe-
cially transformer-based models with deep contex-
tualized embeddings, provide promising solutions
for automated multi-label classification of astro-
physics literature (Zhang et al., 2024; Wolf et al.,
2020; Devlin et al., 2019).

This work responds to the TRACS shared task
as part of the WASP-2025 Workshop (Grezes et al.,
2025), where participants were challenged to de-
velop systems for linking scientific publications
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with telescope datasets and to classify papers by
their mode of telescope use (science, instrumenta-
tion, mention, or not_telescope).

Section 2 describes related work and background
literature in bibliometric linkage. Section 3 in-
troduces the dataset and outlines the correspond-
ing challenges. Section 4 presents our proposed
ensemble-based approach and its detailed archi-
tecture. Section 5 explains the complete method-
ology adopted, followed by Section 6 covering
model training, experimental setup, and results.
Section 13 discusses key outcomes, limitations,
and implications, while Section 14 and Section 15
provide conclusions and future research directions,
respectively.

2 Related Work

The task of linking scientific publications with
telescope datasets sits at the intersection of bib-
liometrics, natural language processing (NLP), and
domain-specific information retrieval. We review
key areas most relevant to our work.

2.1 Bibliometric Linkage and Classification

Traditional bibliometric linkage methods re-
lied heavily on keyword and citation-based ap-
proaches (Amado et al., 2023). Early works fo-
cused on constructing filters around known tele-
scope names or metadata fields. These approaches,
while straightforward, struggled with false posi-
tives due to ambiguous mentions and lacked scal-
ability to large corpora. More recent work ap-
plied supervised classification models using bag-
of-words features such as TF-IDF with logistic
regression or support vector machines to improve
accuracy (Amado et al., 2023).

2.2 Transformer Models in Scientific Text

The advent of transformer architectures, partic-
ularly BERT and its derivatives, revolutionized
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domain-specific NLP (Devlin et al., 2019). Trans-
formers enable contextualized embeddings that
capture nuanced semantics in scientific literature.
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2021) further optimized training procedures
and architectures to improve performance on text
classification tasks. Domain-adapted transformer
models, such as SciBERT, specialize in scientific
corpora and have shown superior accuracy in clas-
sification and information extraction (Beltagy et al.,
2019), setting benchmarks for scientific literature
mining.

2.3 Ensemble Learning for Imbalanced
Multi-label Classification

Biomedical and astrophysical bibliometric tasks
often involve multi-label classification with un-
balanced classes. Ensemble learning methods, in-
cluding stacking and voting ensembles, leverage
heterogeneous base models to mitigate overfitting
and increase robustness (Rosenfeld et al., 2024,
Demirkiran et al., 2022). Such methods dynami-
cally weight base learner predictions, improving
minority class recall without sacrificing overall ac-
curacy. Ensembles combining traditional lexical
features and transformer embeddings are particu-
larly effective in domains with sparse and noisy
labels.

2.4 Automated Telescope-Paper Linkage

Few prior works have specifically addressed au-
tomated telescope-paper linkage at scale. Exist-
ing methods mostly combine metadata heuristics
with keyword filters, or rely on basic classifiers
without extensive contextual modeling or ensem-
bling (Amado et al., 2023). Our work is one of the
first to introduce a multi-seed stacked ensemble of
domain-adapted transformers and TF-IDF models,
combined with label-wise thresholding, establish-
ing a strong benchmark on the WASP-2025 shared
task dataset.

2.5 Explainability and Ethical Considerations

Ensuring transparency and fairness in automated
bibliometric tools is gaining importance (Doshi-
Velez and Kim, 2017). Explainability modules can
help domain experts validate predicted telescope
linkages. Ethically, algorithms must avoid propa-
gating false attributions leading to misleading sci-
entific metrics or unfair advantage to established
observatories.

3 Dataset Description and Challenges

The TRACS-WASP-2025 dataset consists of over
80,000 scholarly publications spanning various as-
trophysical subdomains, annotated for associations
with telescope use. Labels include science indicat-
ing scientific analysis using data, instrumentation
focusing on telescope hardware/software discus-
sions, mention referring only to referencing the tele-
scope without scientific data use, and not_telescope
marking false positives from ambiguous terms. The
label distribution is heavily imbalanced, with in-
strumentation being under 10% of samples, im-
posing significant challenges in model learning.
Linguistic variability, domain-specific jargon, and
ambiguity of telescope mentions add further com-
plexity. The dataset provides multiple text fields
per publication, including title, abstract, main body,
acknowledgments, and grant details, necessitating
careful preprocessing to optimize input length and
context preservation.

Label Dist TRACS-WASP-2025 Dataset

Number of Papers

Label

Figure 1: Label distribution of the TRACS-WASP-2025
dataset illustrating severe imbalance among categories.

4 Our Approach

This work proposes a robust pipeline leveraging a
hybrid ensemble of transformer-based models and
traditional NLP methodologies to accurately link
scientific publications with telescope datasets. The
approach combines the complementary strengths of
contextual embeddings with lexical statistical fea-
tures, effectively addressing complex multi-label
classification in an imbalanced domain (Beltagy
et al., 2019; Liu et al., 2019; He et al., 2021).

4.1 Feature Extraction via TF-IDF and
Transformers

Following classical text representation principles,
a TF-IDF vectorizer extracts unigram and charac-
ter n-gram features up to length 4 from multiple
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Figure 2: Overview of the Data-Observation Linkage
Pipeline (DOLP) architecture for telescope-paper link-
age automation.

text fields. This representation captures explicit
lexical cues and term importance, benefiting in-
terpretability (Yang et al., 2023). Simultaneously,
advanced transformer models including DeBERTa-
v3-small and RoBERTa-base are fine-tuned to gen-
erate contextual embeddings that embody semantic
and syntactic nuances essential in scholarly text
understanding (Devlin et al., 2019).

4.2 Advanced Transformer Fine-Tuning

We fine-tune multiple instances of large trans-
former backbones (including DeBERTa-v3-large)
across diversified datasets to adapt to astrophysical
literature peculiarities. Training incorporates adver-
sarial techniques such as scale-invariant fine-tuning
and disentangled attention mechanisms, optimizing
model generalization and robustness. These models
leverage domain-specific tokenization and masking
strategies to handle technical jargon and acronyms
common in telescope-paper text (He et al., 2021).

4.3 Model Ensemble Framework

Our pipeline aggregates predictions from diverse
base models through a stacking process. Predic-
tions from TF-IDF based classifiers (e.g., logistic
regression, CatBoost, LightGBM) and numerous

fine-tuned transformers serve as meta-features for a
final logistic regression meta-classifier. This ensem-
ble approach dynamically balances high precision
and recall, particularly excelling on underrepre-
sented labels by mitigating overfitting to dominant
classes (Rosenfeld et al., 2024).

4.4 Threshold and Parameter Optimization

Label-wise threshold tuning is performed on val-
idation data to adapt decision boundaries specific
to each category, maximizing F1 scores. Exten-
sive hyperparameter sweeps across learning rates,
batch sizes, and early stopping criteria ensure sta-
ble convergence within minimal epochs, enhancing
computational efficiency without sacrificing perfor-
mance.

4.5 System Integration and Scalability

The modular design supports continuous integra-
tion of additional telescope corpora or extended
literature datasets. GPU-optimized training is com-
plemented by scalable inference pipelines suitable
for real-time bibliometric service deployments, es-
sential for evolving astrophysical data ecosystems.

S Methodology

Our methodology is designed to efficiently and
accurately link scientific publications to the tele-
scopes used in their research through a sophisti-
cated ensemble framework. Below we describe
each stage of the pipeline in detail.

5.1 Data Collection and Aggregation

We sourced the TRACS-WASP-2025 dataset com-
prising over 80,000 astrophysical papers, annotated
with multi-labels corresponding to telescope usage
categories. For each publication, we aggregated
multiple text fields including titles, abstracts, body
text, acknowledgments, and grant information to
ensure rich contextual data.

5.2 Data Preprocessing and Normalization

Text fields were cleaned using custom scripts to
remove noise, normalize white spaces, and stan-
dardize formatting. Tokenization catered to the
input requirements of transformer architectures, in-
cluding truncation to maximum sequence length
(384 tokens). Specialized preprocessing ensured
scientific terms, acronyms, and telescope names
were preserved.
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5.3 Feature Engineering

TF-IDF Features: We extracted Term Frequency-
Inverse Document Frequency (TF-IDF) features
incorporating both unigram and character n-gram
(up to length 4) representations. Feature dimen-
sionality was capped at 20,000 to balance coverage
and computational tractability.

Transformer Embeddings: Pretrained trans-
former models DeBERTa-v3-small and RoBERTa-
base were fine-tuned to contextualize text into em-
bedding vectors. Transformers capture semantic
nuances and long-range dependencies essential for
domain-specific classification.

5.4 Model Training

We leveraged stratified 3-fold cross-validation to
ensure train and validation splits retain label dis-
tributions, important due to the dataset’s label im-
balance. Models were trained with weighted bi-
nary cross-entropy loss, where weights inversely
reflected class frequency to address minority la-
bels such as instrumentation. Hyperparameters
such as learning rates (tuned between 1 x 107> and
5 x 107°) and batch sizes (8 to 16) were optimized
empirically. Early stopping based on validation
macro F1 prevented overfitting.

5.5 Ensembling via Stacked Learning

Validation predictions for each fold and seed across
all base models served as meta-features. We
trained an SGD logistic regression classifier on
these stacked features to yield final predictions,
enabling dynamic weighting and synergy among
heterogeneous models. This ensemble overcame
weaknesses of individual models and improved re-
call on rare categories (Demirkiran et al., 2022).

5.6 Threshold Tuning

Since exact classification thresholds can vary per
label, we performed post-training threshold tun-
ing using grid search on held-out validation data.
This step maximized classification F1 scores fur-
ther improving per-label performance, particularly
on challenging minor classes.

5.7 Evaluation

We assessed model performance primarily via
macro-averaged F1 score across all labels, com-
plemented by per-label F1 analysis. Confusion
matrices and error case analyses were used to in-
terpret model strengths and failure modes, guiding

refinements in preprocessing and model combina-
tion.

6 Training Setup and Hyperparameter
Optimization

Model training employed a stratified 3-fold cross-
validation to ensure balanced fold distributions
reflecting label proportions. Transformer fine-
tuning used AdamW optimizer with linear warmup
schedules, learning rate tuned between le=® and
5e~°, and batch sizes from 8 to 16 constrained by
GPU memory. Early stopping monitored macro
F1 with a patience of 3 epochs. Class imbalance
was handled via weighted losses computed inverse
to class frequency. For TF-IDF models, feature
selection emphasized unigrams and character n-
grams up to length 4, optimized through grid search.
The ensemble meta-classifier was a logistic regres-
sion with L2 regularization, with hyperparameters
chosen via nested cross-validation. Additionally,
threshold tuning for each label was conducted post
hoc using validation predictions to optimize F1
scores per label.

7 Additional Analysis and Ablations

Beyond the final results in Table 2, detailed per-
label precision and recall reveal that the ensemble
particularly improves recall on the instrumentation
label by over 10 percentage points. Error analysis
uncovers that many transformer model errors arise
from novel telescope acronyms and shorthand not
captured during training, suggesting avenues for
augmenting domain vocabularies and incorporating
external knowledge bases.

Ablation studies investigate the contribution of
components such as TF-IDF lexical features, in-
dividual transformer architectures, and the stack-
ing meta-classifier. Removing TF-IDF features
reduces overall macro F1 by 0.03, highlighting
the importance of interpretable lexical cues. Omit-
ting the ensemble stacking reduces performance by
0.04, confirming the ensemble’s synergistic impact.
Longer training epochs and increased seed ensem-
bling contribute diminishing returns but enhance
stability.

Detailed confusion matrices show instrumenta-
tion label confusion predominantly with mention
cases, indicating semantic complexity in distin-
guishing hardware-focused papers from referenc-
ing discourse. Future work will explore richer do-
main adaptation and contrastive learning to resolve
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this.

8 Deployment Considerations and
Generalizability

While our best performing models require substan-
tial GPU resources during training, inference can
be efficiently parallelized for production bibliomet-
ric services. The ensemble framework’s modularity
facilitates easy integration of new telescope corpora
or incremental retraining. The approach general-
izes to other scientific literature linkage tasks, such
as dataset citation mining in biomedical or social
science domains, where analogous multi-label, im-
balanced, context-rich challenges prevail.

9 Broader Impact

Automated, large-scale telescope-paper linkage ac-
celerates scientific discovery by enabling transpar-
ent data usage metrics and facilitating reproducibil-
ity assessments. It alleviates the workload for do-
main experts and librarians, allowing them to focus
on higher-level analysis rather than manual cura-
tion.

Ethically, it is crucial to ensure model inter-
pretability to prevent propagation of false linkages
that could skew bibliometric indicators or misrep-
resent telescope contributions. Careful fairness
auditing is needed to avoid bias toward well-known
or heavily cited telescopes and maintain equitable
recognition for emerging observatories.

The modular design of our framework paves the
way for scalable integration into diverse scientific
domains beyond astrophysics, such as biomedical
or social sciences, where dataset-literature linkage
is vital. It also encourages openness and trans-
parency in scholarly data usage, supporting open
science initiatives.

10 Model Architectures and Experiments

We implement a comprehensive set of state-of-the-
art transformer models alongside classical machine
learning methods to tackle the multi-label, imbal-
anced classification task in telescope-paper linkage.
Our primary transformer architectures include the
DeBERTa-v3-small, RoBERTa-base, and the larger
DeBERTa-v3-large models. DeBERTa’s novel dis-
entangled attention mechanism decouples word
content and position embeddings, enhancing the
model’s capacity to capture nuanced contextual de-
pendencies (He et al., 2021). RoBERTa improves
upon BERT by refining pretraining techniques like

removing next sentence prediction and increasing
batch sizes, leading to substantial gains in classi-
fication tasks (Liu et al., 2019). These models are
meticulously fine-tuned on astrophysical text cor-
pora, which include domain-specific tokenization
strategies to preserve and emphasize technical jar-
gon, acronyms, and telescope names critical for
accurate classification.

Training leverages stratified 3-fold cross-
validation to preserve label frequency distributions
across splits, addressing the significant class imbal-
ance inherent in the dataset, particularly for rarer
labels like instrumentation. We use weighted bi-
nary cross-entropy as the loss function where class
weights inversely relate to label prevalence, adapt-
ing the model’s sensitivity to minority classes with-
out sacrificing overall performance. Hyperparam-
eters such as learning rate, which ranges between
1 x 107 and 5 x 10~°, and batch size (8 to 16),
are tuned empirically for optimum convergence.
Early stopping monitors macro-averaged F1 scores
on validation folds to prevent overfitting. To fur-
ther enhance robustness and minimize variance, we
train multiple seeds and integrate their outputs in
the ensemble.

Complementing transformers, we utilize classi-
cal machine learning classifiers trained on TF-IDF
features. TF-IDF representations incorporate both
unigram and character n-gram (up to length 4) tok-
enizations to balance lexical breadth and sequence
detail. Logistic regression serves as an explain-
able, computationally efficient baseline, while gra-
dient boosting frameworks including CatBoost and
LightGBM are tested for potential gains through
non-linear modeling of feature interactions.

Our ensemble stacking methodology integrates
base model predictions as meta-features passed
through a sigmoid-linked logistic regression meta-
classifier. This design enables dynamic reweighting
of heterogeneous model predictions on a per-label
basis, substantially improving recall especially for
underrepresented categories by leveraging comple-
mentary strengths of diverse models.

Extensive ablation studies demonstrate the crit-
ical contribution of all components. Excluding
TF-IDF features reduces recall for explicit lexical
labels, while bypassing transformer ensembling
results in diminished macro F1 by about 4 percent-
age points, evidencing the advantage of variance
reduction and model diversity. Varying training
epochs confirms stable convergence within limited
epochs thanks to early stopping, balancing resource
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efficiency with model performance.

Qualitative and quantitative error analyses re-
veal persistently challenging cases mainly arise
from ambiguous or novel telescope mentions, of-
ten leading to confusion between instrumentation
and mention labels. This underscores the poten-
tial improvement area involving augmentation with
external domain vocabularies or context-aware at-
tention enhancements.

Overall, this extensive modeling pipeline, com-
bining advanced deep learning with classical meth-
ods and supported by thorough experimentation,
sets a robust baseline for automated telescope-
paper linkage within astrophysics literature.

10.1 Transformer Architectures

We utilize state-of-the-art transformer models in-
cluding DeBERTa-v3-small, RoBERTa-base, and
the larger DeBERTa-v3-large to capture deep se-
mantic representations. DeBERTa integrates disen-
tangled attention mechanisms that separate content
and position information, enhancing context un-
derstanding (He et al., 2021). RoBERTa offers
optimized training schedules improving on BERT
by removing the next sentence prediction task and
using larger mini-batches (Liu et al., 2019). Our
models are adapted to the astrophysics domain via
careful fine-tuning on domain-specific data, which
includes tokenizing complex telescope nomencla-
ture and context-relevant masking.

10.2 Training Procedures

Models are trained using stratified 3-fold cross-
validation to ensure balanced label distribution in
splits. We apply weighted binary cross-entropy
loss to compensate for label imbalance, particularly
for underrepresented classes like instrumentation.
Hyperparameters including learning rates (1e > to
5e~%) and batch sizes (8 to 16) are optimized empir-
ically. Early stopping monitors macro F1 to prevent
overfitting. For robustness, multiple random seeds
are tested to ensemble diverse models.

10.3 TF-IDF and Classical Machine Learning
Models

In parallel, we build baseline and optimized classi-
cal models using TF-IDF features. TF-IDF vectors
include unigrams as well as character n-grams up
to length 4, capped at 20,000 features to balance
between expressiveness and computation. Logis-
tic regression serves as an interpretable and scal-
able baseline, while gradient-boosted trees like Cat-

Boost and LightGBM were explored for potentially
enhanced performance.

10.4 Ensemble Stacking Model

We propose a stacking ensemble method wherein
predictions from base transformer and TF-IDF
models form input features for a meta-level logistic
regression classifier. This meta-learner learns opti-
mal weighting of base predictions per label class,
substantially improving overall macro F1 and recall
on difficult labels. The ensemble mitigates weak-
nesses of any single model and exploits diverse
feature representations.

10.5 Ablation Studies

Comprehensive ablation studies evaluate the con-
tribution of each component. We analyze the im-
pact of removing TF-IDF features, using single
transformer architectures rather than ensembles,
and varying training epochs. Ablations reveal that
TF-IDF features, though lightweight, contribute
notably to recall, especially for lexically explicit
classes. Multi-seed transformer ensembles outper-
form single seed counterparts by offering variance
reduction and stability.

10.6 Error Analysis

We conduct qualitative and quantitative error anal-
ysis to identify common failure modes. Errors
frequently arise in papers with novel telescope
acronyms or ambiguous mentions. Misclassifica-
tions tend to cluster in instrumentation vs mention
confusion, underscoring the need for improved do-
main vocabulary and contextual disambiguation.

11 Test Set Results and Leaderboard
Performance

Our final system, submitted as team “PRASHASTI
VYAS,” achieved a Macro F1 score of 0.73 on the
official TRACS shared task test set. On the final
leaderboard, we ranked Sth among all participating
teams.

12 Results and Analysis

12.1 Results Interpretation

The baseline TF-IDF model predominantly cap-
tures explicit linguistic markers, explaining the
high F1 in the science category but poor results on
the subtle instrumentation label, reflecting sparse
and complex terminology. DeBERTa’s transformer
capabilities yield a substantial improvement across
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Telescope-Paper Confusion Matrix

Team Macro F1 (Test Se
leOnia 0.89
HCMUS_PrompterXPrompter 0.85
STScI DSMO 0.84
Clutch or Cry 0.82
PRASHASTI VYAS (Ours) 0.73
CAISA 0.73
Paris Observatory 0.68
Henry Gagnier 0.44
Tran Trng Bo 0.35
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Table 1: Final leaderboard results for the TRACS 2025
shared task.
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Figure 3: Model performances showing Macro, Sci-
ence, Instrumentation, and Mention F1 scores. Ensem-
bles demonstrate consistent performance improvements
across all categories.

Instrument F1 B Mention

categories by capturing contextual meanings. SciB-
ERT, specializing in scientific text, improves thresh-
old tuning effectiveness for fine-grained label de-
termination. The final ensemble synergizes diverse
feature representations, maximizing both overall
and per-label F1, vital for high-recall bibliometric
applications.

13 Discussion

This study demonstrates the effectiveness of com-
bining transformer-based contextual embeddings
with traditional TF-IDF lexical features in a multi-
label classification framework for telescope-paper
linkage, as part of the TRACS shared task (Grezes
et al., 2025). The ensemble approach significantly
improves performance, especially on challenging
and imbalanced label categories such as instrumen-
tation.

Our results provide strong evidence that pre-
trained language models fine-tuned with domain
adaptation techniques capture rich semantic infor-

Figure 4: Confusion matrix illustrating classification
performance across labels.

mation vital for discerning subtle distinctions in as-
trophysical literature. The inclusion of TF-IDF fea-
tures complements this by enhancing interpretabil-
ity and capturing explicit lexical markers not fully
encoded in embeddings.

Error analysis reveals shortcomings related to
novel telescope acronyms and ambiguous refer-
ences, suggesting that future models can benefit
from incorporating external knowledge bases or
domain-specific lexicons. Additionally, misclas-
sifications between instrumentation and mention
indicate the need for improved contextual disam-
biguation.

Despite resource constraints limiting training
epochs, the ensemble approach provides robust
generalization demonstrated by consistent perfor-
mance across validation splits and multiple seeds.
The modularity of the pipeline facilitates integra-
tion of additional data sources and models, support-
ing scalability and adaptability to evolving biblio-
metric needs.

Ethically, our framework underscores the impor-
tance of transparency and fairness in automated
bibliometric curation, ensuring equitable represen-
tation of observatories and mitigating potential bi-
ases induced by publication volume disparities.

13.1 What Worked and What Didn’t

Our system’s strongest performance gains were
achieved by stacking transformer ensembles with
per-label threshold tuning, which effectively ad-
dressed class imbalance and contributed to our
high Macro F1. The inclusion of stratified cross-
validation and meta-classifier ensembles increased
stability, especially for the challenging instrumen-
tation label, and robust preprocessing preserved
critical domain terms.
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Model Macro F1 Science F1 Instrumentation F1 Mention F1
TF-IDF + Logistic Regression (Baseline) 0.50 0.70 0.18 0.66
Optimized TF-IDF + Logistic Regression 0.63 0.74 0.52 0.68
DeBERTa + TF-IDF Stacked Ensemble 0.75 0.77 0.73 0.75
SciBERT with Threshold Tuning + Seed Ensembling 0.74 0.77 0.77 0.76
Best Transformer Multi-Seed Ensemble 0.78 0.79 0.78 0.78

Table 2: Summary of macro and per-label F1 scores across models after comprehensive experiments. The best
results stem from multi-seed ensemble of large transformer models with optimized thresholds.

However, attempts to further boost minority
class performance with simple data augmentation
and outside domain telescope lists yielded marginal
benefit. Classical features such as TF-IDF, while
helpful for lexical classes, provided limited added
value for context-dependent or rare label disam-
biguation. Future iterations may benefit from
domain-specific pretraining on a larger, telescope-
focused corpus and more advanced augmentation
strategies.

14 Conclusions

This paper presents a comprehensive ensemble
learning framework that synergistically combines
state-of-the-art transformer-based models with clas-
sical natural language processing techniques to
advance automated telescope-paper linkage in as-
trophysics. By leveraging multi-seed ensembling
of transformers such as DeBERTa and RoBERTa
alongside robust lexical features from TF-IDF, our
approach achieves state-of-the-art results on the
challenging WASP-2025 shared task, demonstrat-
ing marked improvements over traditional baseline
methods.

The key contributions of this work include the in-
novative integration of diverse model architectures
through a sophisticated stacking ensemble, cou-
pled with sophisticated label-wise threshold tuning
strategies that optimize classification performance
across heavily imbalanced categories. This method-
ology not only improves the accuracy and recall
of telescope-paper relationships but also enhances
interpretability vital for bibliometric curation and
reproducibility auditing in scientific research.

Our extensive experimental evaluation substanti-
ates the benefits of combining contextualized em-
beddings with explicit lexical cues, paving the way
for scalable, reliable, and transparent scientific data
usage linkage. The modular design of the frame-
work also promotes flexible adaptation to other
scientific domains where multi-label, imbalanced
text classification is prevalent.

Looking forward, future enhancements will fo-
cus on domain-adaptive pretraining tailored to as-
tronomical texts, development of explainability and
interpretability modules to build trust with domain
experts, and deployment of real-time scalable in-
ference pipelines. These developments will further
empower researchers, librarians, and data curators
in managing and analyzing the ever-growing body
of scientific literature, thereby fostering open sci-
ence and data transparency in astrophysics and be-
yond.

15 Future Directions

Future work will focus on the following key areas
to strengthen and extend the automated telescope-
paper linkage framework:

* Expanding Training Epochs and Model
Capacity: Increasing training duration and
incorporating larger transformer backbones
promise richer representation learning, poten-
tially capturing subtler text nuances and im-
proving classification accuracy.

* Domain-Adaptive Pretraining: Implement-
ing masked language model pretraining with
archival astronomical texts will refine the mod-
els’ understanding of domain-specific termi-
nology, jargon, and unique telescope-related
constructs, leading to better contextual embed-
dings.

* Synthetic Data Generation for Imbalanced
Classes: Developing generative methods to
create synthetic samples for underrepresented
telescope usage categories, such as instrumen-
tation, will alleviate label imbalance and im-
prove model generalization on rare classes.

» Explainability and Transparency Modules:
Designing interpretable Al approaches will
empower domain experts to verify and trust
automated linkages, enhancing the adoption
and reliability of bibliometric analysis tools.

134



* Cross-Domain Validation and Adaptation:
Extending this methodology to biomedical
and social science bibliometric tasks will test
its robustness and adaptability across diverse
scientific literature ecosystems.

Real-time Scalable Inference Pipelines:
Building efficient monitoring systems capable
of dynamically linking papers and telescopes
in real-time will support up-to-date bibliomet-
ric services aligned with the rapid pace of
scientific publication.
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