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Abstract

Large Language Models (LLMs) are
increasingly used for citation retrieval, yet
their bibliographic outputs often contain
hallucinated or inconsistent metadata. This
paper examines whether structured prompting
improves citation reliability compared with
traditional API-based retrieval. We implement
a three-stage BibTeX-fetching pipeline:
a baseline Crossref resolver, a standard
GPT prompting method, and a customized
verification-guided GPT configuration. Across
heterogeneous reference inputs, we evaluate
retrieval coverage, field completeness, and
metadata accuracy against Crossref ground
truth. Results show that prompting improves
coverage and completeness. Our findings
highlight the importance of prompt design for
building reliable, LLM-driven bibliographic
retrieval systems.

1 Introduction

Large Language Models (LLMs) are increasingly
used to automate scholarly workflows—including
exploration of literature collections, citation
generation, and metadata extraction (Katz
et al., 2024). Yet their fluency often
masks a critical reliability issue: citation
hallucination—fabricating plausible but incorrect
bibliographic records or mismatching publication
metadata—which threatens research transparency
and reproducibility (Ji et al., 2023; Manakul et al.,
2023).

Two complementary lines of work aim to
mitigate these risks. First, Retrieval-Augmented
Generation (RAG) grounds model outputs in
external sources to improve factuality (Lewis et al.,
2020). Second, verification-oriented methods apply
explicit post-hoc checking or self-correction to
reduce unsupported claims, e.g., sampling-based
self-checking, chain-of-verification prompting, and
post-hoc citation-enhanced generation (Manakul

et al., 2023; Dhuliawala et al., 2024; Li et al., 2024).
Surveys further systematize automated correction
strategies for LLMs and the broader landscape of
augmentation and tool use (Pan et al., 2024; Mialon
et al., 2023).

Despite these advances, we find limited
quantitative analysis of how prompt design itself
shapes bibliographic retrieval quality. Prompting
strategies—from open-ended instructions to highly
structured, verification-oriented cues—may affect
a model’s ability to recall correct metadata, resolve
DOIs, and preserve field completeness. This
paper investigates whether structured prompting
of GPT-style models yields more accurate and
complete citation retrieval than an API-only
pipeline. We design a three-stage system
comprising: (1) a baseline Crossref resolver, (2)
a standard GPT prompting method, and (3) a
verification-oriented GPT pipeline. Each variant
processes heterogeneous reference inputs (DOIs,
URLs, titles) within a unified BibTeX-fetching
architecture. Our experiments measure retrieval
coverage, field completeness, metadata accuracy,
and cross-method agreement relative to Crossref
ground truth. Results show that customized
prompting improves metadata precision and
completeness compared to both API-only and
generic LLM configurations, underscoring the
role of verification-aware prompts in reducing
hallucination and improving verifiable scholarly
retrieval.

2 Atlas Pipeline Design

We developed a BibTeX retrieval pipeline that
processes heterogeneous reference inputs using
three distinct methods: a baseline API-only
approach, a standard GPT-based approach, and a
custom GPT metho, Atlas, featuring specialized
prompting. Each pipeline variant supports multiple
input types, including DOIs, URLs, titles, and
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Figure 1: Architecture of the GPT Atlas. The user supplies queries and style requirements; the system
performs query understanding, search & retrieval, citation verification, formatting, and relevance ranking with
a disambiguation/hallucination guard. Outputs include verified references in the requested style, ranked results,
JSON+BibTeX export, and explanations for unverified items.

mixed reference text.

2.1 Input Processing and Classification

The pipeline begins with input normalization and
classification. Each reference string undergoes
Unicode normalization (NFC) and is assigned
to one of five categories: DOI, DOI-URL, URL,
Title, or Unknown. Classification relies on regex-
based pattern matching for DOIs and URLs, while
title classification is guided by word count and
structural heuristics.

2.2 Baseline Pipeline

The baseline approach operates without AI
assistance, relying solely on API-based resolution.
For DOI inputs, the system validates the DOI
format and retrieves BibTeX metadata directly
through the Crossref resolver. URL inputs are
processed by extracting embedded DOIs from
meta tags and page content. Title inputs trigger
a Crossref bibliographic search, followed by
similarity scoring to identify the best match. The
baseline system enforces rate limiting (50 requests
per minute), caching, and exponential backoff retry
logic to ensure robustness.

2.3 GPT Normal Pipeline

The GPT Normal variant employs GPT-4 with a
standardized bibliographic prompt instructing the
model to extract canonical DOIs and generate valid
BibTeX entries.

2.4 GPT Atlas Pipeline
The GPT Atlas variant uses a specialized research
assistant prompt that enforces stricter verification
and source control as shown in figure 1. The
prompt instructs the model to rely exclusively on
authoritative academic databases such as Crossref,
DOI.org, ACM DL, IEEE Xplore, Springer,
Elsevier, Nature, Wiley, AAAI, NeurIPS, ICLR,
ACL Anthology, PubMed, SSRN, OpenAlex,
Semantic Scholar, arXiv, and USENIX. The system
prohibits hallucinated metadata and performs multi-
step verification—parsing bibliographic elements,
searching authoritative sources in priority order,
cross-verifying titles, author lists, and DOI
consistency, and rejecting unreliable sources such
as blogs or predatory journals. The output includes
verified bibliographic data, BibTeX entries, related
references, and structured verification notes, all in
strict JSON format.

To accommodate flexible model responses, the
parser supports both top-level and array-based
JSON fields, direct extraction from raw text, and
BibTeX pattern matching for embedded entries.
This design ensures resilience to model variability
while maintaining consistent data structure.

2.5 Common Pipeline Features
All variants share a unified architecture supporting
checkpoint management (with automatic
resumption every ten records), DOI-based
deduplication favoring higher-confidence entries,
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and comprehensive exception handling. Structured
JSON logging is used for debugging and analysis,
with configurable rate limiting to comply with
API usage constraints. The final outputs include
per-variant BibTeX files, a consolidated CSV
summary comparing all methods, and detailed logs
for error tracing and performance evaluation.

2.6 Conflict Resolution
The conflict resolution mechanism of the system
primarily operates through LLM-based decision-
making. Each variant (GPT Normal and GPT
Atlas) relies on the LLM’s internal reasoning to
reconcile conflicting information from multiple
sources. This process follows predefined source
preferences, Publisher DOI > Crossref > arXiv,
and returns “Couldn’t verify” when the LLM is
unable to locate relevant information. For each
reference input, if multiple results are generated,
only the first entry is retained, with alternative
results discarded. Systematic conflict resolution
also occurs during deduplication: when the same
reference is queried multiple times, the system
identifies results sharing the same DOI and
retains only the highest-confidence entry, silently
discarding lower-confidence duplicates.

3 Experiments

We evaluated three approaches for BibTeX
metadata generation. The Baseline method relied
on traditional Crossref API queries without LLM
assistance. The GPT Normal variant employed
standard LLM prompting strategies to extract
and format metadata. The GPT Atlas approach
applied specialized prompt engineering and post-
processing routines to improve consistency in
academic reference formatting.

3.1 Dataset Construction
We manually constructed the evaluation dataset.
We took the references from a survey paper
we are currently working on, which includes
approximately 200 citations. In addition, we used
AI tools to search for additional references relevant
to the survey’s content. As a result, the dataset
contains some entries that refer to the same paper
with incomplete information or invalid references.

3.2 Metrics
We assessed each approach along four quantitative
metrics: retrieval coverage, field completeness,
metadata accuracy, and cross-method agreement.

Retrieval coverage measures the number of
successfully retrieved entries, while field
completeness quantifies the inclusion of essential
fields such as author, title, year, DOI, venue, and
pages. Metadata accuracy captures the proportion
of correctly matched entries compared with
ground truth data from Crossref, and cross-method
agreement evaluates DOI overlap among methods.

Field Completeness Scoring Design We
compute the field completeness using a weighted
sum, as shown in Equation 1. The completeness
score adopts a three-tier weighted system (0.0–1.0)
aligned with citation standards and usability.
Required fields (author, title, year) account for
40% (around 13.3% each) as the minimal viable
citation. Important fields (DOI, venue, pages)
add another 40%: DOI matches the required
field weight (13.3%) for its role in verification,
venue (journal or book title) shares a combined
13.4%, and pages receive 13.3% for citation
precision. Optional fields (volume, publisher,
URL) contribute the remaining 20% (around
6.7% each), reflecting their utility but limited
necessity. This 40, 40, 20 structure ensures entries
with required fields reach 40% (acceptable), those
with required and important fields 80% (good),
and fully complete entries 100% (excellent),
emphasizing verifiable over redundant metadata.

Completeness = 0.133(author) + 0.133(title)

+ 0.134(year) + 0.133(DOI)

+ 0.067(venue) + 0.133(pages)

+ 0.067(volume) + 0.067(publisher)

+ 0.066(URL)
(1)

Reporting Unresolved Fields. When different
sources produce conflicting values for a field, we
mark the field as unresolved if top candidates are
within a small margin. We report completeness
both (i) counting unresolved fields as missing and
(ii) after selecting the highest-scoring candidate
using our consensus policy (Section 2.6). The gap
quantifies the impact of conflicts on coverage.

3.3 Overall Performance

Table 1 summarizes the overall performance of
each method. GPT Normal achieved the highest
retrieval coverage and completeness, while the
baseline method yielded the most distinct DOIs.
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Table 1: Overall Performance Comparison

Metric Baseline GPT Normal GPT Atlas

Total Entries 18 21 19
Unique DOIs 18 17 16
Avg. Completeness 0.623 0.667 0.653
Entries w/o DOI 0 0 1

Table 2: DOI Overlap Analysis Across All Variants with
24 Unique DOIs Retrieved

Comparison Overlapping DOIs Agreement Rate

All three methods 10 41.7%
Baseline ∩ GPT Normal 11 45.8%
Baseline ∩ GPT Atlas 10 41.7%
GPT Normal ∩ GPT Atlas 16 66.7%

DOI Overlap Table 2 presents DOI overlap
across methods. Only 41.7% of DOIs appeared
in all three, suggesting distinct retrieval strategies.
GPT Normal and GPT Atlas agreed most closely
(66.7%).

Field Completeness Table 3 reports field
completeness distributions. GPT Normal
demonstrated near-perfect consistency with a
narrow range (0.666–0.667).

Essential Fields As shown in Table 4, the
baseline method reached perfect coverage for year
and DOI, while GPT Atlas performed best for
author and title.

Ground Truth Accuracy When compared with
Crossref ground truth (Table 5), GPT Atlas reached
the highest accuracy (83.3%), followed by GPT
Normal (46.2%), while the baseline produced no
exact matches.

Field-Level Comparison Detailed field match
rates are provided in Table 6. Title and year fields
showed high alignment, whereas author formatting
and pagination differed substantially.

Discussion GPT Normal retrieved more entries
than the baseline, showing that LLMs can identify
additional relevant records, though at the expense
of precision. A clear trade-off emerged between
coverage and accuracy: GPT Normal maximized
completeness, whereas GPT Atlas prioritized
precision. The modest cross-method agreement
(41.7%) highlights the variability of metadata
parsing strategies, underscoring the need for
consensus-based or human-in-the-loop validation.
Frequent discrepancies involved author name

Table 3: Field Completeness Distribution

Method Min Max Avg.

Baseline 0.400 0.667 0.623
GPT Normal 0.666 0.667 0.667
GPT Atlas 0.466 0.667 0.653

Table 4: Essential Field Presence (%)

Field Baseline GPT Normal GPT Atlas

Author 83.3 81.0 89.5
Title 83.3 81.0 89.5
Year 100.0 81.0 89.5
DOI 100.0 81.0 84.2

variants (83.3%), inconsistent page ranges (70.0%),
and heterogeneous venue naming (6.7%).

4 Related Work

Traditional bibliographic retrieval relies on
structured databases and reference management
tools. Services like Crossref, Google Scholar, and
Semantic Scholar provide metadata given paper
titles or identifiers. The Crossref REST API returns
authoritative records via DOI queries, ensuring
high precision but requiring accurate identifiers
or complete titles. Academic search engines (e.g.,
Google Scholar) can find BibTEX by title matching,
offering broader coverage but often yielding
incomplete or non-standard metadata (missing
fields or inconsistent formatting). Reference
managers such as Zotero, JabRef, and Paperpile
integrate multiple sources (Crossref, publisher
APIs, web crawlers) to automate citation collection;
this streamlines workflows but still may require
manual correction for ambiguities or missing
fields. Even official databases exhibit quality
issues, and studies have explored cross-database
reconciliation to improve metadata consistency and
trustworthiness (Kaiser et al., 2021; Gonçalves
et al., 2019).

Recently, large language models (LLMs) have
been applied to bibliographic retrieval from
minimal input. Naively prompting an LLM (e.g.,
GPT-4) to produce a citation can yield a plausible
BibTEX entry with filled-in fields, but often at
the cost of accuracy—models tend to hallucinate
incorrect metadata or even entirely fake references
(Chen and Chen, 2023; Agrawal et al., 2024;
Zuccon et al., 2023). To mitigate this, verification-
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Table 5: Ground Truth Accuracy Comparison

Method Total DOIs Accurate Matches Accuracy (%)

Baseline 18 0 0.0
GPT Normal 13 6 46.2
GPT Atlas 12 10 83.3

Table 6: Field-by-Field Match Rates (%)

Field Baseline/GPT-N Baseline/GPT-A GPT-N/GPT-A

Author (Exact) 18.2 0.0 37.5
Author (Count) 81.8 90.0 62.5
Title (Exact) 100.0 90.0 93.8
Year 90.9 90.0 87.5
Venue (Exact) 100.0 90.0 68.8
Pages 27.3 30.0 56.2
Volume 90.9 90.0 93.8

augmented generation strategies combine LLMs
with external knowledge and consistency checks.
For example, retrieval-augmented generation
integrates database queries into the output (Lewis
et al., 2020), and chain-of-verification prompting
explicitly instructs the model to cross-check each
field or source (Dhuliawala et al., 2024). Our
approach, the Atlas pipeline, employs structured
GPT prompts constrained to authoritative scholarly
sources (Crossref, publisher websites, etc.) along
with multi-step validation; this approach yields
more accurate and complete metadata at a slight
cost to coverage. Similarly, domain-specialized
LLMs and hybrid retrieval tools have been
proposed to boost fidelity (Taylor et al., 2022; Gao
et al., 2023; Lála et al., 2023). Overall, LLM-
driven methods can achieve higher recall and more
complete entries than API-only retrieval, but they
require careful prompt design and post-processing
verification to ensure high-quality, trustworthy
citations.

5 Conclusion

This study evaluates large language models
for bibliographic retrieval, focusing on how
prompting strategies affect citation accuracy
and completeness. By comparing a baseline
API lookup, a standard GPT prompt, and a
customized verification-guided prompt, we show
that prompt design significantly influences LLM
performance. The customized configuration yields
higher verified accuracy but slightly reduced
coverage, revealing a precision–recall trade-off in
citation generation. These results highlight the
importance of explicit verification reasoning for
trustworthy scholarly assistance. Future work will

extend this comparison to different LLM families
and explore automatic prompt optimization for
citation reliability.

6 Limitations

Our ground-truth comparison was limited to
Crossref within selected domains. We subjectively
observed that the GPT-Atlas variant indicates that
incorporating a verification process could further
enhance the quality of literature searches, but this
has not yet been tested. Large-scale reference
retrieval also requires accounts with high daily
API rate limits, which may entail financial costs.
Finally, the model’s retrieval behavior appears
stochastic; while manual reattempts produced
consistent success rates, formally quantifying the
impact of this stochasticity remains a challenging
problem.
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