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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage processing tasks, yet they often exhibit
cognitive inertia, rigidly adhering to ingrained
training conventions even when prompted to
deviate. This paper investigates the efficacy of
structured output techniques in prompt engi-
neering to mitigate such inertia and improve
instruction-following on counterintuitive tasks.
We argue that using the structured input and
output with our framework yields significant
performance gains, studied on the Inversed IFE-
val dataset across varying prompts and domains.
This work contributes to the growing field of
prompt engineering research by demonstrating
structured outputs as a robust method for en-
hancing LLM logical reasoning.

1 Introduction

The recent advancements of Large Language Mod-
els (LLMs) have revolutionized artificial intelli-
gence, enabling sophisticated applications in nat-
ural language understanding, generation, and rea-
soning. However, a persistent challenge is their
tendency toward cognitive inertia, a phenomenon
where models persist in following learned patterns
from pre-training and fine-tuning, resisting devia-
tions even under explicit instructions. This inertia
manifests in scenarios requiring unlearning or coun-
terintuitive behavior, such as generating flawed out-
puts intentionally or ignoring standard formatting
conventions. The logic twist inside might be easy
for elementary school students, but is proven diffi-
cult for LLM models, a factor critical in scientific
reasoning.

Prompt engineering emerges as a non-invasive
method to guide LLMs without retraining, encom-
passing techniques like zero-shot (Kojima et al.,
2022; Li, 2023), few-shot (Dang et al., 2022), and
chain-of-thought (CoT) prompting (Lyu et al.,
2023; Zhang et al., 2024). Among these, structured

outputs, which enforce responses in predefined for-
mats such as JSON, XML or phased structures,
offer verifiability and consistency, while reducing
hallucinations and improving reliability. Recent
advancements, including OpenAI’s Structured Out-
puts feature, underscore their practical utility in
production environments.

To evaluate these techniques on counterintuitive
tasks, we employ the Inverse IFEval dataset (Zhang
et al., 2025), an extension of the IFEval benchmark
that inverts verifiable instructions to probe unlearn-
ing capabilities. The dataset includes challenges
like Question Correction (answering incorrectly on
purpose), Intentional Textual Flaws (introducing
errors), Mid-turn Instruction Modification, and oth-
ers, spanning diverse domains and languages.

Our contributions are: 1. We develop a frame-
work that utilizes structured outputs to improve
LLM responses to counterintuitive instructions; 2.
We evaluate three structured prompts with vary-
ing output formats and determine that the list-
structured approach performs best; 3. We inves-
tigate variants of the list-structured method and
study the performance impact of explicit prioriti-
zation; 4. We test our approach on the Inverse
IFEval (Zhang et al., 2025) benchmark and demon-
strate that our list-structured prompting framework
largely outperforms baselines, providing insights
for more adaptable and logical AI systems.

2 Related Works

2.1 Prompt Engineering Techniques

Prompt engineering has evolved from basic input
crafting to sophisticated strategies for eliciting opti-
mal LLM responses. Surveys categorize techniques
into zero/few-shot prompting (Dang et al., 2022;
Kojima et al., 2022; Li, 2023), CoT (Lyu et al.,
2023; Zhang et al., 2024), ToT (Yao et al., 2023;
Mo and Xin, 2024; Ranaldi et al., 2024), and self-
consistency methods (Zhou et al., 2025; Tauben-
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feld et al., 2025; Nowak, 2025). CoT, for instance,
encourages step-by-step reasoning, while ToT ex-
plores multiple paths for complex problem-solving.
Structured prompting extends these by imposing
formats, such as role-playing or output schemas, to
enhance control and parseability.

2.2 Cognitive Inertia and Unlearning in
LLMs

LLMs exhibit human-like cognitive effects, includ-
ing priming, anchoring (Lou and Sun, 2024), and
irrational biases (Echterhoff et al., 2024; Tang and
Kejriwal, 2024) in decision-making tasks. Cog-
nitive inertia, a form of resistance to change, is
particularly evident in instruction-following scenar-
ios where models default to "helpful" behaviors
despite contrary prompts. LLMs exhibit cogni-
tive inertia, reflecting a persistent adherence to pat-
terns learned during self-supervised pre-training.
(Resnik, 2025) observes that biases in LLMs are
not merely a result of training data, but are intrinsi-
cally embedded within the model architecture and
optimization objectives. Optimizing for next-token
prediction causes models to internalize statistical
regularities, including societal biases, without dis-
tinguishing between high-probability patterns and
harmful conventions. Humans, in contrast, can
flexibly adjust behavior via metacognition, reason-
ing, and contextual judgment, enabling them to
follow counterintuitive instructions. LLMs, lack-
ing autonomous reasoning or self-correction, strug-
gle to overcome entrenched patterns even when
fine-tuned or aligned through RLHF. Cognitive in-
ertia thus arises from the interaction of pre-training
habits, modeling constraints, and limited post-hoc
flexibility, leading models to reproduce established
patterns rather than adapt to out-of-distribution
tasks. One potential approach to mitigate this issue
is to reconstitute LLMs’ internal representations as
structured representations, encoding entities, rela-
tions, logical structure, and distinctions between
meaning, normativity, and factuality, thereby en-
hancing the model’s flexibility in adapting to novel
or counterintuitive instructions.

Unlearning benchmarks like TOFU, MUSE,
WMDP, and RWKU assess models’ ability to forget
specific knowledge while retaining general capabil-
ities. However, critiques highlight flaws in these
benchmarks, such as over-optimistic evaluations
due to separate testing of forget/retain queries.

2.3 Benchmarks for Instruction Following
Inverse IFEval (Zhang et al., 2025) is a new bench-
mark for testing counterintuitive adherence. It in-
verts the paradigm in IFEval (Zhou et al., 2023) that
evaluates verifiable instructions. Constructed via
human-in-the-loop processes, the inverse IFEval
reveals that larger, instruction-tuned models para-
doxically struggle more with deviations. Gaps per-
sist in integrating structured prompting into such
benchmarks, which our work addresses by propos-
ing a verifiable framework.

3 Methodology

Our methodology centers on developing and test-
ing a structured output framework designed to en-
hance LLMs’ ability to follow counterintuitive in-
structions from the Inverse IFEval dataset. This
framework decomposes the instruction-following
process into four explicit phases: Instruction Pars-
ing, Requirement Checklist, Structured Response
and Self-Check. We explore multiple variants of
this framework to identify the most effective imple-
mentation.

3.1 Dataset and Task Description
We evaluate our approach on the Inverse IFEval
dataset, a challenging benchmark with 1012 high-
quality samples designed to test LLMs’ ability to
follow counterintuitive instructions that contradict
their training patterns. The dataset covers eight dis-
tinct instruction types: (1) Instructional Induction,
(2) Mid-turn Instruction Modification, (3) Counter-
factual Answering, (4) Counter-Conventional For-
matting, (5) Question Correction, (6) Deliberately
Incorrect Answers, (7) Intentional Textual Flaws,
and (8) Code without Comments. These types span
diverse domains and require models to override in-
grained behaviors such as being helpful, following
conventions, and producing polished outputs.

The dataset includes both English and Chinese
subsets, enabling cross-lingual evaluation. For our
experiments, we use stratified sampling to select
40-48 representative samples, ensuring balanced
coverage across all eight instruction types. This
sample size balances computational feasibility with
statistical reliability while maintaining type diver-
sity for robust evaluation.
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3.2 Variants on Structured Approach
Before responding to this instruction, first analyze and

structure it into clear components:

**Original Instruction**: {instruction}

**Step 1 - Parse the Instruction:**
Break down the instruction into these components:
- **Condition**: Any context, assumptions, or conditional

statements
- **Questions**: The core tasks or questions being asked
- **Requirements**: Specific formatting, style, or content

constraints
- **Distribution**: Length, structure, or organizational

requirements

**Step 2 - Structured Analysis:**
Condition: [Extract any context or conditions]
Questions: [Identify the main task]
Requirements: [List all specific constraints]
Distribution: [Note any length/structure requirements]

**Step 3 - Systematic Response:**
Now provide your response, ensuring you address each

component systematically:

Structured Prompt 1: Basic Structured Approach

We investigate varying structured prompts and
adapt them to counterintuitive instructions. We
begin with three initial variants: (1) a basic struc-
tured approach, Prompt 1, which applies the four
phases in a simple textual format without addi-
tional enhancements, (2) JSON-structured prompt-
ing, Prompt 2, which organizes the components
into machine-readable JSON fields (e.g., {“con-
text”: “...”, “tasks”: “...”}) for improved parseabil-
ity and verifiability, and (3) checklist-based prompt-
ing, Prompt 3, which uses enumerated lists to break
down requirements, promoting systematic adher-
ence. These variants allow us to assess the impact
of different structuring mechanisms on model per-
formance.

For the checklist variant, we further investigate
two sub-types: an equal checklist Prompt 3, where
all requirements are treated uniformly without ex-
plicit prioritization, and a priority checklist Prompt
3, where items are categorized as CRITICAL (es-
sential for compliance), IMPORTANT (affecting
quality), or SECONDARY (enhancing complete-
ness). This prioritization is intended to guide the
model in focusing on high-impact elements first,
potentially reducing cognitive inertia by emphasiz-
ing core constraints.
Parse this instruction into structured components, then

respond:

**Instruction**: {instruction}

**Step 1: JSON Structure Analysis**
Parse the instruction into this JSON format:
```json
{{

"context": "any background or situational information",
"tasks": "the core tasks or questions",
"format_requirements": ["list", "of", "formatting",

"constraints"],

"content_requirements": ["list", "of", "content",
"constraints"],

"length_requirements": "any length or size constraints",
"style_requirements": "any tone or style requirements"

}}
```

**Step 2: Component-by-Component Response**
Now respond to the instruction, explicitly addressing each

JSON component:

**Context addressed**: [How you handle the context]
**Task completion**: [Your core response]
**Format compliance**: [How you meet format requirements]
**Content compliance**: [How you meet content requirements]
**Length compliance**: [How you meet length requirements]
**Style compliance**: [How you meet style requirements]

**Final Response**:

Structured Prompt 2: JSON-Structured Prompting

You will respond to this instruction using a systematic
parsing approach:

**Instruction to Analyze**: {instruction}

**Phase 1: Instruction Parsing**
Parse the instruction and identify:
- Context/Conditions: What situation or context is

established?
- Core Tasks: What are the main things being asked?
- Format Requirements: Any specific formatting constraints?
- Content Requirements: What must be included/excluded?
- Length/Structure: Any size or organizational requirements?

**Phase 2: Requirement Checklist**
List each requirement as a checkable item (with priority):
- Requirement 1: [First constraint]
- Requirement 2: [Second constraint]
- Requirement 3: [Third constraint]
[Add more as needed]

**Phase 3: Structured Response**
Provide your response while explicitly addressing each

requirement:

[Your response here]

**Phase 4: Self-Check**
Verify your response against each requirement (with priority):
- Requirement 1: Y/N [Brief check]
- Requirement 2: Y/N [Brief check]
- Requirement 3: Y/N [Brief check]

Structured Prompt 3: Checklist-Based Prompting

The baseline condition presents the original
Inverse IFEval instructions directly to the mod-
els without any modifications, and serves as
a control to measure the added value of our
structured approaches. We evaluate these meth-
ods across five diverse LLMs: DeepSeek-Chat,
Qwen, Gemini-2.5 Pro, o1-preview, and Claude-
3.5-Sonnet, selected for their varying sizes and
architectures to ensure generalizability. All
models are accessed via the OpenRouter API
with consistent generation parameters (temper-
ature=1.0, max_tokens=4096, top_p=1.0, fre-
quency_penalty=0, presence_penalty=0) to facili-
tate fair comparisons.
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Figure 1: Performance breakdown by instruction type for five models using structured checklist approach. Each
radar chart displays accuracy percentages across eight instruction types: II (Instructional Induction), MIM (Mid-
turn Instruction Modification), CA (Counterfactual Answering), CCF (Counter-Conventional Formatting), QC
(Question Correction), DIA (Deliberately Incorrect Answers), ITF (Intentional Textual Flaws), and CC (Code
without Comments).

4 Experiments

Our experiments follow a sequential design to itera-
tively refine and validate the structured framework.
We first test the three initial variants (basic, JSON,
and checklist) on a subset of 32 samples from the
Inverse IFEval dataset across the selected models.

4.1 Experiment Setup

Evaluation employs an LLM-as-a-Judge paradigm
using Claude-4.5-Sonnet (temperature=0) for im-
partial, binary scoring (1 for semantic match with
the reference answer, 0 otherwise). We use a subset
of 32 samples for initial variant comparisons and
the full set for final assessments. Statistical analy-
sis includes paired t-tests (α = 0.05) and Cohen’s
d for effect sizes, ensuring robust interpretation of
results.

The performance comparison, summarized in
Table 1, reveals that the checklist-based approach
consistently outperforms the basic and JSON vari-
ants, achieving higher average accuracy. This sug-
gests that the enumerated, human-readable format
of checklists better mitigates cognitive inertia by
enforcing explicit requirement tracking.

Method Accuracy (%)

Basic Structure 43.8
JSON Structure 54.2
Checklist Structure (Equal) 60.4

Table 1: Comparison Between Varying Output Formats
on DeepSeek V3.1

Specifically, the checklist method applies equal
prioritization for better accuracy. As revealed in
Table 2, we compare the equal checklist against
a priority checklist under the same experimental
setup and found that prioritization degrades perfor-
mance. This is contrary to our expectations and
may indicate that explicit hierarchies introduce un-

necessary complexity, causing models to overfocus
on specific categories and overlook holistic compli-
ance.

Model Priority Equal

Claude 4 Sonnet 68.8 77.1
Gemini 2.5 Pro 67.5 80.0

Table 2: Impact of Priority System on Structured
Prompting Performance

To better understand the performance character-
istics across different instruction types, we analyze
the breakdown of results for our equal checklist
approach across the eight categories in the Inverse
IFEval dataset. Figure 1 presents radar charts show-
ing how different models handle various counterin-
tuitive instruction types.

The results reveal that all models struggle signif-
icantly with “Question Correction”, highlighting
systematic challenges in this category across the
board. While O3 Pro performs strongly across
most categories, demonstrating high accuracies
such as 87.5% in “Instructional Induction” and
100% in “Code without Comments”, Claude 4 Son-
net excels in “Counterfactual Answering” (83.3%)
and “Counter-Conventional Formatting” (80.5%),
though its performance drops to 44.4% in “Ques-
tion Correction”. Gemini 2.5 Pro demonstrates
high accuracy in “Deliberately Incorrect Answers”
(90.3%), but struggles notably with “Code with-
out Comments” (45.7%) and “Question Correction”
(55.6%). Meanwhile, both DeepSeek v3.1 and
Qwen 3-32B consistently face challenges, particu-
larly in “Question Correction” (35.6% for both) and
“Intentional Textual Flaws” (45.3% for DeepSeek
v3.1 and 27.9% for Qwen 3-32B), underscoring
common areas of difficulty among these models.

The eight categories are meticulously designed
to probe nuanced aspects of instruction comprehen-
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sion and execution, ranging from straightforward
adherence to complex inferential tasks. Figure 2
presents stripe charts, where each model’s perfor-
mance is denoted by a unique marker, allowing
for an immediate and intuitive comparison of their
respective accuracy scores on each task category.

Figure 2: Comparison of Model Performance Across
Eight Instruction Categories: II, MIM, CA, CCF, QC,
DIA, ITF, CC

Finally, we benchmark our best variant, the equal
checklist, against the baseline across all models
and the full Inverse IFEval evaluation set. Fig-
ure 3 demonstrates substantial improvements, with
statistically significant gains p < 0.05 and large
effect sizes, confirming that structured prompting
effectively enhances adaptability on counterintu-
itive tasks.

Figure 3: Comparison of Baseline vs. Our Structured
Checklist Approach Performance. The chart shows im-
provements for all models: Gemini 2.5 Pro (+1.58pp),
Claude 4 Sonnet (+4.18pp), O3 Pro (+7.64pp), Qwen
3-32B (+6.12pp) and DeepSeek V3.1 (+20.72pp).

5 Conclusion

This study showcases the power of structured out-
put techniques in prompt engineering to boost
LLMs’ handling of counterintuitive instructions
on the Inverse IFEval dataset. Our zero-shot
framework—decomposing tasks into instruction
parsing, checklists, structured responses, and self-

checks—effectively counters cognitive inertia with-
out any fine-tuning or training data. The equal
checklist variant delivers a 10.06% average accu-
racy gain over baselines across models, with signif-
icant statistical improvements p < 0.05 and large
effect sizes, underscoring zero-shot prompting’s
role in enhancing adaptability.

Our zero-shot approach advances AI robustness
by providing a lightweight, verifiable method that
outperforms standard prompting, ideal for safety-
critical scenarios like ethical decisions or dynamic
settings. Future work could extend this to multi-
modal domains or combine it with reinforcement
learning for amplified flexibility.

6 Limitations

Despite these advancements, our work presents sev-
eral limitations that warrant future consideration.

6.1 Resource and Scope Constraints

First, due to the substantial computational cost as-
sociated with proprietary models, particularly O3
Pro, we were unable to run the full benchmark on
this specific model. Consequently, the evaluation
for this model relies on a smaller sample size, while
all other models were tested on the complete set of
500 samples.

6.2 Evaluation Methodology Limitations

Second, our reliance on the LLM-as-a-Judge
paradigm introduces potential biases. While this
methodology (using Claude-4.5-Sonnet) is recog-
nized for its scalability and inter-rater consistency,
the evaluation outcomes may inherently inherit the
biases or stylistic preferences of the judge model
itself. Furthermore, the use of binary scoring (cor-
rect/incorrect) overlooks instances of partial cor-
rectness or nuanced, but incomplete, responses,
which limits the granularity of our error analysis.

6.3 Future Work

These constraints suggest clear avenues for future
refinement. Potential directions include: (1) inte-
grating a hybrid human-AI evaluation framework
to validate and cross-reference the automated as-
sessment, and (2) pursuing full benchmark testing
across all models as resource constraints are allevi-
ated.
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