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Abstract

Scientific datasets are crucial for evaluating sci-
entific research, and their number is increas-
ing rapidly. Most scientific dataset recom-
mendation systems use Information Retrieval
(IR) methods that model semantics while over-
looking interactions. Graph Neural Networks
(GNNs) excel at handling interactions between
entities but often overlook textual content, lim-
iting their ability to generalise to unseen nodes.
We propose TeG-DRec, a framework for sci-
entific dataset recommendation that integrates
GNNs and textual content via a subgraph gen-
eration module to ensure correct propagation
throughout the model, enabling handling of
unseen data. Experimental results on the
dataset recommendation’s dataset show that
our method outperformed the baselines for text-
based IR and graph-based recommendation sys-
tems. Our source code is available at https:
//github.com/Maqif14/TeG-DRec.git

1 Introduction

Scientific datasets are essential for evaluating sci-
entific research, as it is crucial to examine and
verify their behaviour to achieve optimal perfor-
mance in real-world scenarios (Ozgobek et al.,
2014; Fahrudin and Wijaya, 2024). When a dataset
is tailored to the specific context of the learning
environment, it can significantly improve system
performance (Verbert et al., 2011). For exam-
ple, the Common Crawl] dataset significantly con-
tributed to the efficacy of GPT-3 as a formidable
Large Language Model (LLM) upon its release
in 2020 (Brown et al., 2020). The number of
datasets increases annually by hundreds each year
(Viswanathan et al., 2023). The growing number
of datasets complicates manual search for the opti-
mal dataset, occasionally leading to poor selections
(Patankar et al., 2023; Viswanathan et al., 2023;
Qin et al., 2024). Consequently, the need for a
dataset recommender is greater than ever to en-
hance research efficiency.

Several studies have explored scientific dataset
recommendation systems using text-based IR meth-
ods (Wang et al., 2021; Firber and Leisinger, 2021;
Keller and Munz, 2022; Yadav et al., 2023; Zhang
and Ashraf, 2023), with some extending it using
neural bi-encoders to capture richer contextual se-
mantics (Viswanathan et al., 2023). These ap-
proaches typically compute lexical or embedding-
based similarity between query descriptions and
candidate datasets. Despite their scalability, there
is no direct interaction between the query and the
document, as they are encoded independently dur-
ing embedding generation, resulting in a loss of
structural relationships among them (Humeau et al.,
2019; Tran et al., 2024).

Recent advances in GNNs on the scientific
dataset recommendation task offer a promising
approach to solve the issue (Altaf et al., 2019;
Qayyum et al., 2025). However, these methods
generally lack inductive capability, which is es-
sential for handling unseen nodes. Such inductive
ability is crucial in scientific dataset recommen-
dation, where the number of papers and datasets
continues to grow rapidly. Aside from that, most
GNNs-based approaches tend to overlook the rich
textual content associated with these nodes, result-
ing in incomplete semantic representations.

Several attempts have been made to address the
unseen node using an inductive GNNs approach in
the field of recommendation systems (Teru et al.,
2020; Xiao et al., 2023), with the ability to cat-
egorise labels that did not exist during training.
Inductive GNNs have not yet been applied to the
scientific dataset recommendation task, although
we believe that leveraging them could offer signifi-
cant benefits.

To address this challenge, we propose TeG-
DRec (Textual Graph Dataset Recommendation),
a framework that integrates textual content with
inductive GNNs. TeG-DRec is designed to handle
realistic scenarios where new scientific papers or
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Figure 1: Research problem where the scientific papers
in testing did not appear in the training set (unseen paper
nodes in blue colour) connected with the label dataset
that does not have any existing link with scientific papers
during training (unseen dataset nodes in red colour)

scientific datasets are continuously introduced with-
out explicit links to existing entities. As illustrated
in Figure 1, unseen nodes refer to the nodes that do
not appear during training or nodes that do not have
any connection with any nodes during training.

Aside from that, TeG-DRec introduces a sub-
graph generation module that jointly enables in-
ductive learning, contrastive learning, and margin-
based optimisation within a cohesive training pro-
cess. By combining the strengths of both textual
and structural modalities, TeG-DRec effectively
captures semantic and relational dependencies, of-
fering robust inductive generalisation and improved
scientific dataset recommendation performance.

The recommendation system works by taking a
set of input queries, including the query, keyword
query, and abstract. These inputs are then passed to
TeG-DRec for the recommendation process, where
the model predicts and outputs the Top-K datasets
that best match the given inputs. This process is
illustrated in Figure 2. The dataset used in our
experiment consists of two node types: scientific
papers and datasets, where the datasets serve as the
target items to be recommended for each paper.

We compare TeG-DRec with text-based IR
methods and a graph-based baseline. The text-
based IR methods follow a neural bi-encoder frame-
work (Ma et al., 2025), leveraging recent embed-
ding models, which include SciBERT (Beltagy
et al., 2019), Contriever (Lei et al., 2023), BGE-
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Figure 2: Overview of the scientific dataset recommen-
dation process in TeG-DRec, from the input to output

M3 (Chen et al., 2024), and ES (Wang et al., 2024)
that provide strong semantic representations for
scientific and general-domain retrieval tasks. For
graph-based baselines, we compare TeG-DRec
against GraphSAGE (Hamilton et al., 2017), Re-
lational Graph Convolutional Networks (R-GCN)
(Schlichtkrull et al., 2017) and Graph Attention
Networks (GAT) (Velickovi¢ et al., 2018), which
rely on the structural relations in the graph with-
out incorporating the textual components of TeG-
DRec. TeG-DRec consistently outperforms these
baselines across all evaluation metrics, demonstrat-
ing its ability to capture both semantic and struc-
tural relationships effectively. In summary, this
work makes three key contributions:

1. We propose TeG-DRec, a framework for sci-
entific dataset recommendation that supports
inductive recommendation for newly pub-
lished scientific papers and scientific datasets,
effectively handling unseen nodes without re-
training.

2. We introduce a unified framework that inte-
grates inductive GNN's with textual representa-
tions to jointly capture structural and semantic
information.
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Figure 3: Overview of TeG-DRec, which consists of four main modules: (A) Embedding and Graph Initialisation,
(B) Subgraph Generation, (C) Graph Representation Learning, and (D) Inference

3. We conduct extensive experiments on a
publicly available benchmark and demon-
strate that TeG-DRec consistently outper-
forms strong text-based IR and graph-based
baselines.

2 Related Work

The techniques used to create the scientific dataset
recommendation problem can be categorised into
two groups: text-based IR and graph-based meth-
ods.

Text-Based IR Text-based IR for scientific dataset
recommendation can be categorised into traditional
methods and neural bi-encoder methods. The tradi-
tional method comprises BM25 (Keller and Munz,
2022), which ranks the dataset based on term-
frequency matching, and a SciBERT-based text
classification model (Beltagy et al., 2019; Firber
and Leisinger, 2021). More recently, the Neural
Bi-Encoder method proposed by Viswanathan et al.
(2023) adopts a neural bi-encoder with SCciBERT
embeddings to encode both scientific papers and
datasets. However, their model encodes scientific
papers and datasets separately, which ignores their
structural relationships.

Graph-Based Method The graph-based method
can leverage the structural relationships between
scientific papers and datasets. These structural re-
lationships refer to the connections between sci-

entific papers and the datasets they use, or they
can be citation network among papers, datasets,
and other related papers. Altaf et al. (2019) pro-
posed a heterogeneous variational graph autoen-
coder (HVGAE) that integrates a citation network
with paper—dataset associations to generate more
informative representations for recommendation.
Similarly, Qayyum et al. (2025) utilised GNNs en-
riched with textual features to recommend relevant
datasets. However, their method can only handle
transductive graphs, which require the nodes to be
present during training. This limits the usage of
the model in real-world situations where the nodes
are constantly added. To address this limitation,
several inductive graph learning frameworks have
been proposed for recommendation systems, in-
cluding GraphSAGE (Hamilton et al., 2017) and
Graph Attention Networks (GAT) (Velickovié et al.,
2018), which enable improved generalisation via
neighbourhood aggregation mechanisms. Addi-
tionally, Relational Graph Convolutional Networks
(R-GCN) (Schlichtkrull et al., 2017), although not
inherently inductive, offer a promising solution by
effectively handling multiple edge types within a
graph.
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3 TeG-DRec Framework

3.1 Overview

TeG-DRec (Textual Graph-Dataset
Recommendation) integrates textual content
with graph structures, enabling the model to
generalise toward unseen nodes by leveraging
both the semantic properties and the structural
information of the nodes. To achieve this, four
main modules have been designed to address
the specific requirements: (A) Embedding and
Initialisation, (B) Subgraph Generation, (C) Graph
Representation Learning, and (D) Inference,
as depicted in Figure 3. In particular, the (B)
Subgraph Generation module ensures that the
textual content and graph structures are correctly
aligned and passed through the inductive graph
and loss components.

3.2 Embedding and Graph Initialisation

Embedding and Graph Initialisation module is re-
sponsible for encoding the textual information into
embeddings and constructing the corresponding
graph connections. This module ensures that the
rich textual content is effectively integrated into the
graph structure.

The dataset used in our experiments comprises
descriptions of scientific papers, datasets, and the
associations indicating which datasets are used by
each paper. This relationship refers to the con-
nection between the scientific papers, their corre-
sponding positive datasets, and their corresponding
negative datasets. A positive dataset refers to the
dataset actually used by a given scientific paper,
while a negative dataset represents a hard negative
sample that is not used by the scientific paper. This
is further illustrated in Figure 4.

Paper ID: 1 Title: Predicting Visual Exemplars of
Unseen Classes for Zero-Shot
Learning

Positive Dataset

ImageNet

Negative Dataset

LAD Tasty Videos

QA-SRL (cloy4

decaNLP OPUS-100

VRD

Figure 4: Example of positive and negative dataset sam-
ple for a paper with ID number 1

To remove unnecessary symbols and particular
words from the dataset descriptions, a cleaning pro-

cess is applied prior to using SciBERT to produce
dense vector embeddings. Conversely, the relation-
ships between scientific papers and datasets are
represented in Coordinate Format (COQ) as sparse
matrices.

The COO maps of the scientific paper ID p with
its associated positive dataset ID d and negative
dataset ID d~ as illustrated in Figure 3. The dense
vector embeddings of the description and the COO
of the scientific paper and dataset are subsequently
passed on to the HeteroData G class in Pytorch
Geometric (PyG) (Fey and Lenssen, 2019). The
HeteroData G class utilises dense vector embed-
ding V and COO format £ to generate a train data
graph. Meanwhile, the test paper dense vector em-
beddings Ps.s: are extracted to be used later in the
Inference section.

3.3 Subgraph Generation

The subgraph generation module enables the model
to handle subgraphs rather than the entire graph,
ensuring computational efficiency when learning
on a large-scale graph. Additionally, it guarantees
that graph nodes are properly aligned with their cor-
responding textual features before being passed to
the Graph Representation Learning module. Proper
alignment is essential, as misalignment would dis-
rupt feature aggregation across connected nodes,
thereby hindering inductive learning. Addition-
ally, misalignment could also result in incorrect
node pairings during loss computation. Figure 5
illustrates the flow of node IDs within this module.
Here, P (blue) denotes the IDs of scientific papers,
while + (green) and — (red) represent the positive
and negative datasets associated with the scientific
papers, as described previously in Figure 4.

This module consists of two subcomponents: a
triplet generation process that constructs triplets
from the train graph, and a subgraph mapping pro-
cedure that extracts subgraphs from the training
graph and maps them according to the global node
IDs.

Triplet Generation Triplet generation is used to
efficiently load and manage the triplet set 7, which
consists of scientific paper ID p, positive dataset
ID d*, and negative dataset ID d~, from the train
graph G. The triplet set 7 is then shuffled and
partitioned into batches 7y as outlined in Algorithm
1. Subsequently, these batches are fed into the
subgraph sampling module for subgraph mapping.
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Algorithm 1 Triplet Generation and Subgraph
Mapping

Require:

Dense Vector Embeddings V

COO Format &£

Heterogeneous Train Graph G = (V, £)
Scientific Paper ID p

Positive Dataset ID d*

Negative Dataset ID d~

Set of Triplets 7 = {(p,d*,d™)}
Batch Size B

Number of Neighbours &

Ensure:

10: Mini-batch Subgraph Gputen

11: Mapped Triplet Indices:

12: gT = {(Bocaly Dl—gcal’ Dl_ocal)}
Triplet Generation:

13: Dataset «+ TripletGeneration(7)

14: Ty, < Shuffle(Dataset)

15: return 7,

Subgraph Mapping:

16: for bin 7 do

17: Poatch < {pi}?:l

18: Gbateh < NeighborLoader(G, ppatch, k)
19: GT < GlobaltoLocal(Gpatch, b)
20: end for

21: return Gpatcn, GT

R A A ey

Subgraph Mapping A batch b is sampled from
T, and used to generate a subgraph. The scientific
paper IDs p from the batch b serve as input nodes
Dbateh, for the NeighborLoader () from PyG. We
perform two-hop subgraph sampling, where the
first hop samples twenty neighbours and the sec-
ond hop samples fifteen. The resulting subgraph

Gpaten 18 then remapped to global indices 7;, using
the GlobaltoLocal () function, producing a triplet
local GT.

This remapping ensures that node identities re-
main consistent, as subgraph construction replaces
global indices with local ones. This step ensures
that the loss function receives the correct node
IDs with its embeddings. The whole procedure
is shown in Algorithm 1.

3.4 Graph Representation Learning

Graph Representation Learning module enables
TeG-DRec to handle unseen nodes (refer Figure 1)
as it comprises two main subcomponents: graph
encoder and loss functions. The graph encoder uses
an inductive GNNs to learn representations from
the subgraph, which helps it to generalise towards
unseen nodes.

Aside from that, the loss function computes rank-
ing and contrastive losses and uses gradient-based
optimisation during training via backpropagation.
Ranking losses aim to prioritise positive pairs over
negative ones, ensuring that relevant datasets are
ranked higher than irrelevant ones. In contrast,
contrastive loss enhances representation learning
by aligning similar views in the embedding space
while separating dissimilar ones, improving the
model’s ability to distinguish between different
data points.

Graph Encoder The graph encoder processes
the input graph Gpyen Which represents the IDs
of scientific papers, positive datasets, and nega-
tive datasets (see Figure 5), along with their cor-
responding embeddings, using an inductive GNN
to generate the output views OVyy. These output
views are then concatenated with the original pre-
encoded representations of Gpgch to form the final
recommendation embeddings R. The recommenda-
tion embeddings R are mapped based on the local
triplet mapping G7, resulting in the mapped rec-
ommendation embeddings Ri,p, Which are then
passed to the loss functions. The graph encoder is
implemented as a modular component, allowing it
to operate with various types of inductive GNNss.
The detailed procedure is outlined in Algorithm 2.

In this study, we incorporate multiple inductive
GNNs encoders, including GraphSAGE (Hamilton
et al., 2017), R-GCN (Schlichtkrull et al., 2017)
and GAT (Velickovié et al., 2018).

Loss Functions Our model is optimised using
two main types of loss functions: ranking loss and
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Algorithm 2 Graph Representation Learning

Require:
1: Mini-batch Subgraph Gputcn
2: Mapped Triplet Local:
3 gT = {(Plocala Dlt)cal’ D;)cal)}
Ensure:
4: Rec Embeddings Mapped R pqp
Learning Process:
5: OV < GraphEncoder(Gpatch)
6: R < OVour © Gbatch
7: Rmap < Rsuchthat R C GT
8: return R4

contrastive loss. For ranking loss, we use margin
ranking loss £, which enforces a margin between
positive and negative scores to maximise the differ-
ence between them. The loss function is defined in

Eq. (1).

Ly = max(0, —y * (x1 — x2) + margin ), (1)

where z; denotes the positive sample and x» de-
notes the negative sample, while y is a binary label.
In our experiments, we set y = 1 to enforce that
the positive sample z; should always be ranked
higher than the negative sample x».

For contrastive loss, it is applied between the
text embeddings of scientific papers and their cor-
responding positive datasets. The objective is to
encourage the model to draw semantically aligned
paper—dataset pairs closer in the embedding space,
while pushing apart unrelated pairs. It is given by:

['TCL = InfoNCE(Zp, Zd, T), (2)

where Lrc, refer to text contrastive loss, Zj, indi-
cates the paper embeddings and Z, is the positive
dataset embeddings. T is a temperature, which is a
constant. This contrastive loss is formulated using
the InfoNCE loss (Rusak et al., 2024), as defined

in Eq. (3).
z(l)-z(g)
N eXp A — A

1
ElnfoNCE = _N E log LD, @\
[ J

. N
=1 Zj:l exp =

, 3)
where zgl) is the original view of sample i, zz( Vis
the augmented view of ¢, and 7 is the temperature

(2)

constant. z,” refers to the positive sample from
the augmented view.

All losses are multiplied by their respective ra-
tios for balanced performance, then combined with
a regularisation loss to avoid overfitting. The equa-
tion of the batch loss is defined as Eq. (4).

ﬁtotal = ﬁTCL + EM + ELQTega (4)

where Lgc7, is the structure contrastive loss, L7,
indicates the text contrastive loss, £, refers to the
margin loss and Lr,9,¢4 shows the L2 regularization
loss.

3.5 Inference

The inference module enables TeG-DRec to evalu-
ate scenarios involving truly unseen nodes. Eval-
uating such scenarios is essential for simulating
real-world conditions, as new scientific papers and
datasets continue to appear. To achieve that, we
concatenate the test paper dense vector embeddings
Piest With the heterogeneous train graph dense vec-
tor embeddings G(V), producing the test graph
Gltest as shown in Algorithm 3. The dense vector
embeddings of test papers Pyes; have no connec-
tions to any dataset nodes within the test graph
Gltest- This ensures that the encoder processes test
nodes independently of the training structure. The
test graph is passed to the GraphEncoder, ., for
the encoding process. After obtaining paper I, and
dataset I; embeddings from the model, we extract
test paper embeddings I;, by indexing the unique
nodes of test paper dense vector embeddings index
Ptest-

To generate recommendations, we compute the
maximum inner product between each test paper
embedding I;, and dataset embeddings I; using
FAISS (Douze et al., 2024) and retrieve the top-r
results. The overall inference process is illustrated
in Figure 3.

4 Experiments

4.1 Experimental Setup

Dataset We wuse the DataFinder Dataset
(Viswanathan et al., 2023) to train and evaluate our
model. The dataset is available on GitHub'. This
dataset contains metadata about scientific papers
and their associated datasets. It is pre-split into
training and test sets. The training data includes
true positive and hard negative dataset pairs for
each publication, sourced from the Papers with

1https://github.com/viswavi/datafinder/tree/
main
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Algorithm 3 Inference

Require:

1: Dense Vector Embeddings V

2: COO Format £

3: Heterogeneous Train Graph G = (V, €)
4: Test Scientific Papers Pyese = V
Ensure:

5: Top-r results top-r
Inference Process:

6: gtest — G(V) © Ptest

7: I, Iy < GraphEncoder,,,;, q(Gtest)
8: Iip < Ip|Unique(Prest)]

9: top-r <— FAISSInnerProduct(/y, I4)
10: return top-r

Code? website. The hard negative datasets are
selected using BM25. These hard negatives do not
necessarily overlap with true positives. The test
data consists of expert-annotated evaluations from
SciREX (Jain et al., 2020).

To ensure that the test data align with our truly
unseen node scenario, we remove scientific papers
that interact with positive datasets. The remaining
connected datasets in the test data are then removed
from the hard negative datasets in the train data.
This is to ensure that the test data are truly unseen.
Table 1 summarises the statistics of the dataset.
Appendix A outlines the available features within
the dataset.

Data Train  Test
# of scientific papers 17,397 88
# of positive datasets 461 74
# of positive interactions 20,789 126
# of negative datasets 2,570 -
# of negative interactions | 118,997 —

Table 1: The statistics of scientific papers and datasets
in Datafinder Dataset

Evaluation metrics We evaluate our method us-
ing five standard recommender system metrics: Pre-
cision (P), Recall (R), Normalised Discounted Cu-
mulative Gain (NDCG), Mean Average Precision
(MAP), and Mean Reciprocal Rank (MRR). For
top-r, we set r = b, reflecting real-world usage
where users engage with the highest-ranked sug-
gestions. This is particularly relevant for Precision,
Recall, and NDCG, all of which involve the top-r

2https://huggingface.co/papers/trending

metric in their calculation.

Implementation To ensure separation between
node features, a unique token is added before each
feature during encoding. For training stability
and convergence, we implemented a learning rate
scheduler that combines linear warmup with cosine
annealing. The implementation was done using Py-
Torch and PyG (Fey and Lenssen, 2019), with ex-
periments run on an NVIDIA RTX 6000 Ada GPU
with 48GB VRAM. The hyperparameters used in
this experiment are detailed in Appendix B to facil-
itate reproducibility.

4.2 Baselines

To evaluate the effectiveness of our proposed
method, we compare it against seven baseline ap-
proaches, which are classified into two groups:

Text-Based IR Method consists of four base-
lines, each of which utilises the neural biencoder
framework by Ma et al. (2025) with four different
embedding models, including:

1. SciBERT (Beltagy et al., 2019) is a pretrained
BERT-based language model specifically de-
signed for scientific and scholarly text.

2. Contriever (Lei et al., 2023) is an unsuper-
vised dense information retrieval model that
leverages contrastive learning to train a bi-
encoder that maps queries and documents to a
shared embedding space.

3. BGE-M3 (Chen et al., 2024) is a multilingual
embedding model designed to handle various
retrieval tasks efficiently.

4. ES5-Large (Wang et al., 2024) is a text embed-
ding that is trained using weakly-supervised
contrastive learning on a large-scale dataset
of text pairs.

Graph-Based Method consist of three base-
lines:

1. GraphSAGE (Hamilton et al., 2017) Graph-
SAGE is an inductive graph whose primary
goal is to learn node embeddings that gener-
alise towards unseen nodes, rather than only
represented nodes seen during training.

2. Relational Graph Convolutional Networks
(R-GCN) (Schlichtkrull et al., 2017) is an
extension of Graph Convolutional Networks
(GCNs), which is designed to handle graphs
where edges have types or relations.
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Methods Datafinder Dataset (Unseen Configuration)

P@5 R@5 NDCG@5 MAP MRR
Text-based IR Method
Neural Biencoder (SciBERT) 0.015 0.053 0.032 0.023 0.029
Neural Biencoder (Contriever) 0.018 0.064 0.039 0.028 0.034
Neural Biencoder (BGE-M3) 0.017 0.063 0.051 0.042 0.055
Neural Biencoder (E5-Large-V2) 0.011 0.038 0.026 0.020 0.026
Graph-Based Method
GraphSAGE 0.005 0.017 0.008 0.004 0.006
R-GCN 0.002 0.011 0.011 0.011 0.011
GAT 0.009 0.045 0.020 0.012 0.012
TeG-DRec (GraphSAGE) 0.066 0.237 0.160 0.124 0.153
TeG-DRec (RGCN) 0.050 0.176 0.123 0.096 0.119
TeG-DRec (GAT) 0.111 0.419 0.315 0.260 0.316

Table 2: The recommendation performance of our method against baselines for the text-based IR method and the
graph-based method. Bold is the best, underline is the second best.

Model P@s R@5 NDCG @5 MAP MRR
w/o SciBERT 0.009 0.045 0.020 0.012 0.012
w/o GNNs (GAT) 0.015 0.053 0.032 0.023 0.029
TeG-DRec(GAT) 0.111 0.419 0.315 0.260 0.316

Table 3: The ablation study for each component. Bold is the best, underline is the second best.

3. Graph Attention Networks (GAT)
(Velickovi¢ et al., 2018) introduces attention
mechanisms, enabling the model to learn
the importance of neighbouring nodes
dynamically.

4.3 Results

Table 2 compares the performance of the graph-
based method with TeG-DReC with text-based IR
and graph-based methods alone on the DataFinder
dataset, evaluated under a truly unseen configu-
ration. Our methods consistently outperform all
baselines across all metrics, demonstrating their
effectiveness and robustness.

The results show that graph-based models com-
bined with TeG-DRec outperform their graph-only
counterparts across all evaluation metrics. In par-
ticular, TeG-DReC(GAT) achieves a substantial
improvement in R@35, surpassing its baseline by
0.374. It also exhibits superior ranking perfor-
mance, with gains of 0.304 in MRR, 0.295 in
NDCG@5, and 0.240 in MAP compared with TeG-
DRec(GAT). These metrics assess ranking quality
where NDCG considers both relevance and posi-
tion, MRR reflects the rank of the first relevant
result, and MAP measures the average precision
of the ranking. The P@5 metric also increases

by 0.102 over the GAT baseline. Beyond TeG-
DRec(GAT), both TeG-DRec(GraphSAGE) and
TeG-DRec(RGCN) also achieve significant im-
provements over their respective graph-only base-
lines.

Although the neural bi-encoder using Contriever
as the embedding model achieves the highest re-
sults among all text-based IR methods, all graph-
based models integrated with TeG-DRec still out-
perform it. The lowest-performing variant, TeG-
DRec (RGCN), surpasses the Contriever-based bi-
encoder by 0.032, 0.068, 0.084, 0.085, and 0.112
for P@5, MAP, NDCG@5, MRR, and R@5, re-
spectively. These results indicate that while neural
bi-encoders capture rich semantic similarities, in-
corporating relational structure via graph learning
further enhances alignment between scientific pa-
pers and datasets, leading to superior recommenda-
tion performance.

4.4 Ablation Study

To assess the contribution of each component in our
model, we conducted an ablation study by remov-
ing one component at a time, with results shown
in Table 3. In this ablation study we pick TeG-
DReC(GAT) as our original results. Removing the
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textual component, SciBERT, results in a substan-
tial drop across all metrics, particularly in R@5 and
MRR, which decrease by 0.374 and 0.304, respec-
tively. This performance drop is also reflected in
other metrics, such as NDCG@5, MAP, and P@5,
which decrease by 0.295, 0.248, and 0.101, respec-
tively. This underscores the critical role of textual
features in capturing semantic alignment between
papers and datasets for accurate recommendations.
Similarly, removing the GNN component also re-
duces performance across all metrics, with notable
decreases in R@5 and MRR of 0.366 and 0.287, re-
spectively. Other metrics, including NDCG@5,
MAP, and P@5, also show decreases of 0.283,
0.237, and 0.096, respectively. These results indi-
cate that while semantic representations of publica-
tions and datasets significantly improve model per-
formance, integrating graph-structured information
further enhances recommendation quality, high-
lighting the complementary benefits of combining
textual and structural components in TeG-DRec.

4.5 Error Analysis

We conducted an error analysis on the TeG-DRec
recommendation output. There are two main types
of errors in the recommended results:

Biased towards certain dataset TeG-DRec
shows a bias toward certain datasets, such as
TreQA, which appears most frequently in recom-
mendations even though it occurs only once in the
ground truth, as shown in Figure 6. Similar trends
are observed for other over-recommended datasets
absent from the actual ground truth. A debiasing
technique can be implemented to solve the prob-
lems.

Textual bias in dataset query Textual bias in
the training data may affect the recommendations.
For example, as shown in Figure 6, SQuAD, a
question-answering dataset, appears 312 times in
positive training interactions. This high frequency
can bias the model toward recommending TreQA,
another question-answering dataset, even when it
is absent from the ground truth. Incorporating
content-aware attention could help mitigate this
issue.

5 Conclusion

This research introduced TeG-DRec, a framework
for scientific dataset recommendation that unifies
GNNs with textual content via a subgraph module,
ensuring that textual content and graph structures

Biased Towards Certain Dataset
Query Predicted  Ground Truth
i propose ... question answering (\ (
[SEP] question answering text (_Treq0A
[SEP] as an alternative to (_cNnpm ) (TreqoA
question answering methods ....
_a l

two new neural architectures for
named entity recognition.. [SEP]
named entity recognition text FCE
[SEP] state-of-the-art named
entity recognition

,
attentlon?l er_moder—decoder .. text
summarization [SEP] text
summarization [SEP] in this work, FCE
we cast text summarization .. \ JAN )

§
':+:: Dataset Name

TreqQA | | AG News FCE
[ q ] [ ]
@ Frequency in Testing

(IMDB MR ] (CoNLL-24]

(42 ) 38 | 33 J[ 27 J[ 26 |
J
/ Textual Bias in Dataset Query
4 N
Training Data
Dataset Name Content Frequency
Question Answering,
[ SQuAD ] [Reading Comprehension] [ . ]
Recommendation Result
Dataset Name Content Frequency
Question Answering,
\[ EGER J [ Answer Selection ] [ o ]
J

Figure 6: We present two examples for error analysis:
the top illustrates a case where the TeG-DRec is biased
towards a certain dataset, while the bottom highlights
textual bias in the dataset query.

are correctly aligned and passed to the inductive
graph and loss components. This integration en-
ables the model to better generalise towards unseen
data. The framework leverages textual represen-
tations from SciBERT and incorporates inductive
GNNs, which are adaptable to various types of in-
ductive graph models. Experimental results on the
Datafinder dataset with truly unseen nodes show
that our method outperforms previous baselines,
including both text-based IR and graph-based ap-
proaches. Future work should incorporate a de-
biasing technique for recommendations to reduce
popularity bias. This can be done by re-weighting
the training loss based on dataset frequency, which
means less frequent datasets get a higher weight.
Aside from that, using content-aware attention
rather than simply aggregating the textual embed-
ding reduces bias from frequent, irrelevant words
or phrases.
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Limitations

Our major limitation is that our method relies heav-
ily on the quality and availability of textual infor-
mation (e.g, paper abstracts and dataset descrip-
tions). In cases where the text is noisy, incomplete,
or missing, the recommendation performance may
degrade. Another limitation is that the availability
of datasets for dataset recommendation systems is
very low compared to other datasets which make
use heavily rely on Datafinder Dataset alone.

Ethical Statement

This work adheres to the ethical standards out-
lined in the ACL Code of Ethics and the general
principles of responsible Al research. All data
used in this study are publicly available and used
strictly for research purposes under their respec-
tive licenses. No personally identifiable informa-
tion (PII) or sensitive content was collected or pro-
cessed. We also took care to examine potential
sources of bias and ensure that model outputs do
not propagate harmful or discriminatory associa-
tions.
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Appendices
A Datafinder Dataset Content

Table 4 presents the structure of the Datafinder
Dataset. The dataset is organised into three main
components: training scientific paper metadata,
test scientific paper metadata, and dataset metadata.
Each component is further divided into several cate-
gories, including content descriptions of papers and
datasets, datasets referenced by scientific papers,
publication metadata, unique identifiers, citation
details, and additional information related to pa-
pers and datasets. The highlighted fields in Table 4
indicate the features utilised as node attributes for
each corresponding entity in our model.

Training Scientific Paper

B Hyperparameters value

Table 5 shows the hyperparameter setting for the
parameters that are used in TeG-DRec. The hy-
perparameters include the maximum length of the
textual encoder, the hidden dimension, the opti-
miser and its learning rate, the number of epochs,
the loss rate, the loss temperature, and the seed
number.

Variable Value
SciBERT Dimension 512
Hidden Dimension 256
Optimizer Adamw
GraphSAGE : le-3,
Learning Rate R-GCN: 5e-3,
GAT: 5e-3

Epoch 40 with early stopping after 5

content Citation Information
structured_info
Dataset Publciation
year
date

Table 4: Datafinder Dataset content, the highlighted box
is the features which is used for node features

Paper Content Paper ID Paper Information epoch of no impr ovement
title paper_id has_pdf_body_text Warmup EpO ch’s
abstract arxiv_id mag_field_of_study 5
query acl_id has_inbound_citations Scheduler
keyphrase_query pmc_id has_outbound_citations InfoNCE
Dataset pubmed_id has_pdf_sparse Temperature 0.08
positives mag_id has_pdf_sparse_abstract
negatives Citation Information | has_pdf_parse_bib_entries Margin Value 1
Paper Publication author has_pdf_parse_text Contrastive Loss
journal outbound_citations has_pdf_parse_body_text 0.8
venue inbound_citations has_pdf_parse_entries Rate
doi s2_url Margin Loss
= Rate 0.8
Test Scientific Paper L2 Regression Loss le-4
Paper Content Paper ID Paper Information Seed Number 1
abstract - task
query Citation Information domain . .
keyphrase_query modality Table 5: Hyperparameters variable and its value for the
Dataset language reproducibility purpose
documents training_style
Paper Publication text_length
year
Dataset
Dataset Content ‘ Dataset ID Dataset Information
title id variants
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