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Abstract

Extracting structured information from
tables in scientific literature is a critical yet
challenging task for building domain-
specific knowledge bases. This paper
addresses extraction of 5-ary polymer
property tuples: (POLYMER,
PROP NAME, PROP VALUE,
CONDITION, CHAR METHOD). We
introduce and systematically compare two
distinct methodologies: (1) a novel two-
stage Hybrid Pipeline that first utilizes
Large Language Models (LLMs) for table-
to-text conversion, which is then processed
by specialized text-based extraction
models; and (2) an end-to-end Direct LLM
Extraction approach. To evaluate these
methods, we employ a systematic, domain-
aligned evaluation setup based on the
expert-curated PoLyInfo database. Our
results demonstrate the clear superiority of
the hybrid pipeline. When using Claude
Sonnet 4.5 for the linearization stage, the
pipeline achieves a score of 67.92%
Fl@PoLylnfo, significantly outperforming
the best direct LLM extraction approach
(Claude Sonnet 4.5 at 56.66%). This work
establishes the effectiveness of a hybrid
architecture that combines the generative
strengths of LLMs with the precision of
specialized  supervised models  for
structured data extraction.

Introduction

The field of materials science, particularly
polymer science, generates vast amounts of data
published in scientific articles. This data, often
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embedded in tables, is crucial for developing new
materials, training predictive models, and enabling
data-driven discovery. Automated Information
Extraction (IE) systems are essential for curating
this knowledge into structured, machine-readable
databases like PoLyInfo (Otsuka et al., 2011).

Recent studies by Phi et al. (2024) and Do et al.
(2025) introduced a new corpus and developed a
practical system for extracting polymer-related
concepts and properties from unstructured text,
demonstrating the high performance of supervised
models like W2NER (Li et al., 2022) for Named
Entity Recognition (NER) and ATLOP (Zhou et al.,
2021) for Relation Extraction (RE) on their
PolyNERE corpus. However, these models are
inherently designed for plain text and cannot be
directly applied to the semi-structured format of
tables. Conversely, Large Language Models
(LLMs) are adept at parsing diverse data formats
but often lack the accuracy of fine-tuned models for
domain-specific tasks.

This paper bridges this gap by investigating a
hybrid approach that synergizes the strengths of
both paradigms for the complex task of table
extraction. Our primary contributions are:

e We propose a two-stage method that first
leverages an LLM's structural understanding
to convert table rows into natural language
paragraphs. This linearized text is then
processed by the advanced text-based IE
system components identified by Phi et al.
(2024) and Do et al. (2025).

e We systematically compare five advanced
LLMs in both our hybrid pipeline and a
direct end-to-end extraction approach using
carefully engineered, task-specific prompts.
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e We introduce a new PoLylnfo-based
benchmark  for evaluating  property
extraction from tables, providing near-
comprehensive coverage (~66% of property
names) of critical, standardized properties in
the domain.

e Our results demonstrate that the hybrid
pipeline significantly outperforms the direct
LLM approach, establishing it as a more
robust method for this task.

2 Related Work

Traditional neural approaches have achieved
strong performance in domain-specific text
extraction tasks. The W2NER architecture (Li et
al., 2022) has shown particular effectiveness in
capturing complex entity structures in scientific
text—such as flat, overlapping, and discontinuous
entities—commonly found in materials science
literature, as demonstrated by Do et al. (2025). For
relation extraction, ATLOP (Zhou et al., 2021)
reformulates the task as entity-pair linking,
delivering robust performance on specialized
corpora  like  PolyNERE. Domain-adapted
language models, such as MatSciBERT, have
further improved results for materials science
applications. However, these specialized models
remain constrained to plain text input, limiting their
direct applicability to tabular data.

Recent research has demonstrated the
remarkable zero-shot and few-shot capabilities of
LLMs for NER and RE. Most approaches attempt
direct, end-to-end extraction, where the model is
prompted to output structured data from a given
input. However, this method forces a single model
to handle multiple complex sub-tasks (parsing,
entity recognition, etc.), which can lead to
hallucinations or conversational outputs ill-suited
for scientific data extraction (Kumar et al., 2025).

Converting tabular structures for LLM
processing has emerged as a critical research area,
with various serialization methods showing
different effectiveness depending on table
complexity. Recent work has shown that table

linearization  quality  significantly  impacts
downstream extraction performance, though
optimal strategies remain domain-dependent

(Deng et al., 2024).

Our work bridges these areas by proposing a
hybrid pipeline that leverages LLMs for table-to-
text conversion while utilizing specialized
supervised models for robust extraction,
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specifically addressing the gap in scientific table
information extraction for polymer property data.

3 Methodology

The input for our system is a multi-modal prompt,
combining a high-fidelity table image with its
corresponding textual caption and footnotes. Table
images are extracted directly from scientific
documents using the MinerU parser (Wang et al.,
2024). This image-based approach is motivated by
Circi et al. (2024), who demonstrated that visual
layout cues enable vision-enabled LLMs to more
accurately extract complex relationships from
scientific tables compared to text-only inputs.

We formalize the task as extracting a set of 5-ary
property information tuples from a given scientific
table. This formalization is grounded in the schema
of the PoLyInfo database (Otsuka et al., 2011), the
largest expert-curated database for polymers. The
targetis asetof tuples T={t 1,t 2,....t n}, where
each tuple t_i consists of five key entity types:

POLYMER: The name of the polymer
material (e.g., “polyethylene”, “poly(p-
diethynylbenzene)”).

PROP_NAME: The name of the physical or
chemical property being described (e.g.,
“glass transition temperature”, “density”).

PROP_VALUE: The measured value of the
property, typically including units (e.g., “25
MPa”, “1.097 g/cm3”).

CONDITION: The experimental conditions
under which the property was measured
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(e.g., at  25°C”, “under  nitrogen
atmosphere”).
e CHAR METHOD: The -characterization

technique or method used for the
measurement (e.g., “DSC”, “fensile
testing”).

These five types represent the core elements
required to form a complete and usable entry in a
materials science knowledge base. The primary
challenge in the context of tables lies in correctly
associating information that 1is structurally
fragmented. The goal of our system is to accurately
parse the combination of visual and textual
information to compose a comprehensive set of
valid 5-ary tuples. We compare two distinct
approaches to solve this task.



3.1 Method 1: Hybrid LLM and Supervised

Model Pipeline

This method decomposes the task into two
sequential stages, leveraging the optimal model
type for each sub-task.

Stage 1: LLM-based Table-to-Text Conversion:
An LLM is given the multi-modal prompt (table
image, caption, footnotes) and is instructed to act
as a domain expert to linearize each data row into a
descriptive paragraph. A novel aspect of our
approach is the carefully engineered prompt (see
Appendix A), which transforms the LLM into a
specialized pre-processor for our supervised
models. The prompt's key innovation is a
conditional grouping strategy: it instructs the LLM
to create separate, self-contained paragraphs for
each material (POLYMER or its composite), and
further subdivides these by CHAR METHOD
only if a method is explicitly stated. This
hierarchical grouping is crucial as it prevents the
ambiguous association of multiple properties with
their  respective measurement contexts—a
common challenge for downstream relation
extraction models.

Furthermore, by enforcing a strict, single-line
output format and text normalization rules (e.g.,
“T g” to “Tg”), the prompt ensures the generated
text is a consistent and machine-readable
intermediate representation, optimized for the
models in the subsequent stage.

Stage 2: Supervised Text-based Tuple
Extraction: The text generated from Stage 1 is
then processed by a fixed, pre-trained text
extraction system composed of supervised models
trained on the PolyNERE corpus (Phi et al., 2024),
selected based on their proven high performance.

We employ a W2NER model (Li et al., 2022),
which is adept at handling the flat, overlapped, and
discontinuous entity structures common in
scientific text. This architecture is similar to that
used in the PolyMinder system (Do et al., 2025).
To further optimize for the materials science
domain, we pair it with the MatBERT encoder
(Walker et al., 2021).

We utilize the ATLOP model (Zhou et al., 2021),
a choice validated by its strong performance in
prior work (Phi et al., 2024; Do et al., 2025). To
effectively capture the complex relationships
present in the text, the model is paired with the
powerful DeBERTa-v3-large encoder (He et al.,
2020).
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3.2 Method 2: Direct Tuple Extraction using

LLMs

This approach follows a conventional end-to-end
paradigm. The same multi-modal prompt is passed
to a vision-enabled LLM. The prompt (see
Appendix B) instructs the model to analyze the
table's visual structure and associated text to
directly output a list of all identifiable property
tuples. To ensure a fair comparison, this prompt is
also highly engineered with a similar set of detailed
instructions and critical rules. This method relies
entirely on the LLM's in-context reasoning to
perform all sub-tasks simultaneously and serves as
a direct baseline to evaluate the effectiveness of our
hybrid pipeline.

4 Experiments

4.1 Datasets

The ground truth for our evaluation was
constructed through a manual alignment process.
We sourced curated polymer property data from the
expert-driven PoLyInfo database (Otsuka et al.,
2011) and mapped it to relevant content within a
corpus of 37 tables from 29 scientific papers. Our
final golden set comprises 293 property
information tuples. Each tuple contains three
essential entities (POLYMER, PROP_NAME, and
PROP_VALUE), supplemented with optional
CONDITION and CHAR METHOD  entities
when available in the PoLyInfo entry. We
confirmed that the 37 evaluation tables have no
overlap with the PolyNERE training corpus,
ensuring that supervised models in Stage 2 were
tested on entirely unseen content.

Our analysis shows that the PoLylnfo-based
golden annotations cover ~66% of all property
names found across the evaluated tables.
Specifically, we manually counted 132 property
names appearing in the row and column headers of
the 37 tables. The PoLyInfo database is an expert-
curated resource where domain experts selectively
extract and store only the most critical and
standardized property information from scientific
papers. Of the 132 property names in our tables, 87
(66%) have corresponding entries in PoLyInfo and
were used to construct our golden set of 293 tuples.
The remaining 45 property names (34%) may
represent less critical properties that were not
prioritized by expert curators for inclusion in
PoLyInfo. Our evaluation is therefore near-
comprehensive in its assessment of the most



important, standardized properties deemed critical
by domain experts for polymer characterization.

For the hybrid pipeline, predicted binary
relations from the ATLOP model are merged into
S-ary tuples based on the relation schema defined
in Phi et al. (2024). During manual evaluation of
these composed tuples (for both methods), we
observed a consistent one-to-one mapping between
a golden tuple and a corresponding prediction for
each (POLYMER, PROP NAME) pair (see
Appendix E). A prediction is marked as True (T)
only if all five of its constituent entities exactly
match the golden tuple; otherwise, it is marked as
False (F).

4.2 Results
Task Model Encoder P R F1
W2NER  MatBERT 78.79 79.81 79.30
Baseline MatSciBERT 78.05 76.53 77.28
ATLOp DEBERTa-V3- o7 o3 2689 87.40
large
Baseline MatSciBERT 83.99 82.49 83.23

Table 1: NER and RE performance on the
PolyNERE test set. RE uses gold entities.

Based on the observed one-to-one mapping in
our evaluation setup, the number of False Positives
and False Negatives are equivalent for the set of
evaluated golden tuples. Consequently, Precision
and Recall converge to the same value. We
therefore report this unified metric as
Fl@PoLyInfo, representing the percentage of
correctly extracted tuples from the set of important,
PoLyInfo-defined properties:

Fl@PoLylnfo (%) = # True / (# True + # False) * 100

We trained the supervised W2NER and ATLOP
models using established hyperparameters from
prior work (30 epochs, batch size 8, Adam
optimizer). All LLM inferences were performed
with  deterministic  settings (temperature=0,
top_p=1).

We first establish the performance of our
pipeline's core supervised models by evaluating
them on the PolyNERE test set against the
PolyMinder baseline (Do et al., 2025). Table 1
shows our selected models significantly
outperform the established baseline for text-based
extraction in this domain. Our W2NER+MatBERT
configuration improves the NER F1 score by +2.02
points, while our ATLOP+DeBERTa-v3-large
model shows a more significant +4.17 F1 point
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Hybrid Pipeline LLM Extraction

Model True False F1 True False F1
Claude Sonnet 4.5 199 94 67.92 166 127 56.66
GPT-4.1 112 181 38.23 119 174 40.61
GPT-4omini 142 151 48.46 141 152 48.12
Gemini 2.5 Flash 164 129 5597 73 220 24.91
Qwen2.5-VL 32B 158 135 53.92 86 207 29.35

Table 2: Model performance results.

gain for RE. These results confirm their role as a
powerful foundation for processing the linearized
table data.

We then evaluated the two end-to-end
methodologies on our table extraction task. The
results are summarized in Table 2.

The hybrid pipeline proves to be the superior
strategy for the majority of the tested models. The
advanced LLMs, Claude Sonnet 4.5, Gemini 2.5
Flash, and Qwen2.5-VL 32B Instruct, all saw
dramatic performance increases when used in the
hybrid pipeline. Specifically, Gemini 2.5 Flash and
Qwen2.5-VL 32B improved by an absolute
+31.06% and +24.57%, respectively, indicating
that decomposing the complex task is critical for
these models.

The best performance in our study was achieved
by the hybrid pipeline, with Claude Sonnet 4.5 in
the linearization stage reaching 67.92%
Fl@PoLyInfo. This represents a substantial
+11.26% absolute improvement over its already
strong direct extraction performance. An important
exception to the general trend is GPT-4.1, for
which the direct extraction method performed
slightly better (40.61%) than the hybrid pipeline
(38.23%). Similarly, the performance of GPT-40
mini was nearly identical across both methods.
This suggests that for certain models, error
propagation in a two-stage process—where
suboptimal text generation in Stage 1 negatively
impacts the supervised models—can outweigh the
benefits of task decomposition. A detailed case
study in Appendix D analyzes the specific failure
modes of the pipeline for GPT-4.1.

The direct extraction method proved
significantly more challenging for the majority of
LLMs, with steep performance drops for models
like Gemini 2.5 Flash and Qwen2.5-VL 32B
highlighting the immense difficulty of
simultaneously parsing a 2D structure and
composing complex relations in a single step.



The hybrid pipeline's success lies in assigning
the right task to the right model. The LLM excels
at the generative, context-aware task of converting
a table into fluent text. The supervised W2NER and
ATLOP models, which are pre-trained and fine-
tuned for their specific tasks, then excel at precise,
closed-set extraction from this clean, textual input.
This hybrid architecture proves more robust and
accurate for most models, though it is not a
universally guaranteed improvement, as seen with
GPT 4.1.

5 Conclusion

In this work, we compared a hybrid pipeline (LLM
linearization and supervised NER/RE) against a
direct LLM approach for property extraction from
tables, finding the hybrid architecture to be the
more robust strategy on our PoLylnfo-based
benchmark. Our best pipeline configuration
achieves 67.92% Fl@PoLylInfo, demonstrating
that task decomposition with specialized
supervised models yields superior performance
compared to end-to-end LLM approaches.

Limitations

First, the evaluation set, while carefully curated,
is of moderate size (293 tuples from 37 tables) and
focused exclusively on the polymer science
domain, and performance may vary on other types
of scientific tables. Second, the hybrid pipeline's
performance is highly dependent on the quality of
the LLM-generated text in Stage 1, and as shown
with GPT-4.1, poor linearization can create a
bottleneck. Third, the success of our hybrid
pipeline relies on the availability of well-trained
text analyzers for NER and RE. This approach
presupposes that high-quality, domain-specific
supervised models are available for the second
stage. Finally, our prompts were -carefully
designed with domain-specific instructions, but
we did not systematically evaluate sensitivity to
prompt variations. Evaluation requires manual
normalization of tuples before matching, making
comprehensive  prompt experiments labor-
intensive. Future work could explore automated
evaluation methods for systematic prompting
strategy comparison.
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A Prompt for LLM-based Table-to-Text
Conversion (Method 1)

You are analyzing a scientific table image. Convert it
into structured natural language text that will be
processed by Named Entity Recognition (NER) and
Relation Extraction (RE) models.

TABLE CAPTION: [INSERT CAPTION TEXT
HERE]

FOOTNOTES: [INSERT FOOTNOTES TEXT
HERE]

TASK: Create separate paragraphs for each material
to prevent entity confusion. If different properties are
measured using different characterization methods
(found in caption, footnotes, or column headers), create
separate  paragraphs for each material-method
combination.

**CRITICAL: Only separate by characterization
method if methods are explicitly stated. If no methods are
mentioned, write all properties for a material in one
paragraph. **

OUTPUT STRUCTURE:
1. First sentence: Introduce the table using the
caption
2. Then, for EACH material:
- *¥[f characterization methods are specified**:
Write separate paragraphs for each method
- *¥[f NO methods are specified**: Write one
paragraph with all properties
3. Add blank line between paragraphs

REQUIREMENTS FOR EACH PARAGRAPH:

- Start with the material name EXACTLY as it
appears in the table

- **[f characterization method is specified**: Include
it after material name

- ¥*[fNO method is specified**: Omit method phrase
entirely

- List properties with their values and units

- Include any conditions from the caption, footnotes,
or column headers

- Write each paragraph as a SINGLE continuous line

- **Format with method**: "For [material name]
measured by [CHAR METHOD] [condition phrase]:
[property name] is [value unit], [property name] is
[value unit], ..."

- **Format without method**: "For [material name]
[condition phrase]: [property name] is [value unit],
[property name] is [value unit], ..."
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ENTITY TYPES TO INCLUDE:

1. POLYMER: Material/polymer name exactly as
written in the table

2. PROP NAME: Complete property name from
column header

3. PROP_VALUE: Numerical value WITH unit (e.g.,
"7.29 MPa", "266.53%", "45.2 wt%")

4. CONDITION: Experimental conditions starting
with a preposition (e.g., "at X°C", "with n=Y", "under
annealing")

5. CHAR METHOD: Measurement or
characterization method as a noun phrase (e.g., "SEC",
"DSC", "tensile testing")

CRITICAL RULES:

- Use material names EXACTLY as they appear in the
table (no expansion or modification)

**DO  NOT treat property
characterization methods**

**Only use "measured by" when an actual
measurement technique is specified (e.g., SEC, NMR,
DSC, XRD, TEM, SEM, FTIR)**

- **Column headers showing property names (e.g.,
"Tensile strength”, "Density", "Modulus") are NOT
characterization methods **

- Separate by characterization method only when
methods are explicitly mentioned

- Copy exact numbers and units from the table

- Include units WITH values (e.g., "7.29 MPa" not
Just "7.29")

- Each paragraph must be a single continuous line -
NO line breaks within a paragraph

- Add blank line between paragraphs only

- DO NOT use subscript notation with underscores
(e.g, M n, T g, T c). Instead use simplified notation
(e.g., Mn, Tg, Tc)

- Condition phrases must start with a preposition
(e.g., "at", "under”, "with", "in", "by")

- CHAR METHOD must be a noun phrase (e.g.,
"DSC", "tensile testing", "X-ray diffraction”)

names as

EXAMPLE FORMAT:

**Case
specified: **

This table presents [property category] of [material
type] materials.

1 NO characterization  methods

For [Material-A] [condition phrase if any]:
[property-1] is [X XX unit], [property-2] is [Y.YY unit],
[property-3] is [Z.Z2Z unit].

For [Material-B] [condition phrase if any]:
[property-1] is [X XX unit], [property-2] is [Y.YY unit],
[property-3] is [Z.Z27 unit].

**Case 2 -
specified:**

This table presents [property category] of [material
type] materials.

Characterization methods ARE



For [Material-A] measured by [CharMethod-1]:
[property-1] is [X XX unit], [property-2] is [Y.YY unit].

For [Material-A] measured by [CharMethod-2]
[condition phrase if any]: [property-3] is [Z.ZZ unit],
[property-4] is [W.WW unit].

For [Material-B] measured by [CharMethod-1]:
[property-1] is [X XX unit], [property-2] is [Y.YY unit].

For [Material-B] measured by [CharMethod-2]
[condition phrase if any]: [property-3] is [Z.ZZ unit],
[property-4] is [W.WW unit].

OUTPUT: Return ONLY the converted text. No
explanations or additional commentary.

B Prompt for Direct Tuple Extraction
(Method 2)

You are analyzing a scientific table image. Extract ALL
property measurements from the table as structured
tuples.

TABLE CAPTION: [INSERT CAPTION TEXT
HERE]

FOOTNOTES: [INSERT FOOTNOTES TEXT
HERE]

TASK: Extract ALL property measurements from the
table as 5-element tuples.

TUPLE FORMAT:
(POLYMER, PROP NAME,
CONDITION, CHAR METHOD)

PROP VALUE,

REQUIREMENTS FOR EACH TUPLE:

- Extract one tuple for EACH property measurement
(one row X one column = one tuple)

- Include the complete material name in every tuple

- Copy exact values with units from table cells

- Extract any conditions or methods from the caption,
footnotes, or column headers

- Process systematically: for each material (row),
extract all properties (columns)

ENTITY TYPES TO INCLUDE:

1. POLYMER: Material/polymer name exactly as
written in the table (e.g., "PE", "Sample A", "Composite-
5")

2. PROP NAME: Complete property name from
column header (e.g., "tensile strength", "glass transition
temperature")

3. PROP_VALUE: Numerical value WITH unit (e.g.,
"X XX MPa", "YY.Y%", "Z.ZZ + 0.XX unit")

4. CONDITION: Experimental conditions starting
with a preposition (e.g., "at X°C", "with n=Y", "under

"o

annealing”, "in air")

5. CHAR METHOD: Measurement or
characterization method as a noun phrase (e.g., "tensile
testing”, "thermal analysis", "SEC", "DSC")

CRITICAL RULES:

- Use material names EXACTLY as they appear in the
table (no expansion or abbreviations)

- Repeat material names in every tuple for clarity

- Copy exact numbers and units from the table

- Include units WITH values (e.g., "7.29 MPa" not
Just "7.29")

- Extract conditions/methods from caption, footnotes,
and headers

- CONDITION must start with a preposition (e.g.,
"at", "under", "with", "in", "by")

- CHAR METHOD must be a noun phrase (e.g.,
"DSC", "tensile testing", "X-ray diffraction")

- If condition or method not specified, use empty
string """

- One measurement = one tuple

- DO NOT use subscript notation with underscores
(eg, M n, T g T c). Instead use simplified notation
(e.g., Mn, Tg, Tc)

EXAMPLE FORMAT (using placeholder values):

("PE", "property 1", "value unit", "at condition”,
"method name")

("PE", "property 2", "value unit", """, "")

("Sample C", "property 1", "value + error unit", "at
condition 1, with condition 2", '"characterization
method")

OUTPUT: Return ONLY the tuple list. One tuple per
line. No explanations or additional commentary.

C Examples of Evaluated Tables

Table 1. Molecular Characteristics of CE Copolymers

ethyl branches
per 100
backbone
cyclohexyl  carbon atoms
M ethylene” in ethylene i p?
polymer (kg/mol) M, /M,* (wt %) units” (°C) (g/cm3)

PE 65 1.04 3.5 =31 0.907
CES0 49 1.05 51 3.5 =20 0918
CE60 67 1.05 60 26 7 0.928
CE70 52 1.05 72 33 30 0.937
CE80 65 105 84 24 43 0.947
PCHE 70 105 100 144 0.960

“Measured with SEC using the parent SB copolymer with universal
calibration. The Mark—Houwink parameters for PS and PB are Kpg =
8.63 X 107> mL/g, aps = 0.736 and Kpp = 25.2 X 107> mL/g, apy =
0.727.>* The K and a of SB copolymers are estimated using the
weight-averaged values of the homopolymer counterparts. *Calculated
from the integration of characteristic peaks in 'H NMR spectra.
“Determined with DSC. “Measured with density gradient column at
23 °C.

Figure 1: Example table from the evaluation set,
featuring complex headers and footnotes linking
properties to characterization methods (SEC, DSC,
NMR).
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Table 1. Characteristics of Both PFS and PWN2010

GPC IEC [mmol g '] TGA DSC water uptake®
polymer M, M, PD caled found ey [HE]] T, [°C] [wt %] [A)*
PFS 30200 59 000° 192 0 285 105.5 0 0
PWN2010 9000 67000 7.5 7.8° 7.0 340 >330 18 2.5

“Value is received from the supplier (Monomer Polymer & Dajac Laboratories, USA). * Calculation is based on 100% substitution (1 —PO,H,/
aromatic ring). “ Value at RH = 50%, T = 30 °C. 4 = [H,0]/[-PO,H,].

Figure 3: Input table for the error analysis.

Table 1. Thermal properties of LPEEK/HPEEK blends with various
HPEEK contents

LPEEK/HPEEK
(w/w)

Tg
cQ?

T9
P

TC
(Q

Tm
Q)

X
(%)

T4®
(0

100/0
99/1
98/2
97/3
96/4
95/5

145
145
145
144
144
144

167
170
17
172
173
174

283
288
291
292
293
294

334
337
337
338
338
338

154
155
17.2
17.2
176
195

560
566
570
570
570
565

# Measured using DSC.
b Measured using DMA.

Figure 2: Example table illustrating a common
ambiguity where two columns share a property
name (Tg) but are distinguished by different
characterization methods (DSC, DMA) in the
footnotes.

D Error Analysis: Understanding the
GPT-4.1 Performance Anomaly

As noted in Section 4.2, GPT-4.1 was a notable
exception to the general trend, performing slightly
better with direct extraction than within the hybrid
pipeline. This appendix provides a case study to
dissect the specific failure modes that explain this
result, highlighting the critical role of the table-to-
text linearization stage and the potential for error
propagation. We use the table in Figure 3 and its
corresponding PoLyInfo-based golden annotations
in Figure 4 as a running example.

Analysis of the Hybrid Pipeline (Method 1):
In the hybrid pipeline, the quality of the final
extraction is entirely dependent on the quality of
the text generated by the LLM in Stage 1. Figure 3
shows a table where characterization methods
(TGA, DSC) are specified as column headers.

Generated Text from GPT-4.1: For the input
table in Figure 3, GPT-4.1 produced the following
linearized text for Stage 2:

“This table presents characteristics of both PFS
and PWN2010.

For PFES at RH = 50%, T= 30 °C: Mn is 30 200,
Mw is 59 000, PD is 1.92, IEC calcd is 0 mmol
g7, IEC found is 0 mmol g, Tdecomp is 285 °C,
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Tg is 105.5 °C, water uptake [wt %] is 0, water
uptake [1] is 0.

For PWN2010 at RH = 50%, T = 30 °C: Mn is
9 000, Mw is 67 000, PD is 7.5, IEC calcd is 7.8
mmol g, IEC found is 7.0 mmol g™, Tdecomp
is 340 °C, Tg is >330 °C, water uptake [wt %]
is 18, water uptake [1] is 2.5.”

This generated text contains two critical flaws
that lead to downstream extraction failures:

¢ Omission of Characterization Methods:
The LLM failed to identify “TGA” and
“DSC” from the column headers as
characterization methods and did not include
them in the generated paragraphs. Because
this information is completely absent from
the text, it is impossible for the downstream
supervised W2NER and ATLOP models to
extract the CHAR_METHOD entity. This
results in an immediate and unavoidable
False evaluation for four of the six golden
tuples shown in Figure 4.

e Incorrect Value-Unit Representation: The
linearization format “...water uptake [wt %]
is 0...” separates the property's unit from its
value. The supervised NER model, which
relies on surface text patterns, struggles with
this structure. It is likely to identify
PROP_VALUE as just "0" and incorrectly
associate "/wt %]" with the PROP_NAME.
This creates a mismatch with the golden
annotation in Figure 4, which correctly
defines PROP NAME as "water uptake"
and PROP_VALUE as "0 wt%".

These linearization errors propagate through the
pipeline, preventing the supervised models in Stage
2 from performing correctly and resulting in a low
overall score.



POLYMER PFS
PROP_NAME Tg
PROP_VALUE 105.5 <C

CONDITION
CHAR_METHOD DSC

POLYMER PFS
PROP_NAME water uptake
PROP_VALUE 0 wt%

CONDITION at RH=50%, T=30 °C
CHAR_METHOD

POLYMER PFS
PROP_NAME Tdecomp | Thermal decomposition temperature
PROP_VALUE 285<C

CONDITION
CHAR_METHOD TGA

POLYMER PWN2010
PROP_NAME Tg
PROP_VALUE >330C

CONDITION
CHAR_METHOD DSC

POLYMER PWN2010
PROP_NAME water uptake
PROP_VALUE 18 wt%

CONDITION at RH=50%, T=30°C
CHAR_METHOD

POLYMER PWN2010
PROP_NAME Tdecomp | Thermal decomposition temperature
PROP_VALUE 340 -C

CONDITION
CHAR_METHOD TGA

Figure 4: The PoLyInfo-based golden annotations for
the table in Figure 3. These tuples serve as the ground
truth for the error analysis, highlighting failures in
CHAR _METHOD and PROP_VALUE extraction.

Analysis of Direct LLM Extraction (Method
2): In the direct extraction method, the LLM is
responsible for parsing the table and generating
tuples in one step. Below are the corresponding
outputs from GPT-4.1 for the golden tuples in
Figure 4. Incorrectly predicted entities are shown
in bold.

("PFS", "Tdecomp", "285 °C", "", "TGA")
("PFS", "Tg", "105.5 °C", "", "DSC")
("PFS", "water uptake [wt %]", "0", "at RH =

50%, at T=30°C", "")
("PWN2010", "Tdecomp",
"TGA")
("PWN2010", "Tg", ">330 °C", "", "DSC")
("PWN2010", "water uptake [wt %]", "18",
"at RH = 50%, at T = 30 °C", "")

//340 OCN, NN,

From these outputs, we observe:

e Correct CHAR METHOD Extraction:
For properties with simple headers like
“Tdecomp” and “Tg”, the direct method
performs perfectly, correctly identifying
“TGA” and “DSC” as the
CHAR _METHOD. This gives it an

advantage over the flawed pipeline
output, where this information was lost.

e Incorrect PROP_NAME and
PROP_VALUE Parsing: Similar to the
pipeline's issue, the direct method also
struggles with the complex "water
uptake" header. It incorrectly merges the
unit “/wt %/” into the PROP_NAME and
extracts only the numerical part ("0" or
"18") as the PROP_VALUE, leading to a
mismatch.

This case study explains the GPT-4.1
performance anomaly. The hybrid pipeline's
linearization stage made a significant error by
omitting CHAR METHOD information, leading
to unavoidable downstream failures for the
supervised models. In contrast, the direct extraction
method, while also imperfect, correctly extracted
more of the golden tuples. This demonstrates the
risk of error propagation in a pipeline. If an LLM's
text generation style is a poor fit for the
downstream models, a direct approach can, in some
cases, yield slightly better results by avoiding this
cascade of errors.

E One-to-One
Evaluation

Mapping in Tuple

We observed a consistent one-to-one mapping
between golden tuples and predictions for each
(POLYMER, PROP NAME) pair across all
evaluated tuples.

For the Hybrid Pipeline: The ATLOP model
predicts binary relations that are merged into 5-ary
tuples following Phi et al. (2024). When multiple
binary relations share the same (POLYMER,
PROP_NAME, PROP_VALUE) triple, they are
consolidated into a single tuple by aggregating
CONDITION and CHAR METHOD entities.

For Direct LLM Extraction: Scientific tables
organize data with one measurement per cell. The
prompt instructs "Extract one tuple for EACH
property measurement (one row x one column =
one tuple)", and all LLMs followed this instruction.

Under this one-to-one constraint, each incorrect
prediction simultaneously represents both a false
positive and a false negative, making these counts
equivalent.
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