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Abstract 

Extracting structured information from 
tables in scientific literature is a critical yet 
challenging task for building domain-
specific knowledge bases. This paper 
addresses extraction of 5-ary polymer 
property tuples: (POLYMER, 
PROP_NAME, PROP_VALUE, 
CONDITION, CHAR_METHOD). We 
introduce and systematically compare two 
distinct methodologies: (1) a novel two-
stage Hybrid Pipeline that first utilizes 
Large Language Models (LLMs) for table-
to-text conversion, which is then processed 
by specialized text-based extraction 
models; and (2) an end-to-end Direct LLM 
Extraction approach. To evaluate these 
methods, we employ a systematic, domain-
aligned evaluation setup based on the 
expert-curated PoLyInfo database. Our 
results demonstrate the clear superiority of 
the hybrid pipeline. When using Claude 
Sonnet 4.5 for the linearization stage, the 
pipeline achieves a score of 67.92% 
F1@PoLyInfo, significantly outperforming 
the best direct LLM extraction approach 
(Claude Sonnet 4.5 at 56.66%). This work 
establishes the effectiveness of a hybrid 
architecture that combines the generative 
strengths of LLMs with the precision of 
specialized supervised models for 
structured data extraction. 

1 Introduction 

The field of materials science, particularly 
polymer science, generates vast amounts of data 
published in scientific articles. This data, often 
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embedded in tables, is crucial for developing new 
materials, training predictive models, and enabling 
data-driven discovery. Automated Information 
Extraction (IE) systems are essential for curating 
this knowledge into structured, machine-readable 
databases like PoLyInfo (Otsuka et al., 2011). 

Recent studies by Phi et al. (2024) and Do et al. 
(2025) introduced a new corpus and developed a 
practical system for extracting polymer-related 
concepts and properties from unstructured text, 
demonstrating the high performance of supervised 
models like W2NER (Li et al., 2022) for Named 
Entity Recognition (NER) and ATLOP (Zhou et al., 
2021) for Relation Extraction (RE) on their 
PolyNERE corpus. However, these models are 
inherently designed for plain text and cannot be 
directly applied to the semi-structured format of 
tables. Conversely, Large Language Models 
(LLMs) are adept at parsing diverse data formats 
but often lack the accuracy of fine-tuned models for 
domain-specific tasks. 

This paper bridges this gap by investigating a 
hybrid approach that synergizes the strengths of 
both paradigms for the complex task of table 
extraction. Our primary contributions are: 
• We propose a two-stage method that first 

leverages an LLM's structural understanding 
to convert table rows into natural language 
paragraphs. This linearized text is then 
processed by the advanced text-based IE 
system components identified by Phi et al. 
(2024) and Do et al. (2025). 

• We systematically compare five advanced 
LLMs in both our hybrid pipeline and a 
direct end-to-end extraction approach using 
carefully engineered, task-specific prompts. 
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• We introduce a new PoLyInfo-based 
benchmark for evaluating property 
extraction from tables, providing near-
comprehensive coverage (~66% of property 
names) of critical, standardized properties in 
the domain. 

• Our results demonstrate that the hybrid 
pipeline significantly outperforms the direct 
LLM approach, establishing it as a more 
robust method for this task. 

2 Related Work 

Traditional neural approaches have achieved 
strong performance in domain-specific text 
extraction tasks. The W2NER architecture (Li et 
al., 2022) has shown particular effectiveness in 
capturing complex entity structures in scientific 
text—such as flat, overlapping, and discontinuous 
entities—commonly found in materials science 
literature, as demonstrated by Do et al. (2025). For 
relation extraction, ATLOP (Zhou et al., 2021) 
reformulates the task as entity-pair linking, 
delivering robust performance on specialized 
corpora like PolyNERE. Domain-adapted 
language models, such as MatSciBERT, have 
further improved results for materials science 
applications. However, these specialized models 
remain constrained to plain text input, limiting their 
direct applicability to tabular data. 

Recent research has demonstrated the 
remarkable zero-shot and few-shot capabilities of 
LLMs for NER and RE. Most approaches attempt 
direct, end-to-end extraction, where the model is 
prompted to output structured data from a given 
input. However, this method forces a single model 
to handle multiple complex sub-tasks (parsing, 
entity recognition, etc.), which can lead to 
hallucinations or conversational outputs ill-suited 
for scientific data extraction (Kumar et al., 2025). 

Converting tabular structures for LLM 
processing has emerged as a critical research area, 
with various serialization methods showing 
different effectiveness depending on table 
complexity. Recent work has shown that table 
linearization quality significantly impacts 
downstream extraction performance, though 
optimal strategies remain domain-dependent 
(Deng et al., 2024). 

Our work bridges these areas by proposing a 
hybrid pipeline that leverages LLMs for table-to-
text conversion while utilizing specialized 
supervised models for robust extraction, 

specifically addressing the gap in scientific table 
information extraction for polymer property data. 

3 Methodology 

The input for our system is a multi-modal prompt, 
combining a high-fidelity table image with its 
corresponding textual caption and footnotes. Table 
images are extracted directly from scientific 
documents using the MinerU parser (Wang et al., 
2024). This image-based approach is motivated by 
Circi et al. (2024), who demonstrated that visual 
layout cues enable vision-enabled LLMs to more 
accurately extract complex relationships from 
scientific tables compared to text-only inputs. 

We formalize the task as extracting a set of 5-ary 
property information tuples from a given scientific 
table. This formalization is grounded in the schema 
of the PoLyInfo database (Otsuka et al., 2011), the 
largest expert-curated database for polymers. The 
target is a set of tuples T = {t_1, t_2, ..., t_n}, where 
each tuple t_i consists of five key entity types: 

• POLYMER: The name of the polymer 
material (e.g., “polyethylene”, “poly(p-
diethynylbenzene)”). 

• PROP_NAME: The name of the physical or 
chemical property being described (e.g., 
“glass transition temperature”, “density”). 

• PROP_VALUE: The measured value of the 
property, typically including units (e.g., “25 
MPa”, “1.097 g/cm3”). 

• CONDITION: The experimental conditions 
under which the property was measured 
(e.g., “at 25°C”, “under nitrogen 
atmosphere”). 

• CHAR_METHOD: The characterization 
technique or method used for the 
measurement (e.g., “DSC”, “tensile 
testing”). 

These five types represent the core elements 
required to form a complete and usable entry in a 
materials science knowledge base. The primary 
challenge in the context of tables lies in correctly 
associating information that is structurally 
fragmented. The goal of our system is to accurately 
parse the combination of visual and textual 
information to compose a comprehensive set of 
valid 5-ary tuples. We compare two distinct 
approaches to solve this task. 
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3.1 Method 1: Hybrid LLM and Supervised 
Model Pipeline 

This method decomposes the task into two 
sequential stages, leveraging the optimal model 
type for each sub-task. 

Stage 1: LLM-based Table-to-Text Conversion: 
An LLM is given the multi-modal prompt (table 
image, caption, footnotes) and is instructed to act 
as a domain expert to linearize each data row into a 
descriptive paragraph. A novel aspect of our 
approach is the carefully engineered prompt (see 
Appendix A), which transforms the LLM into a 
specialized pre-processor for our supervised 
models. The prompt's key innovation is a 
conditional grouping strategy: it instructs the LLM 
to create separate, self-contained paragraphs for 
each material (POLYMER or its composite), and 
further subdivides these by CHAR_METHOD 
only if a method is explicitly stated. This 
hierarchical grouping is crucial as it prevents the 
ambiguous association of multiple properties with 
their respective measurement contexts—a 
common challenge for downstream relation 
extraction models. 

Furthermore, by enforcing a strict, single-line 
output format and text normalization rules (e.g., 
“T_g” to “Tg”), the prompt ensures the generated 
text is a consistent and machine-readable 
intermediate representation, optimized for the 
models in the subsequent stage. 

Stage 2: Supervised Text-based Tuple 
Extraction: The text generated from Stage 1 is 
then processed by a fixed, pre-trained text 
extraction system composed of supervised models 
trained on the PolyNERE corpus (Phi et al., 2024), 
selected based on their proven high performance. 

We employ a W2NER model (Li et al., 2022), 
which is adept at handling the flat, overlapped, and 
discontinuous entity structures common in 
scientific text. This architecture is similar to that 
used in the PolyMinder system (Do et al., 2025). 
To further optimize for the materials science 
domain, we pair it with the MatBERT encoder 
(Walker et al., 2021). 

We utilize the ATLOP model (Zhou et al., 2021), 
a choice validated by its strong performance in 
prior work (Phi et al., 2024; Do et al., 2025). To 
effectively capture the complex relationships 
present in the text, the model is paired with the 
powerful DeBERTa-v3-large encoder (He et al., 
2020). 

3.2 Method 2: Direct Tuple Extraction using 
LLMs 

This approach follows a conventional end-to-end 
paradigm. The same multi-modal prompt is passed 
to a vision-enabled LLM. The prompt (see 
Appendix B) instructs the model to analyze the 
table's visual structure and associated text to 
directly output a list of all identifiable property 
tuples. To ensure a fair comparison, this prompt is 
also highly engineered with a similar set of detailed 
instructions and critical rules. This method relies 
entirely on the LLM's in-context reasoning to 
perform all sub-tasks simultaneously and serves as 
a direct baseline to evaluate the effectiveness of our 
hybrid pipeline. 

4 Experiments 

4.1 Datasets 

The ground truth for our evaluation was 
constructed through a manual alignment process. 
We sourced curated polymer property data from the 
expert-driven PoLyInfo database (Otsuka et al., 
2011) and mapped it to relevant content within a 
corpus of 37 tables from 29 scientific papers. Our 
final golden set comprises 293 property 
information tuples. Each tuple contains three 
essential entities (POLYMER, PROP_NAME, and 
PROP_VALUE), supplemented with optional 
CONDITION and CHAR_METHOD entities 
when available in the PoLyInfo entry. We 
confirmed that the 37 evaluation tables have no 
overlap with the PolyNERE training corpus, 
ensuring that supervised models in Stage 2 were 
tested on entirely unseen content. 

Our analysis shows that the PoLyInfo-based 
golden annotations cover ~66% of all property 
names found across the evaluated tables. 
Specifically, we manually counted 132 property 
names appearing in the row and column headers of 
the 37 tables. The PoLyInfo database is an expert-
curated resource where domain experts selectively 
extract and store only the most critical and 
standardized property information from scientific 
papers. Of the 132 property names in our tables, 87 
(66%) have corresponding entries in PoLyInfo and 
were used to construct our golden set of 293 tuples. 
The remaining 45 property names (34%) may 
represent less critical properties that were not 
prioritized by expert curators for inclusion in 
PoLyInfo. Our evaluation is therefore near-
comprehensive in its assessment of the most 

96



important, standardized properties deemed critical 
by domain experts for polymer characterization. 

For the hybrid pipeline, predicted binary 
relations from the ATLOP model are merged into 
5-ary tuples based on the relation schema defined 
in Phi et al. (2024). During manual evaluation of 
these composed tuples (for both methods), we 
observed a consistent one-to-one mapping between 
a golden tuple and a corresponding prediction for 
each (POLYMER, PROP_NAME) pair (see 
Appendix E). A prediction is marked as True (T) 
only if all five of its constituent entities exactly 
match the golden tuple; otherwise, it is marked as 
False (F). 

4.2 Results 

Based on the observed one-to-one mapping in 
our evaluation setup, the number of False Positives 
and False Negatives are equivalent for the set of 
evaluated golden tuples. Consequently, Precision 
and Recall converge to the same value. We 
therefore report this unified metric as 
F1@PoLyInfo, representing the percentage of 
correctly extracted tuples from the set of important, 
PoLyInfo-defined properties:  
F1@PoLyInfo (%) = # True / (# True + # False) * 100 

We trained the supervised W2NER and ATLOP 
models using established hyperparameters from 
prior work (30 epochs, batch size 8, Adam 
optimizer). All LLM inferences were performed 
with deterministic settings (temperature=0, 
top_p=1). 

We first establish the performance of our 
pipeline's core supervised models by evaluating 
them on the PolyNERE test set against the 
PolyMinder baseline (Do et al., 2025). Table 1 
shows our selected models significantly 
outperform the established baseline for text-based 
extraction in this domain. Our W2NER+MatBERT 
configuration improves the NER F1 score by +2.02 
points, while our ATLOP+DeBERTa-v3-large 
model shows a more significant +4.17 F1 point 

gain for RE. These results confirm their role as a 
powerful foundation for processing the linearized 
table data. 

We then evaluated the two end-to-end 
methodologies on our table extraction task. The 
results are summarized in Table 2. 

 The hybrid pipeline proves to be the superior 
strategy for the majority of the tested models. The 
advanced LLMs, Claude Sonnet 4.5, Gemini 2.5 
Flash, and Qwen2.5-VL 32B Instruct, all saw 
dramatic performance increases when used in the 
hybrid pipeline. Specifically, Gemini 2.5 Flash and 
Qwen2.5-VL 32B improved by an absolute 
+31.06% and +24.57%, respectively, indicating 
that decomposing the complex task is critical for 
these models. 

The best performance in our study was achieved 
by the hybrid pipeline, with Claude Sonnet 4.5 in 
the linearization stage reaching 67.92% 
F1@PoLyInfo. This represents a substantial 
+11.26% absolute improvement over its already 
strong direct extraction performance. An important 
exception to the general trend is GPT-4.1, for 
which the direct extraction method performed 
slightly better (40.61%) than the hybrid pipeline 
(38.23%). Similarly, the performance of GPT-4o 
mini was nearly identical across both methods. 
This suggests that for certain models, error 
propagation in a two-stage process—where 
suboptimal text generation in Stage 1 negatively 
impacts the supervised models—can outweigh the 
benefits of task decomposition. A detailed case 
study in Appendix D analyzes the specific failure 
modes of the pipeline for GPT-4.1. 

The direct extraction method proved 
significantly more challenging for the majority of 
LLMs, with steep performance drops for models 
like Gemini 2.5 Flash and Qwen2.5-VL 32B 
highlighting the immense difficulty of 
simultaneously parsing a 2D structure and 
composing complex relations in a single step. 

Model 
Hybrid Pipeline LLM Extraction 
True False F1 True False F1 

Claude Sonnet 4.5 199 94 67.92 166 127 56.66 
GPT-4.1 112 181 38.23 119 174 40.61 

GPT-4o mini 142 151 48.46 141 152 48.12 
Gemini 2.5 Flash 164 129 55.97 73 220 24.91 
Qwen2.5-VL 32B 158 135 53.92 86 207 29.35 

Table 2:  Model performance results. 

 

 

Task Model Encoder P R F1 

NER 
W2NER MatBERT 78.79 79.81 79.30 
Baseline MatSciBERT 78.05 76.53 77.28 

RE 
ATLOP DeBERTa-v3-

large 87.93 86.89 87.40 

Baseline MatSciBERT 83.99 82.49 83.23 

Table 1:  NER and RE performance on the 
PolyNERE test set. RE uses gold entities. 
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The hybrid pipeline's success lies in assigning 
the right task to the right model. The LLM excels 
at the generative, context-aware task of converting 
a table into fluent text. The supervised W2NER and 
ATLOP models, which are pre-trained and fine-
tuned for their specific tasks, then excel at precise, 
closed-set extraction from this clean, textual input. 
This hybrid architecture proves more robust and 
accurate for most models, though it is not a 
universally guaranteed improvement, as seen with 
GPT 4.1. 

5 Conclusion 

In this work, we compared a hybrid pipeline (LLM 
linearization and supervised NER/RE) against a 
direct LLM approach for property extraction from 
tables, finding the hybrid architecture to be the 
more robust strategy on our PoLyInfo-based 
benchmark. Our best pipeline configuration 
achieves 67.92% F1@PoLyInfo, demonstrating 
that task decomposition with specialized 
supervised models yields superior performance 
compared to end-to-end LLM approaches. 

Limitations 

First, the evaluation set, while carefully curated, 
is of moderate size (293 tuples from 37 tables) and 
focused exclusively on the polymer science 
domain, and performance may vary on other types 
of scientific tables. Second, the hybrid pipeline's 
performance is highly dependent on the quality of 
the LLM-generated text in Stage 1, and as shown 
with GPT-4.1, poor linearization can create a 
bottleneck. Third, the success of our hybrid 
pipeline relies on the availability of well-trained 
text analyzers for NER and RE. This approach 
presupposes that high-quality, domain-specific 
supervised models are available for the second 
stage. Finally, our prompts were carefully 
designed with domain-specific instructions, but 
we did not systematically evaluate sensitivity to 
prompt variations. Evaluation requires manual 
normalization of tuples before matching, making 
comprehensive prompt experiments labor-
intensive. Future work could explore automated 
evaluation methods for systematic prompting 
strategy comparison. 
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A Prompt for LLM-based Table-to-Text 
Conversion (Method 1) 

You are analyzing a scientific table image. Convert it 
into structured natural language text that will be 
processed by Named Entity Recognition (NER) and 
Relation Extraction (RE) models. 

 
TABLE CAPTION: [INSERT CAPTION TEXT 

HERE] 
FOOTNOTES: [INSERT FOOTNOTES TEXT 

HERE] 
 
TASK: Create separate paragraphs for each material 

to prevent entity confusion. If different properties are 
measured using different characterization methods 
(found in caption, footnotes, or column headers), create 
separate paragraphs for each material-method 
combination. 

 
**CRITICAL: Only separate by characterization 

method if methods are explicitly stated. If no methods are 
mentioned, write all properties for a material in one 
paragraph.** 

 
OUTPUT STRUCTURE: 
1. First sentence: Introduce the table using the 

caption 
2. Then, for EACH material: 
   - **If characterization methods are specified**: 

Write separate paragraphs for each method 
   - **If NO methods are specified**: Write one 

paragraph with all properties 
3. Add blank line between paragraphs 
 
REQUIREMENTS FOR EACH PARAGRAPH: 
- Start with the material name EXACTLY as it 

appears in the table 
- **If characterization method is specified**: Include 

it after material name 
- **If NO method is specified**: Omit method phrase 

entirely 
- List properties with their values and units 
- Include any conditions from the caption, footnotes, 

or column headers 
- Write each paragraph as a SINGLE continuous line 
- **Format with method**: "For [material name] 

measured by [CHAR_METHOD] [condition phrase]: 
[property name] is [value unit], [property name] is 
[value unit], ..." 

- **Format without method**: "For [material name] 
[condition phrase]: [property name] is [value unit], 
[property name] is [value unit], ..." 

 

ENTITY TYPES TO INCLUDE: 
1. POLYMER: Material/polymer name exactly as 

written in the table 
2. PROP_NAME: Complete property name from 

column header 
3. PROP_VALUE: Numerical value WITH unit (e.g., 

"7.29 MPa", "266.53%", "45.2 wt%") 
4. CONDITION: Experimental conditions starting 

with a preposition (e.g., "at X°C", "with n=Y", "under 
annealing") 

5. CHAR_METHOD: Measurement or 
characterization method as a noun phrase (e.g., "SEC", 
"DSC", "tensile testing") 

 
CRITICAL RULES: 
- Use material names EXACTLY as they appear in the 

table (no expansion or modification) 
- **DO NOT treat property names as 

characterization methods** 
- **Only use "measured by" when an actual 

measurement technique is specified (e.g., SEC, NMR, 
DSC, XRD, TEM, SEM, FTIR)** 

- **Column headers showing property names (e.g., 
"Tensile strength", "Density", "Modulus") are NOT 
characterization methods** 

- Separate by characterization method only when 
methods are explicitly mentioned 

- Copy exact numbers and units from the table 
- Include units WITH values (e.g., "7.29 MPa" not 

just "7.29") 
- Each paragraph must be a single continuous line - 

NO line breaks within a paragraph 
- Add blank line between paragraphs only 
- DO NOT use subscript notation with underscores 

(e.g., M_n, T_g, T_c). Instead use simplified notation 
(e.g., Mn, Tg, Tc) 

- Condition phrases must start with a preposition 
(e.g., "at", "under", "with", "in", "by") 

- CHAR_METHOD must be a noun phrase (e.g., 
"DSC", "tensile testing", "X-ray diffraction") 

 
EXAMPLE FORMAT: 
 
**Case 1 - NO characterization methods 

specified:** 
This table presents [property category] of [material 

type] materials. 
 
For [Material-A] [condition phrase if any]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit], 
[property-3] is [Z.ZZ unit]. 

 
For [Material-B] [condition phrase if any]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit], 
[property-3] is [Z.ZZ unit]. 

 
**Case 2 - Characterization methods ARE 

specified:** 
This table presents [property category] of [material 

type] materials. 
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For [Material-A] measured by [CharMethod-1]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit]. 
 
For [Material-A] measured by [CharMethod-2] 

[condition phrase if any]: [property-3] is [Z.ZZ unit], 
[property-4] is [W.WW unit]. 

 
For [Material-B] measured by [CharMethod-1]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit]. 
 
For [Material-B] measured by [CharMethod-2] 

[condition phrase if any]: [property-3] is [Z.ZZ unit], 
[property-4] is [W.WW unit]. 

 
OUTPUT: Return ONLY the converted text. No 

explanations or additional commentary. 

B Prompt for Direct Tuple Extraction 
(Method 2) 

You are analyzing a scientific table image. Extract ALL 
property measurements from the table as structured 
tuples. 

 
TABLE CAPTION: [INSERT CAPTION TEXT 

HERE] 
FOOTNOTES: [INSERT FOOTNOTES TEXT 

HERE] 
 
TASK: Extract ALL property measurements from the 

table as 5-element tuples. 
 
TUPLE FORMAT: 
(POLYMER, PROP_NAME, PROP_VALUE, 

CONDITION, CHAR_METHOD) 
 
REQUIREMENTS FOR EACH TUPLE: 
- Extract one tuple for EACH property measurement 

(one row × one column = one tuple) 
- Include the complete material name in every tuple 
- Copy exact values with units from table cells 
- Extract any conditions or methods from the caption, 

footnotes, or column headers 
- Process systematically: for each material (row), 

extract all properties (columns) 
 
ENTITY TYPES TO INCLUDE: 
1. POLYMER: Material/polymer name exactly as 

written in the table (e.g., "PE", "Sample A", "Composite-
5") 

2. PROP_NAME: Complete property name from 
column header (e.g., "tensile strength", "glass transition 
temperature") 

3. PROP_VALUE: Numerical value WITH unit (e.g., 
"X.XX MPa", "YY.Y%", "Z.ZZ ± 0.XX unit") 

4. CONDITION: Experimental conditions starting 
with a preposition (e.g., "at X°C", "with n=Y", "under 
annealing", "in air") 

5. CHAR_METHOD: Measurement or 
characterization method as a noun phrase (e.g., "tensile 
testing", "thermal analysis", "SEC", "DSC") 

 
CRITICAL RULES: 
- Use material names EXACTLY as they appear in the 

table (no expansion or abbreviations) 
- Repeat material names in every tuple for clarity 
- Copy exact numbers and units from the table 
- Include units WITH values (e.g., "7.29 MPa" not 

just "7.29") 
- Extract conditions/methods from caption, footnotes, 

and headers 
- CONDITION must start with a preposition (e.g., 

"at", "under", "with", "in", "by") 
- CHAR_METHOD must be a noun phrase (e.g., 

"DSC", "tensile testing", "X-ray diffraction") 
- If condition or method not specified, use empty 

string "" 
- One measurement = one tuple 
- DO NOT use subscript notation with underscores 

(e.g., M_n, T_g, T_c). Instead use simplified notation 
(e.g., Mn, Tg, Tc) 

 
EXAMPLE FORMAT (using placeholder values): 
("PE", "property 1", "value unit", "at condition", 

"method name") 
("PE", "property 2", "value unit", "", "") 
("Sample C", "property 1", "value ± error unit", "at 

condition 1, with condition 2", "characterization 
method") 

 
OUTPUT: Return ONLY the tuple list. One tuple per 

line. No explanations or additional commentary. 

C Examples of Evaluated Tables 

 
Figure 1: Example table from the evaluation set, 
featuring complex headers and footnotes linking 
properties to characterization methods (SEC, DSC, 
NMR). 
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Figure 2: Example table illustrating a common 
ambiguity where two columns share a property 
name (Tg) but are distinguished by different 
characterization methods (DSC, DMA) in the 
footnotes. 

D Error Analysis: Understanding the 
GPT-4.1 Performance Anomaly 

As noted in Section 4.2, GPT-4.1 was a notable 
exception to the general trend, performing slightly 
better with direct extraction than within the hybrid 
pipeline. This appendix provides a case study to 
dissect the specific failure modes that explain this 
result, highlighting the critical role of the table-to-
text linearization stage and the potential for error 
propagation. We use the table in Figure 3 and its 
corresponding PoLyInfo-based golden annotations 
in Figure 4 as a running example. 

Analysis of the Hybrid Pipeline (Method 1): 
In the hybrid pipeline, the quality of the final 
extraction is entirely dependent on the quality of 
the text generated by the LLM in Stage 1. Figure 3 
shows a table where characterization methods 
(TGA, DSC) are specified as column headers. 

Generated Text from GPT-4.1: For the input 
table in Figure 3, GPT-4.1 produced the following 
linearized text for Stage 2: 

“This table presents characteristics of both PFS 
and PWN2010. 
For PFS at RH = 50%, T = 30 °C: Mn is 30 200, 
Mw is 59 000, PD is 1.92, IEC calcd is 0 mmol 
g⁻¹, IEC found is 0 mmol g⁻¹, Tdecomp is 285 °C, 

Tg is 105.5 °C, water uptake [wt %] is 0, water 
uptake [λ] is 0. 
For PWN2010 at RH = 50%, T = 30 °C: Mn is 
9 000, Mw is 67 000, PD is 7.5, IEC calcd is 7.8 
mmol g⁻¹, IEC found is 7.0 mmol g⁻¹, Tdecomp 
is 340 °C, Tg is >330 °C, water uptake [wt %] 
is 18, water uptake [λ] is 2.5.” 

This generated text contains two critical flaws 
that lead to downstream extraction failures: 

• Omission of Characterization Methods: 
The LLM failed to identify “TGA” and 
“DSC” from the column headers as 
characterization methods and did not include 
them in the generated paragraphs. Because 
this information is completely absent from 
the text, it is impossible for the downstream 
supervised W2NER and ATLOP models to 
extract the CHAR_METHOD entity. This 
results in an immediate and unavoidable 
False evaluation for four of the six golden 
tuples shown in Figure 4. 

• Incorrect Value-Unit Representation: The 
linearization format “...water uptake [wt %] 
is 0...” separates the property's unit from its 
value. The supervised NER model, which 
relies on surface text patterns, struggles with 
this structure. It is likely to identify 
PROP_VALUE as just "0" and incorrectly 
associate "[wt %]" with the PROP_NAME. 
This creates a mismatch with the golden 
annotation in Figure 4, which correctly 
defines PROP_NAME as "water uptake" 
and PROP_VALUE as "0 wt%". 

These linearization errors propagate through the 
pipeline, preventing the supervised models in Stage 
2 from performing correctly and resulting in a low 
overall score. 

Figure 3: Input table for the error analysis. 
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Analysis of Direct LLM Extraction (Method 
2): In the direct extraction method, the LLM is 
responsible for parsing the table and generating 
tuples in one step. Below are the corresponding 
outputs from GPT-4.1 for the golden tuples in 
Figure 4. Incorrectly predicted entities are shown 
in bold. 

("PFS", "Tdecomp", "285 °C", "", "TGA") 
("PFS", "Tg", "105.5 °C", "", "DSC") 
("PFS", "water uptake [wt %]", "0", "at RH = 

50%, at T = 30 °C", "") 
("PWN2010", "Tdecomp", "340 °C", "", 

"TGA") 
("PWN2010", "Tg", ">330 °C", "", "DSC") 
("PWN2010", "water uptake [wt %]", "18", 

"at RH = 50%, at T = 30 °C", "") 

From these outputs, we observe: 

• Correct CHAR_METHOD Extraction: 
For properties with simple headers like 
“Tdecomp” and “Tg”, the direct method 
performs perfectly, correctly identifying 
“TGA” and “DSC” as the 
CHAR_METHOD. This gives it an 

advantage over the flawed pipeline 
output, where this information was lost. 

• Incorrect PROP_NAME and 
PROP_VALUE Parsing: Similar to the 
pipeline's issue, the direct method also 
struggles with the complex "water 
uptake" header. It incorrectly merges the 
unit “[wt %]” into the PROP_NAME and 
extracts only the numerical part ("0" or 
"18") as the PROP_VALUE, leading to a 
mismatch. 

This case study explains the GPT-4.1 
performance anomaly. The hybrid pipeline's 
linearization stage made a significant error by 
omitting CHAR_METHOD information, leading 
to unavoidable downstream failures for the 
supervised models. In contrast, the direct extraction 
method, while also imperfect, correctly extracted 
more of the golden tuples. This demonstrates the 
risk of error propagation in a pipeline. If an LLM's 
text generation style is a poor fit for the 
downstream models, a direct approach can, in some 
cases, yield slightly better results by avoiding this 
cascade of errors. 

E One-to-One Mapping in Tuple 
Evaluation 

We observed a consistent one-to-one mapping 
between golden tuples and predictions for each 
(POLYMER, PROP_NAME) pair across all 
evaluated tuples. 

For the Hybrid Pipeline: The ATLOP model 
predicts binary relations that are merged into 5-ary 
tuples following Phi et al. (2024). When multiple 
binary relations share the same (POLYMER, 
PROP_NAME, PROP_VALUE) triple, they are 
consolidated into a single tuple by aggregating 
CONDITION and CHAR_METHOD entities. 

For Direct LLM Extraction: Scientific tables 
organize data with one measurement per cell. The 
prompt instructs "Extract one tuple for EACH 
property measurement (one row × one column = 
one tuple)", and all LLMs followed this instruction. 

Under this one-to-one constraint, each incorrect 
prediction simultaneously represents both a false 
positive and a false negative, making these counts 
equivalent. 

Figure 4: The PoLyInfo-based golden annotations for 
the table in Figure 3. These tuples serve as the ground 
truth for the error analysis, highlighting failures in 
CHAR_METHOD and PROP_VALUE extraction. 
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