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Abstract

The data archives at IPAC, including the NASA
Extragalactic Database (NED) and NASA Ex-
oplanet Archive (NEA), have served as repos-
itories for data published in the astronomical
literature for decades. Throughout this time,
extracting data from journal articles has re-
mained a challenging task and future large data
releases will exasperate this problem. We seek
to accelerate the rate at which data can be ex-
tracted from journal articles and reformatted
into database load files by leveraging recent
advances in natural language processing en-
abled by Al. We are developing a new suite
of tools to semi-automate information retrieval
from scientific journal articles. Manual meth-
ods to extract and prepare data, which can take
hours for some articles, are being replaced with
Al-powered tools that can compress the task
to minutes. A combination of Al and non-Al
methods, along with human supervision, can
substantially accelerate archive data ingestion.
Challenges remain for improving accuracy, cap-
turing data in external files, and flagging issues
such as mislabeled object names and missing
metadata.

1

The NASA Extragalactic Database (NED)' and
NASA Exoplanet Archive (NEA)? are two astro-
nomical data repositories operated by IPAC at
the California Institute of Technology which have
served the scientific community since 1990 and
2011 respectively. NED has collected over 1.1 mil-
lion distinct objects, including galaxies, quasars,
and gamma ray bursts. NEA seeks to provide a
complete list of confirmed exoplanets, which now
number over 6,000, and their stellar hosts. New
data flow through similar pipelines for both NED
and NEA as they are prepared for ingestion into
the archives’ internal databases. Newly-published

Introduction

"https://ned.ipac.caltech.edu/
Zhttps://exoplanetarchive.ipac.caltech.edu/

87

articles are found via queries to the listing services
of the Astrophyiscs Data System (ADS)?. These
articles are then fed through a relevance classifica-
tion model, which seeks to predict whether or not
the data from an article should be ingested into the
archive. A scientist then selects the relevant papers
from a user interface displaying the relevance clas-
sifier results. Next, the appropriate data is extracted
from the article and transformed into the particular
load file formats for NED and NEA before being
ingested into the databases. Throughout most of
the history of these archives, the data extraction
and load file creation process has been done manu-
ally, largely because astronomical journal articles
vary widely in structure and semantics. While this
manual process has been functional, both archives
currently have backlogs of unprocessed published
journal articles and keeping up with newly pub-
lished literature can be difficult. To add to this, an-
ticipated exoplanet candidate detection yields from
future missions have the potential to substantially
increase NEA’s holdings. Data releases from mis-
sions such as Gaia (Perryman et al., 2014), Roman
(Penny et al., 2019; Wilson et al., 2023), PLATO
(Matuszewski et al., 2023), and Earth 2.0 (Ge et al.,
2024) include estimated yields of thousands to hun-
dreds of thousands of candidate exoplanets. Given
these realities, it has become important for the data
archives at IPAC to enhance the throughput of their
data ingestion pipelines.

The field of natural language processing has
yielded tools that are increasingly-capable of min-
ing data from the text of scientific journal arti-
cles. This work initially investigated Word2Vec
(Mikolov et al., 2013) and its extension Doc2Vec
(Le and Mikolov, 2014). Word2Vec/Doc2Vec
have largely been improved upon by transformer-
architecture large language models (LLMs), which
use attention mechanisms to create more dynamic

3https://ui.adsabs.harvard.edu/
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contextual understanding of text (Devlin et al.,
2018; Liu et al., 2019; Brown et al., 2020; Touvron
et al., 2023a). LLMs can function as foundation
models and be finetuned or directed via prompt
engineering to complete downstream tasks.

Other works have shown that foundational LLMs
pretrained on domain-specific data (in particular,
astronomy - c.f. Grezes et al., 2022, 2024; Bhat-
tacharjee et al., 2024; de Haan et al., 2025) out-
perform other LLMs not attuned to this domain on
downstream tasks related to it. This project there-
fore uses models pretrained on the astronomical
literature. We initially considered the encoder As-
troBERT (Grezes et al., 2024, 2022) and decoder
AstroLlama (Dung Nguyen et al., 2023), but de-
cided to use the encoder INDUS (Bhattacharjee
et al., 2024) and decoder AstroSage-Llama-3.1-8B
(AstroSage; de Haan et al., 2025) instead. INDUS
and AstroSage are based on more advanced models
than the preceding AstroBERT and AstroLlama:
astroBERT uses the architecture of BERT (Devlin
etal., 2018) and INDUS is based on RoBERTa (Liu
et al., 2019), while AstrolLlama uses the Llama-2
(Touvron et al., 2023b) architecture and AstroSage
is based on that of Llama-3.1 (Grattafiori et al.,
2024).

The goal of this work is to produce a tool which
accelerates the processes of data extraction and
load file creation for NED and NEA. There is no ex-
pectation that the load files created using these tools
will be perfect, so automated issue flagging, human
supervision, and periodic re-training of models will
be integral to this process.

2 Methods

A variety of methods, both Al-based and not, are
being deployed at the different stages of the archive
data ingestion pipeline.

2.1 Data Retrieval

Each module of this work uses the full text of a
journal article. These are downloaded from ADS
using their API service and converted from the PDF
format to plain text using the PyMuPDF loader
provided by LangChain*. We used the INDUS
tokenizer to convert this text into the appropriate

format when using INDUS.

*https://docs.langchain.com/oss/python/langchain/overview
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2.2 Relevance Classification

Both NED and NEA already use machine learning
classifiers to predict the probability that an article is
relevant to their holdings. The relevance classifier
used by NED (Chen et al., 2022a) is based on the
Stanford Classifier (Finkel et al., 2005), while the
NEA tool (Susemiehl & Christiansen, in prep.) in-
puts Doc2Vec embeddings to a logistic regression
model. Both of these tools have successfully auto-
mated this task. However, their accuracy has been
declining due to changes in content and structure
of newer journal articles, and transformer-based
LLMs finetuned to this task have the potential to
more accurately predict paper relevance. Due to the
active development cycle of this project, this tasks
is being reserved for after after the completion of
other modules (see Future Work S4.1).

2.3 Data Extraction

Once a relevant article is identified, the data it
presents must be extracted into load files that can
be ingested into the NED and NEA databases. The
data in these articles, such as a planet’s mass or a
galaxy’s redshift, can be contained in the main text
or tables within an article, and also in external files
linked to some articles. Transformer-based LLMs
have as input one-dimensional strings of text, so the
two-dimensional structure of tables is lost during
training/inference. We therefore employ different
methods for text and tabular data extraction.

2.3.1 Object Name Detection

The detection of the names of astronomical objects
which are presented in a given article is a funda-
mental task in this work. To this end, we finetuned
INDUS (Bhattacharjee et al., 2024) instances using
the HuggingFace Python library (Wolf et al., 2019)
on token classification tasks for both archives.
While both NED and NEA hold large databases
of object names and their corresponding article
identifiers, the locations of the names within these
articles is not recorded. In order to frame this task
as a supervised learning problem, it is necessary
to label each token in an article as either an object
or not an object. While human annotation is com-
monly employed to label training data in similar
cases, this is an expensive endeavor. We sought to
leverage the large set of object names and articles
held by NED and NEA by automatically labeling
the tokens within each article. We converted each
object name in the NED and NEA lists to generic
forms using regular expressions. The formulated



regular expressions allow for variations in sepa-
rators, abbreviations, numerical digits, and planet
letter suffixes from the published object names to
the canonical forms in the archives. A challenge of
this technique is in eliminating both false positive
and false negative labeling, as mislabeled tokens
pollute the training data set and limit model perfor-
mance during inference.

Following the regular expression-based token
labeling, the training data sets were composed of
8268 articles (300.4 million tokens) for the NED
model and 2230 articles (89.6 million tokens) for
the NEA model. A hyperparameter search of 10
trials was performed over the learning rate, dropout,
weight decay, and random seed. The INDUS
models were then finetuned for 10 epochs using
the HuggingFace framework. The NED model
achieved an F1 score on an unseen test set of 0.95
while the NEA model scored an F1 of 0.94 on its
test set. However, an investigation of the learning
curve (Figure 1) reveals that both models failed to
learn the validation data. This is corroborated by
a high occurrence of incorrect labels while quali-
tatively assessing the models’ performances. We
found that this finetuned version of INDUS outper-
forms the base model on the name identification
task, suggesting the finetuning process was still
useful. External validation tools, which compare
potential names to expected name formats, are used
to reduce false positive predictions during usage
of the tool. It seems likely that this poor model
performance is caused by pollution of the training
data set during the labeling phase, so future work
will investigate means to improve this process.

2.3.2 Text Extraction

Necessary data are often included within the body
text of an article. These can be numerical values
(e.g. coordinates) or words/phrases (e.g. telescope).
Examples of data types regularly found in the body
of an article include type of an extragalactic object
and the method used to detect an exoplanet. The
usage of synonyms, abbreviations, and acronyms
for these values is common in the literature. Given
the unstructured nature of the body text and the dif-
ficulty in composing a token-level training dataset
for heterogeneous labels, supervised finetuning ap-
proaches may be less applicable. Instead, genera-
tive Al is useful because of its ability to read large
contexts and answer questions pertaining to data
extraction from prompts. We prompt the decoder
LLM AstroSage (de Haan et al., 2025) to return the
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Figure 1: A typical example of a learning curve from
finetuning the object name detection model on NEA
data (NEA and NED learning curves are qualitatively
similar. The flat validation loss curve indicates that the
model failed to learn during finetuning.

various data types needed to populate a database
load file. This is done in zero-shot context with-
out finetuning. Any article longer than the effec-
tive context length of AstroSage (Llama-3.1 8B),
32,000 tokens (Hsieh et al., 2024), is broken into
sections of 512 tokens each. A retrieval augmented
generation system then selects the most relevant
512 token-sized chunks of text to fill the 32,000 to-
ken context (i.e. the top ~62 chunks are combined
to serve as the prompt’s context). Otherwise, suf-
ficiently short articles are included entirely within
the prompt’s context. Grammar-constrained decod-
ing is leveraged to force the output of the LLM
into a JSON format with keys corresponding to
the needed data types. The LLM-outputted values
are further required to be chosen from a particular
set of possible options for some categorical data
types (e.g. object class). These methods control
the output to align with the data types expected to
be included in the database load files.

2.3.3 Table Extraction

The structured nature of tables is advantageous for
extracting data from them. A variety of detected
and derived object parameters, such as redshift and
mass, are commonly found within the tables of
NED and NEA articles. LLMs, while useful for
unstructured data (text), reduce the 2-D grid of a
table down to a 1-D string which makes the correct
alignment between labels and their respective val-
ues difficult. Including positional and descriptive
tags within the table text included in prompts to the
AstroSage was not found to improve the correct



association between extracted values and their re-
spective objects in this work, so methods not solely
reliant on an LLM were investigated for this task.

Tables are identified within articles and extracted
using the GMFT package’, which converts the
PDF tables to Pandas dataframes (Wes McKinney,
2010). Next, every cell in the dataframe is labeled
as either an astronomical object using the object
name detection model or a parameter label. We
achieve parameter label assignments by matching
each as-published potential label to a dictionary
of previously-seen labels, converting both to em-
beddings, and calculating a cosine similarity score.
The label type corresponding to the highest match-
ing previously-seen label is then assigned to the
as-published label in the table’s dataframe (if there
is a match score greater than 0.9). With both the
objects and parameter labels of a table identified,
the dataframe cell containing the respective value
is assumed to be the lower-right intersection of the
object and parameter label positions in the 2-D grid
of the dataframe. This enables direct, automated ex-
traction of data values while maintaining alignment
between the object and parameter labels. However,
the dictionary of previously-seen parameter labels
needs to be expanded whenever substantially dif-
ferent label presentations are encountered.

2.4 Load File Creation

Once data are extracted from the text and tables
of an article, they are cleaned and reformatted into
database load files using programmatic methods in
Python. There are additional components to these
files which can be inferred without the use of the
above methods.

2.4.1 Other data

NED and NEA load files contain sections of "meta-
data" regarding the objects to be ingested. This
includes, for example, the addition of aliases for a
given object. The aliases which need to be added
for an object can be inferred by comparing existing
entries in the NEA database to those in external
databases (e.g. Simbad). Other metadata, like the
internal updates to a system’s orbital configuration,
can be inferred by querying of the NEA databases.
An example of inferrable data for NED is the co-
ordinate system (sexagesimal or decimal degree),
which can be ascertained via regular expression
matching of the retrieved coordinate value.

>https://github.com/conjuncts/gmft
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3 Results

Prototype versions of these tools have been devel-
oped to enable the creation of a database load file
with minimal operator input, enabling the semi-
automated extraction of data from articles into
database load files. Preliminary testing of the tools
shows promising performance in its ability to save
time. The accuracy of an Al-generated load file is
computed by comparing the presence and equal-
ity of extracted values to those in the respective
human-created load file. These comparisons are
made between dataframes containing the extracted
data, so the score is robust to minor formatting dif-
ferences within the files. Early testing has shown
accuracies around 20%, but this low score is of-
ten not reflective of the often small effort needed
to correct an Al-generated file. Future work will
seek to expand the usage of this accuracy metric to
robustly quantify the performance of these tools.

3.1 Computational Performance

This work was has used a Quadro RTX 6000 GPU
for model finetuning and inference. The run dura-
tion of the data extraction tools increase with the
number of objects and the length of the text. In-
ference using INDUS typically takes less than one
minute per table, while prompts using AstroSage
return responses in roughly 5-10 minutes per object.
The slow completion speed of AstroSage prompts
motivates the investigation of methods not based
on decoder models to extract data from the text of
an article (see S4.1) in less time, which will also
aid in large-scale performance quantification.

4 Conclusions

This early work has shown that Al-powered tools,
when combined with other programmatic meth-
ods and supervised by humans, can enhance the
data ingestion pipelines at NED and NEA. While
the results from early versions of these tools can
suffer in accuracy, the time it takes to generate
and correct a file can also be less than the time it
would take to make the file by hand. Transformer-
based Al is useful at several junctures of this work,
but reliance on these methods alone were found
to be insufficient for some subtasks of this project.
Both automated and human verifications within the
pipeline are needed due to the inaccuracy of Al-
derived solutions (although there is potential for
improvement). There are also practical limitations
to the effectiveness and accuracy of automated data



extraction from the literature due to issues with
the way data are sometimes published. Examples
include: ambiguous object names, which are typi-
cally truncated coordinate-based names that cannot
be accurately cross-identified using the NED and
NEA name resolvers; data with missing uncertain-
ties; omission of the reference frame for some mea-
surements; and critical data linked to URLs that
are no longer working. Many of these issues can
be solved if authors and referees are more careful
about following best practices for publishing data
in the astronomical literature (Chen et al., 2022b).
This work is in active development and will con-
tinue to be improved upon in the coming months.

4.1 Future Work

Prototype versions of these tools are being tested in
production contexts. Operators have been asked to
provide feedback which will be addressed to make
improvements.

We will also seek to improve the automated train-
ing data labeling process for the object name detec-
tion model. Name validation tools will be used to
eliminate false positive token labels and a broader
search (i.e. searching each article for every name
type) will reduce false negative token labels. This
finetuned INDUS model and accompanying train-
ing data will be shared on the HuggingFace plat-
form once its performance is improved.

Supervised finetuning of INDUS and AstroSage
for the extraction of other data types will also be
investigated, as decoder finetuning has been shown
to increase the accuracy of related tasks (Zhao et al.,
2024). This can be done at the document level for
most data types, as the location of extracted data
within an article is not retained by NED or NEA.

Additionally, data from external sources pro-
vided in links within articles will be accounted
for where possible, as well as the units of numeri-
cal values (including automatic conversion). The
evolving nature of the language used in astronom-
ical journal article as new methods are employed
or missions launched necessitates the periodic re-
training of literature models. This will begin by
replacing the old Standford/Doc2Vec-based rele-
vance classification models with the encoder LLM
INDUS, as discussed in S2.2. Other extensions,
such as the consideration of images, will be ap-
proached in the future. While models adapted to the
domain of astronomy have been shown to achieve
better performance on astronomy-related tasks than
models trained on broader contexts (e.g. Grezes

et al., 2022, 2024; Bhattacharjee et al., 2024; de
Haan et al., 2025), this work would benefit from a
comparison between models like INDUS and As-
troSage to modern frontier models from groups
such as OpenAl and DeepSeek.
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