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Abstract

Educational Data Mining (EDM) is a grow-
ing field that leverages data-driven methods
to improve learning and teaching processes.
Among its applications, diagnostic questions
have emerged as a valuable tool for identifying
common student misconceptions. These ques-
tions feature a correct answer and distractors,
each aligned with specific misunderstandings.
In this study, we propose a two-stage retrieval
framework inspired by Retrieval-Augmented
Generation (RAG) techniques to predict and
rank misconceptions associated with incorrect
answers in mathematical multiple-choice ques-
tions. Our approach leverages semantic re-
trieval to identify candidate misconceptions
and employs large language models (LLMs)
to reason about and refine the ranking of these
misconceptions. By combining retrieval with
LLM-based reasoning, our method improves
both the accuracy and the interpretability of the
prediction of misconceptions, offering a scal-
able solution for educational data mining. The
experimental results demonstrate the effective-
ness of our approach, outperforming traditional
retrieval methods in predicting student miscon-
ceptions. Beyond its educational context, our
method advances AI-enabled scientific work-
flows by framing misconception detection as
a multi-stage process where LLMs assist in
generating hypotheses, evaluating candidate ex-
planations, and interpreting human-produced
knowledge representations.

1 Introduction

Diagnosis of student cognitive misconceptions is a
fundamental challenge in mathematics education.
Misconceptions often stem from systematic misun-
derstandings of mathematical concepts, which pose
significant barriers to effective learning. Identify-
ing these misconceptions accurately and efficiently

*Corresponding Author
†Both Chang Xue and Shaorui Sun contributed equally to

this research.

is crucial to providing personalized feedback and
improving educational outcomes. However, tradi-
tional diagnostic methods, which are based on pre-
defined error patterns or rigid criteria, struggle to
adapt to various problem solving scenarios(Baker
and Inventado, 2014; Khosravi et al., 2022).

Recent advances in natural language process-
ing (NLP) and information retrieval (IR) have
introduced powerful tools for tackling complex
educational tasks. Transformer-based models
such as BERT(Reimers and Gurevych, 2019) and
GPT(Brown et al., 2020) have significantly ad-
vanced semantic understanding and retrieval, en-
abling insights into large, diverse datasets(Lewis
et al., 2021; Devlin et al., 2019). Despite these
breakthroughs, applying such models to diagnose
misconceptions in mathematics presents unique
challenges. Diagnosis of errors involves not only
understanding mathematical content, but also rea-
soning about the cognitive processes that lead to
incorrect answers, an area where current models
often fail(Liu et al., 2023; Nye et al., 2021).

This study aims to design a framework for ef-
fectively identifying and ranking misconceptions
related to incorrect answers in educational assess-
ments in emerging space of LLM-assisted scientific
workflows. Achieving this requires the develop-
ment of a robust ranking mechanism that leverages
the semantic and conceptual affinity between mis-
conceptions and incorrect answers, while simulta-
neously addressing several critical challenges:

• Complex reasoning demands: Current large
language models (LLMs) excel at solving
mathematical problems but often lack the
ability to engage in diagnostic reasoning.
Identifying misconceptions requires counter-
factual reasoning, understanding the flawed
thought processes that lead to incorrect an-
swers, which remains an underexplored limi-
tation in existing models(Liu et al., 2023; Nye
et al., 2021).
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• Subtle distinctions in misconceptions: Mis-
conceptions in mathematics often exhibit nu-
anced differences, requiring high precision to
distinguish between closely related concep-
tual or computational errors. These distinc-
tions are crucial for a meaningful diagnosis
and personalized feedback(King et al., 2024).

• Generalization to novel misconceptions: Be-
yond identifying known misconceptions, mod-
els must demonstrate the flexibility to gener-
alize their predictions to previously unseen
cases, a critical capability for scaling to di-
verse educational settings(King et al., 2024).

Although our primary application lies in math-
ematics education, our framework directly con-
tributes to responsible human-LLM scientific work-
flows. Misconception detection is structurally sim-
ilar to the scientific quality-control tasks: identi-
fying flawed reasoning, detecting inconsistencies,
interpreting human-generated text, and evaluating
conceptual validity. Our two-stage retrieval + LLM
reasoning pipeline functions as an automated sci-
entific workflow that (1) preprocesses data, (2)
retrieves hypotheses (candidate misconceptions),
(3) conducts automated experimentation via re-
ranking, and (4) performs LLM-based inference to
evaluate and refine the retrieved knowledge. Thus,
our system is an instance of an LLM-assisted sci-
entific pipeline aimed at improving the accuracy,
reliability, and interpretability of human knowledge
representations.

To address these challenges, we propose a
novel two-stage framework inspired by Retrieval-
Augmented Generation (RAG)(Levonian et al.,
2023). Our approach combines semantic retrieval
to identify candidate misconceptions with large lan-
guage model (LLM)-based reasoning to refine and
rank these misconceptions. By integrating retrieval
with reasoning, our framework improves both di-
agnostic accuracy and interpretability, offering a
scalable solution for educational data mining. This
study makes the following key contributions:

• Framework Innovation: We introduce a
two-stage pipeline that integrates semantic
retrieval and LLM reasoning to diagnose
and rank misconceptions in mathematical
multiple-choice questions.

• Enhanced Reasoning and Discrimination:
Our method addresses the limitations of coun-
terfactual reasoning and provides fine-grained

differentiation among closely related miscon-
ceptions, tackling critical challenges in this
domain.

• Empirical Validation: Extensive experi-
ments on a real-world dataset demonstrate
significant improvements in prediction accu-
racy and generalization compared to baseline
methods(King et al., 2024).

2 Related Work

2.1 Advances in Deep Learning for NLP and
IR

Deep learning has significantly advanced natural
language processing (NLP) and information re-
trieval (IR). Transformer-based models, notably
BERT and Sentence-BERT, have enhanced seman-
tic search and contextual understanding(Reimers
and Gurevych, 2019). Pre-trained models like GPT
have excelled in tasks such as text generation and
knowledge-intensive retrieval(Devlin et al., 2019;
Brown et al., 2020). These models have been
widely adopted for text ranking tasks, improving
the precision and relevance of search results(Lin
et al., 2021; Guo et al., 2019). Sentence-BERT,
for instance, provides high-quality sentence embed-
dings for semantic similarity tasks.

Recent studies have further explored these de-
velopments. Min et al. (2021) surveyed the
use of large pre-trained language models in NLP
tasks, discussing approaches like pre-training, fine-
tuning, prompting, and text generation(Min et al.,
2021). Torfi et al. (2020) provided a comprehen-
sive overview of deep learning advancements in
NLP, highlighting the impact of models like BERT
and GPT on various applications(Torfi et al., 2021).
Chernyavskiy et al. (2021) examined the limita-
tions of transformer-based models, emphasizing
the need for models to handle certain information
types effectively(Chernyavskiy et al., 2021). Omar
et al. (2022) discussed the robustness of NLP tech-
niques, addressing challenges such as adversarial
attacks and the importance of developing models
capable of handling real-world complexities(Omar
et al., 2022). Hagos and Rawat (2024) explored the
current state of generative AI and large language
models, discussing their applications and emerging
challenges(Hagos et al., 2024).

These studies underscore the transformative im-
pact of deep learning on NLP and IR, providing
essential insights and tools that pave the way for
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future innovations in addressing complex reason-
ing.

Despite these advancements, challenges remain,
including the need for counterfactual reasoning to
understand flawed cognitive processes behind in-
correct answers and addressing nuanced distinc-
tions between similar misconceptions, which re-
quire higher semantic precision.

2.2 AI Diagnosis of Math Misconceptions
In mathematics education, traditional methods for
diagnosing misconceptions often rely on struc-
tured scoring criteria or predefined error cate-
gories(Baker and Inventado, 2014). While effec-
tive in controlled settings, these methods struggle
to adapt to the diverse responses seen in problem-
solving scenarios(Khosravi et al., 2022).

Recent research has highlighted the potential
of Large Language Models (LLMs) in addressing
these limitations(Liu et al., 2023). Similarly, stud-
ies like (Nye et al., 2021) highlight the importance
of intermediate reasoning steps in explaining stu-
dent behavior.

Natural language processing (NLP) methods
have been utilized to detect patterns in students’
textual responses, uncovering common misconcep-
tions that may not be evident through traditional
analysis(Michalenko et al., 2017). These advance-
ments facilitate the development of personalized
educational tools that can adapt to individual learn-
ing needs. Additionally, comprehensive surveys of
EDM and LA highlight the integration of various
data mining techniques to enhance personalized ed-
ucation, emphasizing the importance of cognitive
diagnosis and knowledge tracing in understanding
student learning behaviors(Xiong et al., 2024).

Some efforts have been made to use AI to as-
sist in mathematics education, including leveraging
large language models (LLMs) to generate high-
quality distractors for multiple choice mathemati-
cal questions(Fernandez et al., 2024) and utilizing
LLMs to solve mathematical problems(Era et al.,
2025).

The evolution of EDM underscores the criti-
cal role of technology in transforming educational
practices to meet the diverse needs of learners(Lin
et al., 2024).

Recent work in the LLM in Science Produc-
tion community highlights LLMs as meta-scientific
tools that support idea generation, hypothesis ex-
ploration, error detection, multimodal content gen-
eration, and workflow automation. In this framing,

LLMs do not merely solve tasks, but analyze, cri-
tique, and evaluate human-generated content. Our
work contributes directly to this line of research by
treating student free-text explanations and incor-
rect answers as scientific artifacts that require struc-
tured evaluation. The proposed retrieval + LLM
reasoning pipeline mirrors scientific fact-checking
workflows, where a system must retrieve plausible
hypotheses (candidate misconceptions), evaluate
them, and assign evidence-based relevance scores.
We position misconception detection as a scien-
tific knowledge-validation problem, aligned with
research on LLM-supported scientific production,
quality control, and responsible AI-generated anal-
ysis.

3 Preliminaries

In this section, we first introduce the research prob-
lem. Then, we describe the characteristics and
challenges associated with mathematical miscon-
ceptions. Finally, we discuss the technical founda-
tions and evaluation metrics that provide the basis
for our proposed methodology.

3.1 Formal Problem Definition
Let Q denote a mathematical multiple-choice ques-
tion (MCQ) with a stem S and answer options O =
{o1, . . . , on}, where one option is correct and oth-
ers are distractors. Each distractor oi ∈ Oincorrect is
associated with a set of predefined misconceptions
M = {m1, . . . ,mk}.

The goal is to design a system that retrieves and
ranks the most relevant misconceptions M∗ ⊆ M
for each oi, such that:

M∗ = arg max
M′⊆M

P (M′ | Q, Oincorrect), (1)

where P measures the likelihood of misconcep-
tions explaining the incorrect answers in Table 1.
Consider the query derived from the student task
question - (0.9 ÷ 0.3 = ?). The retriever converts
this query into a dense embedding:

vq = BGE([Subject = Decimals;

Construct = Divide two decimals;

Question; StudentAnswer]) (2)

A misconception such as Students assume the quo-
tient must have the same number of decimal places
as the operands is encoded as:

vm = BGE([MisconceptionText]) (3)
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The retrieval stage computes cosine similarity
between vq, and all vm, returning the most seman-
tically relevant misconception hypotheses.

3.2 Key Challenges and Problem
Characteristics

Mapping mathematical misconceptions from dis-
tractor options is a multi-faceted problem, distin-
guished by the following theoretical and practical
challenges:

1. Semantic Misalignment Between MCQs and
Misconceptions: Mathematical misconcep-
tions in M are often described in semi-
structured formats (e.g., natural language,
equations, or diagrams), while MCQs are com-
posed of diverse textual and mathematical
components. This mismatch complicates di-
rect similarity computation and demands ro-
bust representation learning.

2. Contextual Relationships of Distractors: Un-
like traditional IR tasks, where documents are
evaluated independently, misconceptions in
M exhibit structured relationships. While
each incorrect option oi is primarily associ-
ated with a specific misconception, seman-
tically similar misconceptions (mi ≃ mj)
may lead to overlapping error patterns in
Oincorrect. Effectively capturing these relation-
ships requires a framework that can distin-
guish nuanced variations between related mis-
conceptions while maintaining their concep-
tual boundaries.

3. Balancing Precision, Recall, and Efficiency:
High recall is essential to ensure relevant mis-
conceptions are included in Mcandidate, while
precision is critical for Mref. Furthermore,
M∗ must exhibit efficiency to avoid unnec-
essary computational overhead in generating
explanations for distractors. Achieving this
balance necessitates novel re-ranking and op-
timization techniques.

4. Theoretical Underpinning of Misconception
Spaces: Misconceptions M can be viewed as
residing in a latent conceptual space where
distances correspond to semantic and contex-
tual similarities. Understanding this space’s
geometry, such as clusters or subspaces repre-
senting specific misconception categories, is
pivotal for retrieval and reasoning.

4 Methodology

4.1 Framework Overview
To solve the problem defined in Section 3.1, we pro-
pose a two-stage retrieval framework that combines
dense semantic search with LLM-based reasoning.
The pipeline operates in five phases (Figure 1):

1. Initial Semantic Retrieval: Encode Q and re-
trieve top-100 misconceptions Mcandidate via
cosine similarity.

2. First-Stage Re-ranking: Refine Mcandidate to
top-50 using contextual relevance scores.

3. LLM Reasoning: Analyze Oincorrect to in-
fer potential misconceptions MLLM through
structured prompting.

4. Final Ranking: Fuse MLLM with the pre-
retrieved top-50 candidates, then re-rank them
to produce M∗ (top-25).

This design addresses the challenges in Sec-
tion 3.2: initial retrieval ensures high recall, while
LLM reasoning injects diagnostic insights to re-
solve ambiguous cases (e.g., distinguishing |x| vs.√
x2 misconceptions).

4.2 Semantic Retrieval Stage
Model Architecture. We adopt the
BAAI/bge-large-en-v1.5 model, fine-tuned
on the Eedi misconception dataset. The model
converts questions and misconceptions into 1024-
dimensional vectors via the following encoding
process:

vq = BGE(Subject;Construct;

QuestionText;Answers) (4)

Similarity Computation Cosine similarity iden-
tifies top candidates:

sim(vq, vm) =
vq · vm

∥vq∥∥vm∥ (5)

We retain the top-100 misconceptions
(Mcandidate) to balance recall and computational
cost. This threshold was validated through grid
search on recall@K (see Appendix F.)

Fine-tuning Protocol. The BGE model was opti-
mized with MultipleNegativeRankingLoss, where
each training batch contains one positive miscon-
ception and 15 hard negatives extracted from incor-
rect answers. Hyperparameters include:
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Figure 1: Framework for Two-Stage Retrieval and LLM-Based Inference

• Learning rate: 2× 10−5 (AdamW optimizer)

• Batch size: 8 (gradient accumulation over 16
steps)

• Training epochs: 2 (early stopping on valida-
tion MRR@10)

4.3 Re-ranking Stage

Model Architecture. We utilize a fine-tuned
BAAI/bge-reranker- large model, which has
been adapted on the Eedi misconception dataset.
The BAAI/bge-reranker-large model uses a cross-
encoder approach, the objective is to assign a
higher score to relevant misconceptions than ir-
relevant ones. We define the relevance score as:

S(q,m) = Wr · h(q,m)
[CLS] (6)

[CLS] is a special token used in Transformer-based
models, to represent the entire input sequence.
h
(q,m)
[CLS] is the contextual embedding output from

the [CLS] token after encoding both the question
q and the misconception m.
Wr is a learned weight matrix that transforms the
[CLS] token representation into a scalar relevance
score.

After the Semantic Retrieval Stage, which re-
turns the top 100 misconceptions (Mcandidate), the
Reranker Stage further refines the candidates by
selecting the top 50 misconceptions (Mref) based
on relevance scores.

Fine-tuning Protocol. The model was optimized
with MarginRankingLoss, where each training
batch contains one positive misconception and 15
hard negatives mined from incorrect answers. Hy-
perparameters include:

• Learning rate: 2× 10−5 (AdamW optimizer)

• Batch size: 8 (gradient accumulation over 16
steps)

• Training epochs: 3 (early stopping based on
validation performance)

4.4 LLM Reasoning Stage
Model Selection. We employ the
Qwen-2.5-32B-Instruct model.

Prompt Engineering. The LLM receives struc-
tured prompts to constrain outputs:
Post-Processing. Algorithm 1 filters LLM outputs:

1. Match the generated text with the predefined
M via the Levenshtein distance (≤ 2).

2. Remove nonmathematical terms (e.g., "calcu-
lation error").

3. Deduplicate synonyms (e.g., "confuses
area/perimeter" vs. "perimeter/area confu-
sion").

Beyond its educational application, our method
contributes to the broader SciProdLLM agenda by
modeling misconception detection as a scientific
workflow, where LLMs assist in hypothesis gener-
ation, automated evaluation, and interpretation of
human-produced knowledge artifacts.
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Figure 2: Prompt for LLM Reasoning

Algorithm 1 LLM Output Post-Processing

Require: Raw LLM output t, predefined miscon-
ceptions M

1: Extract keywords from t using POS tagging
2: for each mi ∈ M do
3: if Levenshtein(mi, t) < 2 OR keyword

match > 80% then
4: return mi

5: end if
6: end for
7: return ∅ (discard if no match)

5 Experiment

5.1 Experimental Setup

5.1.1 Dataset
Our experiments are conducted on the Eedi -
Mining Misconceptions in Mathematics dataset
(King et al., 2024), a comprehensive collection of
multiple-choice questions designed to evaluate stu-
dents’ mathematical understanding. Each question
includes potential misconceptions linked to incor-
rect answers. The dataset has several key features
and characteristics described in the following.

Data Description. The dataset encompasses
1,857 unique questions spanning various elemen-
tary mathematics concepts, accompanied by 2,587
misconceptions. Each question in the dataset is
meticulously structured with essential information:
a unique identifier (QuestionId), the question text
(QuestionText) describing the mathematical prob-
lem, and associated knowledge components (Sub-
jectName and ConstructName) that specify the
mathematical concepts being tested. Each question

includes four answer choices (labeled A through D)
with one marked as correct. Table 1 illustrates a rep-
resentative example from the dataset, showcasing
how mathematical concepts, questions, answers,
and their associated misconceptions are structured.

Data Split. We employ a 5-fold cross-validation
scheme to ensure evaluation stability. The data is
evenly divided into five parts, with four parts used
for training and one part for validation in each it-
eration. We calculate metrics such as MAP@25
five times and use the mean values for final perfor-
mance evaluation.

For the Kaggle competition submission, the final
model is trained using the entire training set and
evaluated on the hidden test set with MAP@25 as
the official ranking metric.

Data Augmentation. To enhance the model’s gen-
eralization capability, we leverage ChatGPT to gen-
erate additional training samples. The augmenta-
tion process consists of two primary stages: data
generation and quality assurance.

For quality assurance, we implement a rigorous
validation protocol. Three expert annotators inde-
pendently evaluate the generated samples, filtering
out duplicates and logically inconsistent entries.
Through this careful verification process, we retain
9,200 high-quality augmented samples that main-
tain consistency with the original dataset structure.

The validated augmented data are then integrated
with the original training set and utilized in our 5-
fold cross-validation experiments. This combined
dataset enables a more comprehensive evaluation
of our approach while maintaining data quality
standards. For detailed prompt engineering pro-
cesses and annotation guidelines, please refer to
Appendix B.

5.1.2 Baselines
To comprehensively evaluate our proposed method,
we compare it with several baseline approaches,
which can be categorized into traditional retrieval
methods and deep learning-based retrieval models.

Traditional retrieval methods. Including BM25,
a sparse retrieval model that ranks documents
according to term frequency, inverse document
frequency (IDF) and normalization of document
length. BM25 applies a smoothing mechanism to
mitigate the influence of overly high or low term
frequencies. Similarly, TF-IDF is a weighting
scheme that measures the importance of a term
within a document relative to a collection of doc-
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Feature Content

Subject Multiplying and Dividing with Decimals
Construct Divide two decimals with the same number of decimal places
QuestionText 0.9÷ 0.3 =
Answer 0.3
Misconception When dividing decimals with the same number of decimal places as each other,

assumes the answer also has the same number of decimal places

Table 1: An example in Eedi.

uments. Both methods rely on lexical matches,
which makes them effective for exact keyword
matching. However, they struggle with semantic
understanding, especially in complex contexts such
as mathematical reasoning, where concepts and
relations may not be explicitly expressed through
surface-level terms.

Deep learning-based retrieval models. Including
Sentence-BERT, a semantic retrieval model based
on the BERT architecture. Sentence-BERT uses
a dual-encoder architecture to encode sentences
into embeddings, enabling efficient similarity com-
parisons with metrics like cosine similarity. This
approach improves inference speed for tasks like
sentence similarity and retrieval. By capturing con-
textual and semantic information, Sentence-BERT
produces high-quality embeddings, making it suit-
able for semantic similarity tasks, including edu-
cational data mining. However, fine-tuning may
be needed for optimal performance in specialized
domains like mathematical reasoning.

All baseline methods are trained using 5-fold cross-
validation under consistent evaluation metrics to
ensure reliable comparison. This approach allows
us to evaluate the performance of our proposed
method against a variety of established techniques,
highlighting its strengths and areas for improve-
ment.

5.1.3 Implementation Details
Our method is implemented with careful consider-
ation of the computing environment, training con-
figuration, and optimization strategies to ensure
efficient model performance and scalability. The
computing environment is specified in detail in the
Appendix.

5.2 Main Results
In this subsection, we assess the performance of our
proposed method using a variety of evaluation met-
rics, including MAP@25 (both on Kaggle and lo-

cally), Recall@25, and Precision@5. We compare
our method with several baselines, encompassing
traditional retrieval techniques such as BM25 and
TF-IDF, deep learning models like Sentence-BERT
and BGE-Retriever, and a combined approach Re-
triever + Reranker.

5.2.1 Overall Performance Comparison
Table 2 presents the comparative results of differ-
ent methods averaged over multiple runs. Over-
all, our proposed method consistently outperforms
all baseline methods across all evaluation metrics.
Specifically, it achieves superior performance in
both ranking quality and retrieval comprehensive-
ness, as indicated by the MAP@25 and Recall@25
metrics, respectively.

Method MAP@25 (Kaggle) MAP@25 (Local) Recall@25

BM25 0.152 0.175 0.678
TF-IDF 0.128 0.138 0.692
Sentence-BERT 0.203 0.224 0.750
BGE-Retriever 0.232 0.271 0.896
Retriever + Reranker 0.301 0.304 0.911
Our Method 0.496 0.523 0.939

Table 2: Overall Performance Comparison

Mean Average Precision at 25 (MAP@25). The
MAP@25 metric provides insight into how well
each method ranks relevant documents higher than
irrelevant ones. As shown in Table 2, our proposed
method achieves a MAP@25 of 0.496 on Kaggle
and 0.523 locally, significantly outperforming all
other methods. This indicates that our method is
highly effective in capturing complex semantic re-
lationships and ranking relevant documents accu-
rately. Traditional methods like BM25 and TF-
IDF show considerably lower performance, with
MAP@25 values of 0.152 and 0.128 on Kaggle, re-
spectively. Deep learning models such as Sentence-
BERT and BGE-Retriever also demonstrate im-
proved performance but still fall short compared to
our method.
Recall at 25 (Recall@25). Recall@25 measures
the proportion of relevant documents retrieved
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within the top 25 results. Our method achieves
the highest Recall@25 of 0.939, indicating its ex-
ceptional ability in comprehensively retrieving rele-
vant documents. This suggests that our method can
effectively cover a large set of relevant documents
while maintaining high precision. In contrast, tra-
ditional methods like BM25 and TF-IDF achieve
Recall@25 values of 0.678 and 0.692, respectively,
which are relatively lower. Deep learning mod-
els like Sentence-BERT and BGE-Retriever also
show significant improvements but do not match
the performance of our method.
Comparative Insights and Discussion. From the
detailed analysis of the evaluation metrics, it is evi-
dent that our proposed method consistently outper-
forms all baseline methods across all metrics. The
significant improvements over traditional and deep
learning-based methods highlight the advantages
of our method’s design and optimization strategies.
Specifically:

• Our method achieves the highest MAP@25,
indicating superior ranking quality of relevant
documents.

• The highest Recall@25 value achieved by our
method suggests comprehensive retrieval of
relevant documents.

These results demonstrate the robustness and ef-
fectiveness of our proposed method in information
retrieval tasks. Future work could explore further
enhancements and applications of our method in
diverse retrieval scenarios.

In conclusion, this comprehensive comparison
provides valuable insights into the strengths and
limitations of different retrieval methods, and high-
lights the significant advancements achieved by our
proposed method.
5.3 A Case Study of Misconception Mining
To demonstrate the effectiveness of our framework
, we conduct a case study using a challenging
mathematical problem involving the equation of
a parabola. This problem is designed to elicit mul-
tiple nuanced misconceptions related to algebraic
reasoning and geometric interpretation.

This question is particularly complex because:

1. It requires students to understand the standard
form of a parabola equation (y = a(x−h)2+
k) and how to compute the coefficient a.

2. It tests their ability to correctly interpret the
relationship between the vertex, given points,
and the quadratic coefficient.

3. It elicits multiple closely related misconcep-
tions that are subtle but critical for accurate
diagnosis.

Feature Content

Construct Parabola Equation and Vertex
Form

Subject Quadratic Functions and
Equations

Question What is the equation of the
parabola with its vertex at (2,
-3) and passing through the
point (4, 5)?

Wrong Answer y = (x-2)2 − 3

Table 3: A Case Study

Traditional retrieval methods fail to accurately
identify misconceptions, often retrieving irrelevant
results. For example, the result retrieved by TF-IDF
is "Students ignored the importance of squaring in
their calculations." This issue arises because TF-
IDF relies solely on surface-level word matching
and cannot capture the underlying mathematical
logic of the problem. The result retrieved by BM25
is "Students confused the direction of a parabola’s
opening." While it appears related to parabolas, it
does not accurately reflect the core misconception
behind the distractor.

In contrast, our framework retrieves the result:
"Students failed to correctly understand the role
of a in the quadratic equation and mistakenly as-
sumed that a is always equal to 1." This improve-
ment is due to our use of the BGE model, which
encodes both the problem and misconceptions as
dense vectors, capturing deeper semantic relation-
ships. In the initial retrieval stage, relevant miscon-
ception candidates related to option are identified.
The re-ranking stage further optimizes ranking by
prioritizing misconceptions that are contextually
relevant. Finally, the LLM reasoning module gen-
erates explanatory reasoning, clearly identifying
the specific source of the student’s misconception.

6 Discussion

This study introduces a novel framework for lever-
aging initial retrieval results to guide large language
models (LLMs) in generating clues, followed by
refined retrieval to enhance overall performance.
While the framework demonstrates promising po-
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tential, several limitations and areas for improve-
ment remain to be addressed.

First, the evaluation currently relies solely on
MAP@25, which provides a partial view of the
framework’s performance. Future work could in-
corporate additional metrics, such as NDCG or
Precision@k, to offer a more comprehensive as-
sessment of retrieval effectiveness across diverse
scenarios.

Second, the framework treats all semantic com-
ponents equally during encoding, which may not
align with the hierarchical nature of certain tasks,
such as solving mathematical problems. For exam-
ple, in such contexts, the question might be more
critical than the subjectName or constructName.
To address this, future efforts could introduce a hi-
erarchical semantic representation model, decom-
posing problems into dimensions such as subject,
construct, and text. Leveraging attention mech-
anisms to capture interactions across these dimen-
sions and dynamically adjusting their importance
via learnable weights may further improve perfor-
mance.

The limited dataset size remains a key challenge
for achieving robust performance. Potential solu-
tions include data augmentation such as generating
synthetic samples using large language models or
GANs and leveraging transfer learning from re-
lated tasks to reduce data scarcity. These limita-
tions point to future research directions, including
evaluating the framework on larger, more diverse
datasets, incorporating domain specific knowledge,
and developing interactive retrieval systems to im-
prove user experience.

7 Conclusion

In this study, we propose a Retriever+
Reranker+LLM Reasoning framework to ad-
vance misconception retrieval in mathematics
education. Our method integrates semantic
retrieval, large language model based reasoning,
and targeted data augmentation to enhance both
accuracy and interpretability. By incorporating
ChatGPT generated augmentation and Hard Nega-
tive mining, the framework achieves substantial
performance gains, outperforming traditional
retrieval baselines on the Eedi Kaggle benchmark
in MAP@25. Experimental results demonstrate
that Hard Negative mining strengthens model
discrimination by introducing challenging negative
examples that help the retriever and reranker

differentiate subtle misconception patterns. Data
augmentation further broadens the training
distribution, enabling improved generalization
across mathematical constructs and question
formats. Finally, LLM driven reasoning provides
more structured and explainable misconception
ranking, aligning retrieved misconceptions more
closely with authentic student thinking.
Although our primary domain is education, the
pipeline represents a generalizable scientific work-
flow: retrieve hypotheses, evaluate them through
automated ranking, and refine them using LLM-
based reasoning. Such workflows are increas-
ingly used in scientific production for validating
experimental results, detecting flawed reasoning
in manuscripts, and improving the rigor of LLM-
assisted scientific analysis. Our findings demon-
strate that structured retrieval-and-reasoning sys-
tems can serve as responsible LLM collaborators
that improve the quality, interpretability, and trust-
worthiness of human-generated scientific content.

This work opens several directions for improve-
ment. Enhancing retriever performance through
stronger dense retrievers, hybrid retrieval pipelines,
or adaptive mechanisms that respond to question
complexity could further strengthen reasoning ac-
curacy. Refining LLM prompting strategies may
improve interpretability and alignment with peda-
gogical expectations. Integrating structured knowl-
edge graphs offers another promising pathway, cap-
turing hierarchical relationships among mathemati-
cal concepts and misconceptions to support richer
reasoning. Finally, testing the framework beyond
mathematics, including in physics or chemistry,
would help assess its broader applicability across
educational domains. Overall, our results high-
light the potential of combining retrieval with LLM
based reasoning to improve diagnostic and interpre-
tive capabilities in educational AI. Addressing the
outlined challenges will help refine the framework
further and support scalable, reliable deployment
across diverse learning contexts.

Ethical Considerations: Since our work eval-
uates and interprets human-generated reasoning,
it intersects with responsible science production.
We highlight risks such as LLM hallucination, in-
correct conceptual inference, and bias amplifica-
tion. Our structured prompts, post-processing con-
straints, and multi-stage retrieval strategy serve as
safeguards, aligning with the workshop’s emphasis
on ethical and responsible LLM-enabled scientific
workflows.
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A Related Work

A.1 RAG in Education
Retrieval-Augmented Generation (RAG) is an
emerging framework that combines retrieval and
generation models to enhance the performance of
large language models (LLMs) in tasks requiring
deep semantic understanding and external knowl-
edge integration. First introduced by Lewis et
al. (2020), RAG bridges the gap between genera-
tive capabilities and knowledge-intensive problem-
solving by integrating relevant external information
into LLM-driven workflows(Lewis et al., 2021).

In educational contexts, RAG has proven effec-
tive for developing intelligent tutoring systems that
personalize learning experiences and reduce er-
rors in AI-generated responses. For instance, Lee
(2024) designed a RAG-based statistics tutor to
assist students with quantitative analysis, specif-
ically addressing challenges like hallucination in
LLMs(Lee, 2024). Similarly, Dong (2023) intro-
duced a low-code framework for building AI tutors
that leverage RAG technology to deliver accurate,
context-aware feedback tailored to individual learn-
ers(Dong et al., 2025). Furthermore, Modran et al.
(2024) proposed a chatbot tutoring system that com-
bines RAG with custom LLMs, creating a platform

for precise, contextually relevant, and personalized
learning assistance(Modran et al., 2024).

Further research has demonstrated the broader
adaptability of RAG-based educational tools.
Thway et al. (2024) introduced "Professor Leodar,"
a chatbot leveraging RAG to deliver personalized
guidance while minimizing misinformation(Thway
et al., 2024). Zheng et al. (2024) assessed the
robustness of RAG systems in K–12 education, fo-
cusing on discrepancies between textbook content
and AI-generated responses(Zheng et al., 2024).
Their work underscores the importance of aligning
such systems with authoritative sources to ensure
reliability.

Specific to the field of mathematics education,
RAG has contributed significantly by enhancing the
effectiveness and adaptability of AI-driven tools,
enabling more precise and context-aware learning
support. Levonian et al. (2023) investigated its
application in math question-answering systems,
highlighting the trade-offs between maintaining
grounded, fact-based responses and aligning with
user preferences(Levonian et al., 2023). Their find-
ings emphasize the importance of designing sys-
tems that support both educational accuracy and
user engagement.

The versatility of RAG extends beyond tutoring
systems to broader educational platforms. Liu et
al. (2024) highlighted how RAG enables person-
alized and adaptive learning content, empowering
educators to deliver more effective and responsive
instruction(Liu et al., 2024).

These studies collectively illustrate the frame-
work’s potential to transform educational technol-
ogy, particularly in tasks demanding reasoning,
contextual understanding, and scalability.

B Data Augmentation Details

To enhance the model’s generalization, we employ
a structured data augmentation approach consist-
ing of three key phases: prompt engineering, data
generation, and quality control. This ensures that
the generated samples align with real-world stu-
dent misconceptions while maintaining consistency
with the original dataset.

B.1 Prompt Engineering

The generation process begins with designing effec-
tive prompts that guide ChatGPT to produce mean-
ingful synthetic data. Each prompt is carefully
structured to capture common student misconcep-
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tions while ensuring diversity in reasoning patterns.
The prompt includes a mathematical construct, a
multiple-choice question with distractors, and an
explanation of the reasoning behind each incorrect
response. This ensures that the generated samples
are pedagogically relevant and aligned with the
original dataset.

A typical prompt template used for augmentation
is as follows:

Prompt Template:

Given the following multiple-choice
mathematics question:

ConstructName: {Most granular level
of knowledge related to question}

SubjectName: {More general context
than the construct}

Question: {Mathematical Question
Text}

Answer Choices: {A, B, C, D}

Correct Answer: {Correct Option}

Known Misconceptions: {List of Mis-
conceptions}

Generate a new incorrect response that
a student might select based on a misun-
derstanding. Provide a brief explanation
of the thought process that led to the in-
correct answer.

These modifications allow for the introduction of
nuanced misconception patterns, ensuring a broad
representation of potential student errors.

B.2 Data Generation

With the prompt engineering phase established, the
data generation process involves extracting ques-
tions from the original dataset and synthesizing
new misconception-based distractors. The model
is instructed to generate plausible incorrect answers
while preserving the logical and linguistic consis-
tency of the problem format.

During this phase, ChatGPT is guided to produce
errors that mimic actual student mistakes, drawing
on existing misconception patterns. The generated
distractors introduce variations in reasoning, help-
ing the retrieval model distinguish between subtle
conceptual misunderstandings. This approach en-
sures that the synthetic data remains both realistic
and educationally relevant.

B.3 Quality Control and Dataset Integration

To ensure high data quality, we implement a rig-
orous validation process involving three expert an-
notators. Each generated sample undergoes inde-
pendent review, where annotators evaluate its cor-
rectness, coherence, and consistency with known
misconception patterns. This process filters out du-
plicate entries and logically inconsistent samples,
ensuring that only well-structured data is retained.

The validation process includes duplicate detec-
tion, where cosine similarity is applied to identify
and remove redundant samples, and logical con-
sistency checks, where annotators verify that each
misconception reflects plausible student reasoning.
Through this careful quality assurance protocol, we
curate a final set of 9,200 high-quality augmented
samples that are then integrated into the training
pipeline.

The augmented dataset is combined with the
original training set and incorporated into 5-fold
cross-validation experiments. This integration en-
ables a more comprehensive evaluation of the re-
trieval system while maintaining consistency with
the original dataset structure. By incorporating
augmented data, the model is better equipped to re-
trieve and rank misconceptions accurately, leading
to improved generalization and retrieval robustness.

B.4 Example Output

Question: What is the equation of this circle? (The
circle goes through the points (4,0), (0, -4), (-4,0),
and (0,4).)

Answer Choices:

• A. x2 + y2 = 16 (Correct Answer)

• B. x2 + y2 = 8 (Incorrect - Misconception:
Confusing radius r with diameter, using r = 4
but mistakenly squaring half the radius instead
of the full radius.)

• C. x2 + y2 = 4 (Incorrect - Misconception:
Misinterpreting the radius as the distance to
one axis point, rather than the full extent of
the circle.)

• D. x2 + y2 = 32 (Incorrect - Misconcep-
tion: Mistakenly doubling the radius before
squaring it, treating r2 = 2× 42 = 32 instead
of 42 = 16.)
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C Implementation Details

Computing Environment. The experiments are
conducted on a machine equipped with an NVIDIA
A100 GPU, utilizing CUDA and PyTorch frame-
works. This setup provides the necessary infras-
tructure to support both the training and inference
processes for the retrieval and re-ranking models.

Training Details. The retriever is based on the pre-
trained BAAI/ bge-large-en-v1.5 model, which
is fine-tuned on the misconception dataset using a
multiple negative ranking loss function. The train-
ing samples consist of one positive misconception
and three hard negatives. Key hyperparameters in-
clude a learning rate of 2× 10−5, a batch size of 8
(with gradient accumulation over 16 steps), and a
training duration of 2 epochs, with early stopping
based on validation performance.

Similarly, the reranker utilizes the
BAAI/bge-reranker-large model and is
optimized with a margin ranking loss. The training
process for the reranker also incorporates hard
negative sampling. Hyperparameter settings are
consistent with those of the retriever, including a
learning rate of 2 × 10−5, a batch size of 8, and
early stopping after 3 epochs.

For the reasoning stage, we employ the
Qwen-2.5-32B-Instruct model. Structured
prompts are designed to minimize hallucinations
and ensure that the model generates relevant out-
puts. To enhance efficiency, inference is acceler-
ated using vLLM, reducing both latency and re-
source consumption.

These implementation choices are crucial in achiev-
ing robust performance, enabling the integration of
semantic retrieval and large language model-based
reasoning within the two-stage retrieval framework.

D Evaluation Metrics

To comprehensively assess the effectiveness of our
proposed method, we employ a range of evaluation
metrics that capture different aspects of retrieval
and ranking performance. These metrics allow us
to rigorously measure both the ranking quality and
the retrieval coverage of our system.

Official Kaggle Evaluation. The primary metric
used for official evaluation on Kaggle is Mean Av-
erage Precision at 25 (MAP@25). MAP@25 is a
ranking-based metric that calculates the mean of
average precision scores across queries, focusing
on the top-25 retrieved misconceptions. It effec-

tively quantifies the system’s ability to prioritize
relevant misconceptions within the highest-ranked
results, making it a robust indicator of ranking per-
formance.

Local Evaluation Metrics. In addition to
MAP@25, we also conduct local evaluations us-
ing Recall@K (K = 25). These metrics allow us
to assess the system’s ability to retrieve relevant
misconceptions at different levels of granularity.
Specifically, Recall@K measures the proportion
of relevant misconceptions covered within the top-
K retrieved results, while Precision@K evaluates
the proportion of relevant misconceptions among
the top-K retrieved results. These metrics are par-
ticularly useful for understanding the trade-offs
between recall and precision at different stages of
the retrieval process.

E Ablation Study

To further understand the contributions of different
components in our proposed method, we conduct
an ablation study. The results are summarized in
Table 4 and visually represented in Figure 3. We
evaluat four variants of our model: (1) Only Re-
triever, (2) Retriever + Reranker, (3) Retriever +
Reranker + LLM Reasoning, and (4) Retriever +
Reranker + LLM Reasoning + Data Augmentation.
Each variant was assessed using the MAP@25 met-
ric on both Kaggle and local datasets.

Variant MAP@25
(Kaggle)

MAP@25
(Local)

Only Retriever 0.315 0.313
Retriever + Reranker 0.409 0.412
+ LLM Reasoning 0.468 0.471
+ Data Augmentation 0.496 0.523

Table 4: Ablation Study Results

Impact of the Reranker. The first two rows in
Table 4 and the corresponding bars in Figure 3
compare the performance of the "Only Retriever"
variant with the "Retriever + Reranker" variant.
The addition of the reranking component signifi-
cantly improves the MAP@25 scores from 0.315
to 0.409 on Kaggle and from 0.313 to 0.412 locally.
This indicates that the reranker effectively refines
the initial retrieval results by reordering the docu-
ments based on their relevance to the query. The
reranker’s ability to capture more nuanced relation-
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Figure 3: Ablation Study Results on different retrievers

ships between queries and documents contributes
to this improvement.
Contribution of LLM Reasoning. The third row
in Table 4 and the corresponding bar in Figure 3
show the results when LLM reasoning is added to
the "Retriever + Reranker" variant. The MAP@25
scores further increase to 0.468 on Kaggle and
0.471 locally. This demonstrates the significant im-
pact of incorporating large language model (LLM)
reasoning in our framework. LLMs can provide
deeper semantic understanding and context-aware
reasoning, which enhances the model’s ability to
accurately rank relevant documents. The improved
performance suggests that LLM reasoning comple-
ments the retriever and reranker effectively, leading
to better overall retrieval quality.
Effect of Data Augmentation. The final row in
Table 4 and the corresponding bar in Figure 3 eval-
uate the impact of data augmentation on the variant
"Retriever + Reranker + LLM Reasoning". The
addition of data augmentation techniques leads
to a substantial improvement in MAP@25 scores,
reaching 0.496 on Kaggle and 0.523 locally. Data
augmentation helps the model generalize better by
exposing it to a wider variety of training exam-
ples. This increased diversity in the training data
enables the model to learn more robust represen-
tations and make more accurate predictions. The
results confirm that data augmentation is a crucial
component in enhancing the performance of our
proposed method.
Summary and Insights. The ablation study pro-
vides valuable information on the contributions
of each component in our proposed method. Se-
quential addition of the reranker, LLM reasoning,
and data augmentation consistently improve perfor-
mance in both evaluation settings. These findings
highlight the importance of each design choice and

validate the effectiveness of our comprehensive ap-
proach. In summary:

• The reranker significantly refines the initial
retrieval results.

• LLM reasoning improves the model’s seman-
tic understanding and context-aware ranking.

• Data augmentation improves the model’s gen-
eralization and robustness.

These results underscore the necessity of integrat-
ing these components for achieving superior re-
trieval performance. Future work could explore
additional enhancements and optimizations to fur-
ther improve the model’s capabilities.

F Choice of k in Top-k Candidate
Selection

Selecting an appropriate value for k in top-k can-
didate selection is crucial for balancing retrieval
effectiveness and computational efficiency. Increas-
ing k improves recall, as it allows for retrieving
a broader set of candidates, but it also increases
computational overhead. Conversely, choosing a
smaller k can make the retrieval process more effi-
cient while potentially missing relevant misconcep-
tions.

To determine an optimal k, we conduct empiri-
cal experiments evaluating retrieval performance
across different values of k, using MAP@25
and Recall@25 as the primary evaluation metrics.
While a higher k increases recall, we observe di-
minishing returns in terms of MAP@25, suggest-
ing that retrieving too many candidates introduces
unnecessary noise. Additionally, increasing k sig-
nificantly raises computational cost, which can be
a bottleneck for real-time applications.

Table 5 presents the impact of different k values
on retrieval effectiveness and computational effi-
ciency. Based on these results, we select k = 100
as the optimal setting, balancing retrieval perfor-
mance and efficiency.

k Value MAP@25 (Kaggle) Recall@k Computational Cost (ms)/Question

50 0.466 0.871 4743
100 0.496 0.939 10572
200 0.505 0.972 23693
300 0.509 0.989 43580

Table 5: Comparison of Different k Values in Top-k
Selection
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