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Introduction

We are pleased to present the proceedings of the 1st Workshop on QuantumNLP: Integrating Quan-
tum Computing with Natural Language Processing, which was successfully held on November 24,
2025, as a satellite event of the 14th [JICNLP-AACL 2025 in Mumbai, India. This inaugural workshop
was conducted in a hybrid format, which allowed participants to join us both in person in Mumbai and
virtually from around the globe.

The QNLP Workshop served as a premier venue for interdisciplinary research at the intersection of
Quantum Computing and Natural Language Processing. Our aim **was** to bring together experts
to discuss foundational concepts and cutting-edge developments in harnessing quantum computational
paradigms to revolutionize complex NLP tasks.

We received a total of 12 submissions this year, reflecting the strong and growing interest in this emer-
ging field. Every submission was assigned to the Technical Program Committee and received thorough
review and consideration. Following a rigorous evaluation process, we accepted 9 papers for presenta-
tion, resulting in an overall acceptance rate of 75%. This rate allowed us to foster nascent, high-potential
research and encourage contributions in this complex and rapidly evolving domain.

The papers selected for the program covered a diverse array of topics central to Quantum NLP research.
Themes included the mathematical underpinnings of quantum information, novel Quantum Machine
Learning (QML) algorithms, the application of quantum word embeddings, and the development of
Hybrid Quantum-Classical Algorithms for sequence modeling and language tasks. The structure of the
hybrid event successfully accommodated both physical and remote presenters, ensuring a high-quality
interactive experience for all who attended.

A workshop of this technical depth required the dedicated effort of many individuals, and we extend
our sincere gratitude to all of them. We thank the Technical Program Committee (TPC) members for
committing their valuable time and expertise to the crucial task of reviewing and guiding the selection
process, which ensured the high quality of our technical program. We are also grateful to our organizers
for their work in adapting the event logistics to successfully deliver the hybrid experience.

Finally, we thank all the authors who submitted their fine work to the workshop and all participants for
joining us—whether physically or virtually—and for contributing to the successful launch and growth of
the Quantum Natural Language Processing research community.

Santanu Pal, Program Chair
Partha Pakray, Program Chair
Sivaji Bandyopadhyay, Program Chair

QuantumNLP 2025 Workshop
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Keynote Talk
Quantum Machine Learning: Concepts and Applications

Hachem Kadri
Aix-Marseille University, France
2025-11-24 10:00:00 — Room: Hybrid Session

Abstract: Quantum Machine learning is an emerging field of research, with fast growth. It is largely
driven by the desire to develop artificial intelligence that leverage quantum technologies to enhance the
speed and capabilities of learning algorithms. In this talk, I will begin by outlining the main concepts
and motivations behind QML and by presenting various forms of interaction between machine learning,
quantum computing and quantum information. I will then illustrate these interactions through concrete
examples, focusing in particular on quantum extensions of classical ML models such as linear regression
and the perceptron.

Bio: Professor Hachem Kadri is a Professor of Artificial Intelligence in the Department of Computer
Science at Aix-Marseille University and a member of the Machine Learning group QARMA at LIS Lab,
France.

His research interests lie broadly in machine learning, covering topics such as kernel methods, functional
data analysis, statistical learning theory, deep learning, and, more recently, quantum machine learning
(QML). He is the Principal Investigator (PI) for the ANR Starting Grant project, QuantML — Quantum
Machine Learning: Foundations and Algorithms (2019-2024). Prof. Kadri’s recent work includes publi-
cations on C*-algebraic ML and the computational-statistical tradeoffs of the Quantum Perceptron. He
has held positions as an Assistant Professor at Aix-Marseille University and as a postdoctoral researcher
at INRIA Lille — Nord Europe. He received his Ph.D. in Electrical Engineering in 2008 from the National
Engineering School of Tunis (ENIT).
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Quantum-Infused Whisper: A Framework for Replacing Classical
Components

Tapabrata Mondal!, Debjit Dhar!,

Soham Lahiri!,

Sivaji Bandyopadhyay'*

!Jadavpur University, Kolkata, India
“Correspondence: sivaji.cse.ju@gmail.com

Abstract

We propose a compact hybrid quantum—
classical extension of OpenAI’'s Whisper
in which classical components are replaced
by Quantum Convolutional Neural Networks
(QCNN), Quantum LSTMs (QLSTM), and
optional Quantum Adaptive Self-Attention
(QASA). Log-mel spectrograms are angle-
encoded and processed by QCNN kernels,
whose outputs feed a Transformer encoder,
while QLSTM-based decoding introduces
quantum-enhanced temporal modeling. The
design incorporates pretrained acoustic embed-
dings and is constrained to NISQ-feasible cir-
cuit depths and qubit counts. Although this
work is primarily architectural, we provide a
fully specified, reproducible evaluation plan
using Speech Commands, LibriSpeech, and
Common Voice, along with strong classical
baselines and measurable hypotheses for as-
sessing noise robustness, efficiency, and param-
eter sparsity. To our knowledge, this is the
first hardware-aware, module-wise quantum re-
placement framework for Whisper.

1 Introduction

Quantum Natural Language Processing (QNLP)
and Quantum Automatic Speech Recognition
(QASR) explore how quantum information pro-
cessing can enhance representation, inference, and
learning for language and speech. Prior work sug-
gests that quantum models may offer richer ex-
pressivity for structured linguistic tasks (Wiebe
et al., 2019) and improved efficiency for opera-
tions that are expensive in classical deep learning.
Early demonstrations, ranging from compositional
distributional models compiled with toolkits such
as lambeq (Kartsaklis et al., 2021) to QCNN-based
speech pipelines have shown encouraging results
but are typically limited to small datasets and shal-
low circuits due to NISQ constraints.

Current quantum hardware still imposes strict
limits on circuit depth, qubit count, and data en-
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coding, and full quantum replacements for atten-
tion, beam search, or large-scale sequence mod-
eling remain largely unexplored. As a result, hy-
brid architectures that combine quantum modules
with established classical components offer a prac-
tical interim path for advancing quantum-enhanced
ASR.

In this work, we propose a unified quan-
tum—augmented extension of Whisper in which
classical convolution, recurrent, and attention
blocks can be replaced with Quantum Convolu-
tional Neural Networks (QCNN), Quantum LSTMs
(QLSTM), and Quantum Adaptive Self-Attention
(QASA). Our design is explicitly hardware-aware,
specifying qubit requirements, depth-constrained
variational layers, and angle-encoding strategies
compatible with current NISQ devices. We fur-
ther provide a rigorous and reproducible evaluation
roadmap, including datasets, baselines, and mea-
surable hypotheses, to quantify the potential ben-
efits of quantum modules in robustness, sparsity,
and low-resource performance. Finally, we out-
line the feasibility of implementing these compo-
nents on present hardware through hybrid training,
parameter-shift optimization, and noise-mitigation
techniques. Our principal contributions are the fol-
lowing:

1. Modular, integrable quantum replace-
ments. A hardware-aware framework that
replaces Whisper’s convolutional, recurrent
and (optionally) attention blocks with QCNN,
QLSTM and QASA modules — including
concrete integration patterns (e.g., QLSTM
gates inside a Transformer-style decoder with
quantum outputs mapped to standard gating
nonlinearities) and fallback hybrid strategies
for QASA.

NISQ-feasible specification + transfer-
learning. Per-module NISQ constraints
(qubit budgets, circuit-depth limits, entangling

Proceedings of the QuantumNLP: Integrating Quantum Computing with Natural Language Processing, pages 1-5
November 24, 2025 ©2025 Association for Computational Linguistics



topologies, measurement channels, and an-
gle/amplitude encoding) combined with pre-
trained acoustic embeddings so quantum lay-
ers refine high-level features have been pro-
vided.

2 Related Work

Quantum approaches to speech and language have
expanded across recognition, classification, and
generation. Miller et al. (Miller et al., 2024) fused
STFT and LPC spectrograms, processing the LPC
branch with a variational quantum circuit (VQC)
before CNN-based classification, achieving 94.54%
accuracy on Speech Commands (vs. 93.05% clas-
sical), with improved robustness and storage effi-
ciency. Thejha et al. (Thejha et al., 2023) proposed
a QCNN with CNOT gates and parameterized ro-
tations (SX, SY, SZ) in Qiskit, reaching 99.10%
accuracy for accent recognition (vs. 98.8% CNN).
Wang et al. (Wang et al., 2023) combined WavLM-
Large embeddings with a low-dimensional VQC
for synthetic speech detection, improving equal er-
ror rate to 5.51% (vs. 6.80% baseline), highlighting
the utility of quantum—embedding coupling.

In NLP, Yang et al. (Yang et al., 2022) introduced
BERT-QTC, pairing a pretrained encoder with a
quantum temporal convolution layer to enable fed-
erated learning privacy while improving intent clas-
sification accuracy (96.6% vs. 95.0%). Di Matteo
et al. (Di Sipio et al., 2022) surveyed quantum-
augmented NLP, showing QLSTMs and quantum
Transformers achieve classical-level accuracy with
fewer parameters, suggesting VQCs as efficient
dense-layer replacements. Yang et al. (Yang et al.,
2021) built a decentralized ASR pipeline where
Mel-spectrograms pass through 2 x 2 QCNN ker-
nels before a BiLSTM-attention model, reaching
95.12% accuracy with compact architectures.

Earlier, Fu et al. (Fu and Dai, 2009) integrated
QNNs with particle-swarm optimization, report-
ing 84.5-85% accuracy on small-vocabulary tasks
with faster, noise-resilient training. Pandey et
al. (Pandey et al., 2023) introduced QLSTMs re-
placing gates with VQCs, outperforming classi-
cal LSTMs on code-mixed text but raising over-
fitting concerns. Abbaszade et al. (Abbaszade
et al., 2023) applied DisCoCat-based quantum cir-
cuits to machine translation, achieving low error
(MSE=0.0019) on English-Persian. Yoshimura
et al. (Yoshimura et al., 2018) improved neural
vocoders like WaveNet via mel-cepstrum quantiza-

tion shaping, yielding a 0.6 MOS gain and 4 dB
Equivalent-Q improvement with efficient MLSA
filters.

Overall, these studies demonstrate the potential
of hybrid quantum—classical methods for speech
and NLP, spanning spectrogram fusion, quantum
frontends, transfer learning, federated privacy, and
model compression. In contrast, our work embeds
parameterized quantum circuits directly into both
feature extraction and decoding, integrates large
pretrained acoustic embeddings for full transcrip-
tion (not just classification/detection), and evalu-
ates a cohesive end-to-end quantum—classical ASR
pipeline on standard benchmarks, extending be-
yond earlier proof-of-concept systems.

3 Methodology

Figure 1: Architecture of the Quantum-Augmented
Whisper pipeline. Log-mel patches are angle-encoded
and processed by QCNN kernels that refine pretrained
acoustic embeddings before a Transformer encoder; de-
coding uses QLSTM (VQCs replacing LSTM linear
transforms) with optional QASA attention projections
and a classical token head.



3.1 Feature Extraction with Quantum
Convolutional Layers

An overview of the proposed Quantum-Augmented
Whisper is shown in Figure 1, combining quan-
tum and classical modules within the ASR pipeline.
Raw audio at 16kHz is converted into an 80-
channel log-Mel spectrogram using a 25ms win-
dow and 10ms stride, normalized and optionally
processed by a lightweight convolutional stem with
ReLU or GELU activations and positional encod-
ing. For feature extraction, instead of classical
CNNs we employ a Quantum Convolutional Neu-
ral Network (QCNN) (Yang et al., 2021), where
2x2 spectrogram patches are angle-encoded into
4-qubit states and processed by variational circuits
with trainable rotations (Rx, Ry, Rz) and CNOT
entanglement. Pauli-Z expectation values provide
the quantum features, acting as trainable kernels
that replace classical filters and are assembled into
a quantum-enhanced feature map. This approach
introduces stochasticity from measurement and ex-
ploits entanglement to capture local dependencies
more effectively, particularly in low-data settings.
‘While kernel sizes of 1x1 to 3x3 are considered,
prior work indicates 2 x2 offers the best trade-off.
The resulting feature map is flattened into a tempo-
ral sequence for downstream modeling.

3.2 Whisper-Inspired Transformer Decoder
with QLSTM Layers

Mathematical Foundation of Quantum LSTM
Gates: Quantum Long Short-Term Memory (QL-
STM) (Pandey et al., 2023) extends classical
LSTMs by replacing linear transformations in gate
computations with variational quantum circuits
(VQCs). For each gate g € {f,1, C, o},

g9 = o (VQC, ([ht—1,24: 0y)) , M

where [h;_1, x4] is the concatenated vector of pre-
vious hidden state and input, and ¢, are circuit
parameters.

VQC Architecture: Each variational circuit op-
erates in three stages:

1. Encoding: Inputs are mapped via angle encod-
ing:

n
arctan vy ;
Wenc> = ®(COS % ‘0>z
i=1 (2)

arctan v ;
arctan vy, |1>Z.>

+ sin 5

2. Variational Layer: For L layers and n qubits:

Uvar(e) =
L n
11 R(@ig, Bigsvia) [T ONOTy

1=1 Li=1 (i,5)
3)

where R(a, 3,7) = R.(7) Ry (8) ().

3. Measurement: Expectation values are ex-
tracted on Pauli-Z:

<ZZ> = <wﬁnal|Zi |¢ﬁnal>-

The resulting QLSTM dynamics are:

fe = o(VQC 4 ([hy—1, z4]; 6)), )
it = o(VQC;([hi—1,x¢]; 6:)), o)
Cy = tanh(VQCg ([he—1,2);05)),  (6)
Cy = f; ©Ci_1 +1i; @ Cy, ™
or = o(VQC,([hi—1, )5 0,)), ®)
hi = VQC},(o; ® tanh(Cy); 0y,). )

Integration into Whisper Decoder: As shown
in Figure 1, quantum-enhanced acoustic embed-
dings are processed by an encoder—decoder Trans-
former modeled after Whisper. The encoder
uses stacked self-attention and feedforward blocks,
while the decoder integrates QLSTM layers inter-
leaved with self-attention and cross-attention mod-
ules. Each gate is realized by a parameterized quan-
tum circuit using entangling layers and rotation
blocks, with nonlinear mappings (sigmoid/tanh)
ensuring standard gating behavior. This hybrid
architecture preserves LSTM temporal dynamics
while embedding them in quantum feature spaces,
enhancing robustness to overfitting and demonstrat-
ing competitive accuracy in low-resource and mul-
tilingual ASR settings.

3.3 Quantum-Aware Self-Attention Module

While the Whisper encoder—decoder backbone
ensures strong sequence modeling, we explore
quantum-enhanced attention via Quantum Adap-
tive Self-Attention (QASA), where query—key inter-
actions are processed through PQCs to generate at-
tention weights. Alternatively, PQCs can modulate
key, query, or value vectors, injecting noise-aware
or entangled projections that complement QLSTM
temporal modules.



Quantum Adaptive Self-Attention (QASA) re-
places classical dot-product attention with param-
eterized quantum circuits operating on encoded
queries and keys. Given input tokens X € R7*¢:

h{? = tanh(W,h;) (10)
QASA(WY) = h; + W, - QC(L? + 1) (11)
where ¢ is temporal information and QC/(+) is a

parameterized quantum circuit.
Quantum Circuit Details:

* Data Encoding:

Vie{l,...,n}: Rx(x;), Rz(z;)

* Variational Rotations: Trainable per-layer
Ry (01:), Rz ()

* Entanglement: Circular CNOT topology:
CNOT(i — (¢ + 1) modn)

e Measurement:

QC(h') = [(Z;)]1—,

Quantum Encoding in Attention:
Amplitude-Encoded Attention:

|Attention) = Z a;jli) ® |7)
.3
Angle-Encoded Attention:

Ry (6:;)[0) = cos <929> 0 + sin <eé,> I

where 0;; encodes attention between tokens 7 and
g

Hybrid Encodings: Multi-resolution, adaptive,
or hierarchical encoding strategies may be applied
depending on the attention head or input character-
istics.

This extended theoretical grounding and math-
ematical exposition provides a robust foundation
for quantum sequential models and quantum self-
attention within ASR, adhering to pure quantum
NLP principles throughout.

3.4 Transfer Learning with Pretrained
Acoustic Embeddings

To enhance generalization and reduce training
costs, we integrate pretrained acoustic embeddings,
following Whisper’s large-scale training paradigm
(Figure 1). Contextualized features from models
such as wav2vec 2.0 or Whisper’s encoder are fused
with QCNN outputs to provide richer represen-
tations. These embeddings can be incorporated
in three ways: (1) as direct inputs to the quan-
tum circuit, (2) as initial QLSTM hidden states, or
(3) concatenated with QCNN outputs before trans-
former encoding. Leveraging embeddings trained
on large corpora provides a strong acoustic prior,
allowing quantum layers to refine higher-level rep-
resentations rather than relearn fundamental audio
patterns; an especially beneficial strategy in NISQ-
constrained settings.

4 Evaluation Plan and Conclusion

Although primarily architectural, this work deliv-
ers a concrete, reproducible implementation and
evaluation roadmap. The system can be evalu-
ated on the Quantum-Augmented Whisper pipeline
on three ASR settings—keyword spotting (Speech
Commands), large-vocabulary transcription (Lib-
riSpeech) and multilingual recognition (Common
Voice)—using identical per-module circuit con-
straints and simulators (Qiskit Aer, PennyLane-
Lightning). Implementation highlights: angle-
encode log-mel patches into QCNN kernels (4-
qubit patch kernels, per-module budgets 8-16
qubits), map VQC measurement expectations to
classical projections and gating nonlinearities (sig-
moid/tanh) for QLSTM integration, and operate
quantum layers on frozen pretrained acoustic em-
beddings so quantum circuits refine high-level fea-
tures. Experiments follow a progressive instanti-
ation path. Ideal simulator — noise-injected sim-
ulator — limited-shot NISQ runs with standard
mitigation (measurement error mitigation, zero-
noise extrapolation) and hybrid training (parameter-
shift gradients / classical optimizers, minibatching,
staged unfreezing). It is expected that our model
will show noise robustness, sample efficiency, and
effective parameter counts. Testable hypotheses.
QCNN frontends will likely reduce CER by 1-3%
in noisy conditions via entanglement-mediated fea-
ture mixing. QLSTM decoding will improve low-
resource generalization and quantum modules will
match competitive accuracy with fewer parameters.



Limitations

The proposed hybrid quantum—classical ASR ar-
chitecture faces several limitations. Simulating
QCNN, QLSTM, and QASA circuits is compu-
tationally expensive, while NISQ devices impose
decoherence, gate errors, and strict depth limits
not fully captured in simulation. Jointly optimiz-
ing pretrained acoustic embeddings with quantum
layers remains challenging. To ensure feasibility,
QCNN kernels are restricted to six entangling gates
per patch, QLSTM layers use 12—14 variational pa-
rameters on 8—12 qubits, and QCNN operates on
four qubits per patch keeping all modules within
an 8-16 qubit budget compatible with current IBM
and IonQ hardware. Training is assumed on simu-
lators using parameter-shift rules, with noise-aware
transpilation, measurement-error mitigation, and
simple entanglement topologies to ensure NISQ
compatibility. Full end-to-end deployment may
still require circuit cutting or hybrid execution until
larger, more reliable quantum processors become
available. This work should therefore be viewed as
a hardware-aware architectural framework, provid-
ing a roadmap for empirical validation as quantum
technology evolves.
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These Aren’t the Vectors You’re Looking For: A Proof of Quantum
Advantage in Compositional Generalization

Karthik Srikumar
University of Connecticut

Abstract

Compositional generalization, the ability to
systematically combine known concepts to
understand and produce novel expressions,
remains a fundamental, unsolved challenge
for classical neural language models, whose
reliance on statistical correlations in high-
dimensional vector spaces inherently limits
them. This paper establishes the first rigorous
theoretical guarantee of an exponential quan-
tum advantage for compositional generaliza-
tion. We prove that classical language models,
which represent concepts as vectors in R?, re-
quire a latent dimension scaling linearly with
the number of concepts and compositional
rules to avoid catastrophic interference. In
contrast, we introduce the Quantum Compo-
sitional Embedding (QCE) framework, which
leverages the intrinsic properties of quantum
mechanics. In doing so, we demonstrate that
QCE, utilizing only a logarithmic number of
qubits, can perfectly represent and generalize
compositional structures, a task provably im-
possible for classical models of equivalent di-
mensionality. The separation is proven to be
exponential, providing a compelling theoreti-
cal foundation for quantum natural language
processing.

1 Introduction

Our contributions are: (1) A novel Quantum Compo-
sitional Embedding (QCE) framework; (2) Theorem
1: Classical lower bound for compositional represen-
tation; (3) Theorem 2: Quantum advantage in com-
positional generalization; (4) Rigorous mathematical
proofs of exponential separation

This work fills this critical gap. We present a formal
framework and provide the first proof of an exponential
quantum advantage for compositional generalization.
We precisely characterize the limitations of classical
models through a lower bound on the required latent
dimension. We then construct a novel Quantum Com-
positional Embedding (QCE) framework and prove that
it can achieve perfect generalization with resources that
are exponentially smaller than those required by any
possible classical model.

6

2 Related Works

Compositional generalization remains a fundamental
challenge in natural language processing. Several stud-
ies have highlighted the limitations of classical neu-
ral models in this area. For instance, Lake and Ba-
roni showed that sequence-to-sequence models strug-
gle with systematic generalization on simple artificial
tasks (1). To address this, benchmarks such as the
Compositional Freebase Questions (CFQ) dataset have
been developed to evaluate semantic parsing models’
ability to handle novel compositions (2). Shaw et al.
investigated the interplay between compositional gen-
eralization and natural language variation, proposing a
semantic parsing approach that attempts to handle both
aspects (3). However, these classical methods typi-
cally require extensive training data covering diverse
compositions to achieve reasonable performance, and
they still exhibit systematic failures on unseen com-
binations. In parallel, quantum natural language pro-
cessing (QNLP) has gained traction as a framework
that leverages quantum mechanics to model linguistic
structures. Coecke et al. laid the mathematical foun-
dations for compositional distributional semantics us-
ing category theory, which naturally admits quantum
interpretations (4). Building on this, Zeng and Coecke
introduced quantum algorithms specifically for compo-
sitional natural language processing tasks (5). More re-
cent empirical advancements include implementations
of QNLP models on actual quantum hardware, such
as the work by Lorenz et al., which ran compositional
models of meaning using the lambeq toolkit (6). Com-
prehensive surveys, like that of Basu et al., explore
the intersections between NLP and quantum physics,
including quantum-inspired algorithms for language
tasks (7). However, existing QNLP research primar-
ily focuses on practical demonstrations and algorithmic
designs, without providing formal proofs of quantum
superiority over classical counterparts in terms of rep-
resentational efficiency or generalization.

3 Theoretical Background and Classical
Lower Bound

We begin by formalizing the problem of compositional
generalization and establishing a fundamental limita-
tion of classical models. Let C = {¢1,c¢a,...,cn} bea
set of N atomic concepts. Let F = {f1, fo,..., f;}
be a set of M binary compositional rules (e.g.,

Proceedings of the QuantumNLP: Integrating Quantum Computing with Natural Language Processing, pages 6-9
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adjective-noun modification, subject-verb-action). The
goal of a compositional model is to represent any com-
plex concept formed by applying a rule f; € F to two
atomic concepts cq, ¢y € C, denoted f;(cq, ).

Definition 1 (Classical Compositional Model). A clas-
sical compositional model is defined by a triple
(d, ¢, {9, ?il) The function ¢ : C — R maps each
atomic concept to a vector in a d-dimensional latent
space. For each compositional rule f;, the function
gj - R? x R? — R is a continuous, smooth function
that computes the representation of the composition.

The primary challenge for such a model is to avoid

catastrophic interference, where learning to represent
one composition f;(cq, cy) disrupts the representation
of another, fx(c,cq). To ensure robust and generaliz-
able representations, the model must map distinct com-
positions to well-separated points in R?. The following
theorem formalizes the minimum dimension d required
to achieve this.
Theorem 1 (Classical Lower Bound on Latent Dimen-
sion). Let € > 0 be a minimum separation distance
in the latent space. Any classical compositional model
that can represent all N atomic concepts and all N> M
possible binary compositions under the M rules, such
that the representations of any two distinct composi-
tions are at least € apart in Euclidean distance, must
have a latent dimension d satisfying:

log(N) + 2log(N) + log(M)

—log(l — %)

B 10g(1+€%) (1
—log(l - Z—Z)

~ Q(log(gl\/l)) .

d>

Furthermore, no such model can guarantee perfect
generalization to all novel compositions without ob-
serving a number of training examples exponential in
d.

Proof. The proof relies on a sphere-packing argument
within the d-dimensional unit ball B?. Consider the
representation of a single composition f;(c,,cp). To
ensure a separation of at least € from all other N +
N2M — 1 concepts and compositions, a ball of ra-
dius €/2 around its representation point must be dis-
joint from the balls around all other representations.
The volume of a ball of radius r in d dimensions

is Vy(r) = 71“?; fl)rd. The volume of the unit ball
2
is V4(1). The maximum number K of disjoint €/2-

balls that can be packed into the unit ball is at most
Va(1)/Va(e/2) = (2)".
Therefore, we must have:

d
N+ N?M < (i) . )

Taking logarithms on both sides yields:

log(N + N?M) < dlog (2) . 3)

€

For large N and M, log(N + N?M) =~ 2log(N) +
log(M). Using the inequality log(2/e) < 1/e
for small ¢, we obtain the asymptotic bound d =
Qlog(NM)/e).

A more precise calculation uses the fact that the
volume of a spherical cap of height h is at least
(L)4/2V,(1). Setting h = €2/4 and requiring that
the total volume of all caps is less than 1 leads to the
exact expression in the theorem statement. The gen-
eralization claim follows from the fact that learning a
smooth function over a d-dimensional space to within
€ accuracy requires a number of samples exponential in
d(11). O

Theorem 1 reveals a fundamental bottleneck: the la-
tent dimension must grow linearly with the logarithm
of the problem size. This linear-logarithmic scaling is a
direct consequence of the geometry of Euclidean space.

4 The Quantum Compositional
Embedding Framework

We now introduce a framework that transcends this
classical limitation by leveraging the exponentially
larger state space of quantum systems. The core idea
is to represent concepts as quantum states and compo-
sitional rules as unitary transformations.

4.1 Quantum Preliminaries

Let H denote a Hilbert space of n qubits, such that
dim(#H) = 2". A pure quantum state is a unit vector
[1)) € H. A mixed state, representing a probabilistic
ensemble, is described by a density operator p, which
is a positive semi-definite matrix in H ® H* with trace
equal to 1. The space of all density operators for n
qubits is a convex set residing in a real vector space of
dimension 4™ — 1.

4.2 Framework Definition

The Quantum Compositional Embedding (QCE)
framework is built upon a key assumption about how
meaning is composed in natural language, which we
formalize as follows.

Definition 2 (Extended Quantum Tensor Product
(EQTP) Assumption). The meaning of a complex ex-
pression is represented by the quantum state obtained
from the tensor product of the quantum states repre-
senting its constituent parts, subsequently transformed
by a unitary operator that encapsulates the grammati-
cal relationship between them.

This assumption leads directly to the definition of
our model.

Definition 3 (Quantum Compositional Embedding
Model). A Quantum Compositional Embedding (QCE)
model is a tuple (n, ®, {U;}1L,) where:

* n is the number of qubits.



* & :C — D(H) is an encoding function that maps
each atomic concept ¢; to a density operator p; =
®(c;) on n qubits.

* For each compositional rule f; € F, U; is a uni-
tary operator acting on the joint Hilbert space of
2n qubits, i.e., Uj : H®? — HO2

The representation of a composed concept fi(cq,cp) is
given by:

Pt (ab) = Uj (B(ca) ® B(cp)) U} (4)

A critical aspect of this definition is that the output
of the composition py, (4,p) 18 itself a state on 2n qubits.
For deep hierarchical compositions, this would require
a linearly increasing number of qubits. To maintain a
fixed Hilbert space, we assume the existence of a fixed,
rule-specific compression channel A; : D(H®?) —
D(H) that maps the 2n-qubit state back to an n-qubit
state. For the purpose of our theoretical analysis, we
focus on single-level compositions, as the exponential
advantage is already evident at this stage.

S The QCE Theorem: Exponential
Quantum Advantage

We now present and prove the main result of this paper:
the QCE framework achieves an exponential advantage
over any classical model for the task of compositional
generalization.

Theorem 2 (Exponential Quantum Advantage in Com-
positional Generalization). Under the Extended Quan-
tum Tensor Product (EQTP) assumption, the Quan-
tum Compositional Embedding framework with n =
O(loglog N +1log M) qubits can represent a language
with N atomic concepts and M compositional rules. It
guarantees perfect accuracy and perfect generalization
to all N2M possible binary compositions, meaning
that the representation of every composition is unique
and perfectly distinguishable from all others.

In contrast, any classical compositional model
achieving the same representational capacity and per-
fect distinguishability requires a latent dimension d
that is exponential in n, specifically d = Q(2").

The proof of Theorem 2 is structured into three lem-
mas, which together establish the quantum model’s ca-
pacity and the infeasibility for classical models.

Lemma 1 (Quantum Representational Capacity). For
any 6 > 0, there exists a QCE model with n =
O(loglog N +log M + log(1/6)) qubits that can map
all N2M compositions to distinct quantum states such
that the trace distance between the states of any two
distinct compositions is at least 1 — 9.

Proof. The state space of n qubits is characterized by
density matrices in a real vector space of dimension
4™ — 1. We aim to embed T = N2 M distinct composi-
tions into this space. A sufficient condition for achiev-
ing a minimum pairwise trace distance is to ensure that

the states are nearly orthogonal. The maximum number
of nearly orthogonal states in a D-dimensional space
grows exponentially with D.

More formally, by parameters counting and the
Johnson-Lindenstrauss lemma, we can embed T points
into a space of dimension D = O(logT') while pre-
serving distances. In our case, the effective dimension
D is 4™. Therefore, we require 4" > C'log(T) for
some constant C'. Solving for n:

1
4" > Clog(N’M) = n > §1og2(0(2 log N+log M)).

&)
Thus, n = O(loglog N + log M) is sufficient. The
trace distance guarantee follows from the concentra-
tion of measure in high-dimensional spaces; randomly
chosen pure states in a large Hilbert space are almost
always nearly orthogonal. O

Lemma 2 (Perfect Generalization via Unitary Compo-
sition). The composition operation in the QCE frame-
work, defined by p — U;pU ; , guarantees perfect
generalization. If the atomic concepts p, and py are
perfectly distinguishable from other concepts, then the
composed state U;(pa @ pp)U. ]T is perfectly distinguish-
able from the composition of any other pair of concepts
under the same or a different rule.

Proof. The key property utilized here is the unitarity of
the composition operation. Unitary operators are lin-
ear and invertible. More importantly, they preserve the
inner product, and consequently, they preserve distin-
guishability. The trace distance between two quantum
states, which quantifies their distinguishability, is in-
variant under unitary transformations:

S(UpUT,UaUT) = 5(p, 0). 6)

Suppose two distinct compositions lead to the same fi-
nal state: U, (p, ® pb)U; = Uk(pc ® pd)U,I. Applying
the inverse unitaries shows that this implies p, ® pp =
Pe @ pq (if 5 = k) or a similar equivalence involving
U ]T Uy (f j # k). By the perfect distinguishability of
the atomic representations assumed in Lemma 1, this
is impossible unless (a, b, 7) = (¢, d, k). Therefore, all
compositions are mapped to unique states, guarantee-
ing perfect generalization. O

Lemma 3 (Exponential Separation from Classical
Models). Any classical model that can simulate the
input-output behavior of the QCE model described in
Lemmas 1 and 2 for a randomly chosen set of compo-
sition rules must have a latent dimension d = Q(2").

Proof. This part of the proof reduces the problem to a
known communication complexity problem. Consider
the task where one party, Alice, sends a classical de-
scription of a function g (which simulates a composi-
tion rule U;) to another party, Bob, such that Bob can
compute g(x, y) for any inputs = and y (the atomic con-
cepts). The function g in our case maps pairs of concept
indices to a point in R?.



The QCE model implements a specific family of
functions G defined by the unitary matrices U;. The
VC dimension or the pseudodimension of this function
family can be shown to be exponential in n, because
the space of unitary matrices on 2n qubits is exponen-
tially large. A result from computational complexity
(12) shows that simulating the quantum evolution de-
fined by a randomly chosen unitary requires communi-
cating a number of classical bits exponential in n.

If a classical model with small d could simulate this
process, it would imply a compact classical descrip-
tion for the function g, which would in turn allow for a
communication protocol that violates the known lower
bounds for problems like the VECTOR-IN-SUBSPACE
problem. Therefore, the dimension d of the classical
latent space must be at least exponential in n to possess
the same functional capacity. O

The proof of Theorem 2 is completed by combining
these three lemmas. Lemma 1 shows that the quantum
model can achieve the required capacity with very few
qubits. Lemma 2 shows that its compositional mech-
anism is inherently generalizable. Finally, Lemma 3
proves that no classical model can achieve this feat
without an exponential increase in resources. The exact
numbers require empirical validation.

6 Implications and Discussion

Our work provides the first theoretical foundation for
quantum advantage in NLP. By establishing a rigorous
lower bound for classical models and demonstrating
that quantum models can surpass this bound with loga-
rithmic resources, this work provides the first uncondi-
tional theoretical guarantee of a quantum advantage for
this core natural language processing task.

6.1 Limitations and Future Work

The EQTP assumption, while theoretically justified, re-
quires empirical validation. Future work includes: (1)
Relaxing the perfect generalization requirement; (2)
Developing NISQ-friendly variants; (3) Empirical val-
idation on simplified linguistic tasks.

7 Conclusion

We have established the first theoretical guarantees for
quantum advantage in compositional generalization.
The QCE framework exponentially outperforms classi-
cal models while providing perfect generalization guar-
antees. This work lays the mathematical foundation for
quantum natural language processing and opens new
directions for quantum Al research.
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Abstract

Traditional machine learning and deep learning
models have demonstrated remarkable perfor-
mance across various NLP tasks in multiple
languages. However, these conventional mod-
els often struggle with languages with com-
plex linguistic structures and nuanced contexts,
such as Bengali. Recent advancements in quan-
tum computing offer promising solutions for
tackling complex, computationally challenging
problems, providing faster, more efficient pro-
cessing than classical systems. This research
aims to address the challenges posed by the in-
tricate linguistic structure of the less-resourced
Bengali language by developing a quantum-
enhanced framework for sentiment classifica-
tion and claim-checkworthiness identification.
We created a classical LSTM framework and
proposed novel 2-qubit and 4-qubit classical-
quantum frameworks, evaluating their effec-
tiveness for sentiment classification and claim-
checkworthiness identification tasks in Bengali.
An entirely new dataset comprising ~3K sam-
ples was developed by curating Bengali news
headlines from prominent sources. We tagged
these headlines with sentiment and claim check-
worthy labels using state-of-the-art LLMs. Our
findings indicate that the quantum-enhanced
frameworks outperform the traditional models
in both tasks. Notably, the 4-qubit-based frame-
work achieved the highest F1-score in senti-
ment classification, while the 2-qubit-based
framework demonstrated the best F1-score in
claim checkworthiness identification.

1 Introduction

The rapid growth of information on the internet has
intensified the challenges of processing and analyz-
ing natural languages at a scale. Two critical tasks
in this domain are sentiment analysis, which iden-
tifies the emotional tone intended in a sentence as
positive, negative, or neutral, and claim checkwor-
thiness identification, which determines whether a
sentence constitutes a checkworthy claim or not,
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facilitating further fact-checking to mitigate mis-
information and disinformation. While classical
deep learning approaches have achieved remark-
able performance in both tasks, their performance
in a quantum-computing environment has not been
broadly explored.

Quantum Computing, a trending and emerging
topic in the computer science domain, is based
on the fundamentals of quantum physics, such as
superposition and entanglement (Gyongyosi and
Imre, 2019). Due to the superposition, entangle-
ment, and other unique characteristics, quantum
computers can solve problems more efficiently
than classical computers by speeding up compu-
tational time with less resource utilization (Gy-
ongyosi and Imre, 2019; Pandey and Pakray, 2023).
One of the best examples for assessing the power of
quantum computing is the breaking of the famous
Rivest—Shamir—Adleman (RSA) algorithm (Rivest
etal., 1978). To break the RSA algorithm generally,
a classical computer takes billions of years; how-
ever, a quantum computer takes only a few hours
to break the RSA algorithm (Shor, 1997; Proos and
Zalka, 2004).

One primary application of quantum comput-
ing is Quantum Machine Learning (QML). Where
classical computers require a large amount of data
and enormous computational resources, quantum
computers could learn from less data, understand
complex patterns in data, and handle noisy data in
a better way than classical computers (Neumann
et al., 2019). These advantages of quantum com-
puting inspire us to analyze NLP tasks, such as
sentiment classification and claim checkworthiness
identification, using QML methods, particularly in
less-resourced languages like Bengali.

The seventh most widely spoken language glob-
ally, Bengali represents over 272 million speakers,
with a majority portion in India and Bangladesh,
yet remains significantly underrepresented in the
natural language processing research community

Proceedings of the QuantumNLP: Integrating Quantum Computing with Natural Language Processing, pages 10-19
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compared to high-resource languages like English.
This disparity becomes particularly pronounced
when addressing sophisticated computational tasks
such as sentiment classification or claim checkwor-
thiness identification, where the linguistic complex-
ity and contextual nuances of Bengali pose sub-
stantial challenges for traditional machine learning
approaches.

Our research addresses the linguistic challenges
of the Bengali language and develops a novel
classical-quantum hybrid framework for sentiment
classification and claim checkworthiness detection
in Bengali texts. The contributions in this paper
can be summarized as follows:

* We have developed an entirely new Bengali
dataset for claim checkworthiness detection and
sentiment classification, with a sample size of ap-
proximately 3,000, curating data from the promi-
nent Bengali news portal ‘Sangbad Pratidin’, and
annotating sentiment and claim labels using three
state-of-the-art Large Language Models (LLMs):
GPT-40-mini (OpenAl et al., 2024), Llama-4
(Touvron et al., 2023), and GPT-4.1-mini, fol-
lowed by majority voting.!

* We developed a classical LSTM framework and a
classical-quantum hybrid framework using Vari-
ational Quantum Circuit (VQC) for sentiment
classification and claim checkworthiness identifi-
cation.

* We perform comparative analysis between classi-
cal LSTM and classical-quantum hybrid frame-
works for both sentiment classification and claim
checkworthiness detection, providing valuable
insights into their performance.

The remainder of this paper is organized as fol-
lows: Section 2 presents the related work, pro-
viding an overview of recent studies in the field
of quantum NLP. In Section 3, we discuss our
data collection strategy, the process of dataset
preparation using LL.Ms, and the analysis of inter-
annotator agreement. Section 4 covers the method-
ologies for developing both classical LSTM models
and classical-quantum hybrid frameworks utilizing
VQCs, along with the training hyperparameters.
Section 5 presents the results, discussing the out-
comes of different frameworks for both tasks. Fi-
nally, Section 6 concludes the paper by outlining

!The dataset is publicly available at: https://github.com/
pritampal98/quantum-sentiment-claim
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the valuable findings from this research and sug-
gesting future directions for this work.

2 Related Works

In this section, we discuss some related works on
quantum computing in the natural language pro-
cessing (NLP) domain. Although quantum com-
puting has been a hot topic for the last decade, the
applications of quantum computing in the NLP do-
main have not been extensively explored and are
still in the early stages (Varmantchaonala et al.,
2024).

Basile and Tamburini (2017) proposed quantum
language models using quantum probability theory.
The authors have shown that their proposed quan-
tum language models outperform the state-of-the-
art language models in terms of perplexity scores.
Tamburini (2019) also used quantum probability
theory for developing a word sense disambiguation
algorithm.

A joint multi-modal multi-task learning frame-
work for sentiment and sarcasm detection us-
ing quantum probability was proposed by Liu
et al. (2021). The authors evaluated their pro-
posed framework on two datasets, MUStARDex¢
(Chauhan et al., 2020) and Memotion (Sharma
et al., 2020), demonstrating that its performance
surpasses that of the state-of-the-art. Phukan and
Ekbal (2023) proposed a multimodal framework
for sentiment analysis using a variational quan-
tum circuit (VQC) (Qi et al., 2021). The authors
have also demonstrated that their framework out-
performs other frameworks for the CMU-MOSEI
dataset (Bagher Zadeh et al., 2018). A multimodal
quantum-based framework for emotion detection
was also explored in the study by Li et al. (2023).

One of the popular NLP tasks, part-of-speech
(POS) tagging, was also explored by several re-
searchers (Sipio et al., 2021; Pandey et al., 2022;
Pandey and Pakray, 2023) utilizing QLSTM. While
Sipio et al. (2021) and Pandey et al. (2022) worked
with unidirectional QLSTM, Pandey and Pakray
(2023) used bidirectional QLSTM in their study
to identify POS tags in a text. In contrast, Pandey
et al. (2022) used the Mizo language, which is a
low-resourced Indian language, and Pandey and
Pakray (2023) used codemixed texts in their exper-
iments.

Quantum frameworks are also explored in the do-
main of text classification (Xu et al., 2024; Shi et al.,
2023), sentiment analysis (Yan et al., 2024; Zhang



et al., 2019), sarcasm detection, claim identifica-
tion (Pal and Das, 2025), and metaphor detection
(Qiao et al., 2024) tasks. While Xu et al. (2024)
used quantum RNNs to develop their text classifi-
cation framework and evaluated their models in the
Rotten Tomatoes dataset (Pang and Lee, 2005), Shi
et al. (2023) developed quantum-inspired convolu-
tion neural network-based models and evaluated
their models on popular benchmark datasets such
as SST, SUBJ, MPQA, etc.

Coecke et al. (2020) proposed ‘DisCoCat’, a
quantum framework for NLP tasks that preserves
the linguistic meaning and structure of a text and
converts them into a quantum circuit. The appli-
cations of the DisCoCat framework are shown in
the papers (Ruskanda et al., 2023, 2022; Ganguly
et al., 2022) where the authors performed sentiment
analysis using the DisCoCat framework with ‘lam-
beq’ (Kartsaklis et al., 2021) toolkit. ‘Lambeq’>
is the first open-source Python library for quan-
tum natural language processing, which provides a
vast range of modules and classes to develop quan-
tum circuits for sentence representation, training of
quantum circuits, and many others.

There are several survey papers (Wu et al., 2021;
Guarasci et al., 2022; Varmantchaonala et al., 2024;
Widdows et al., 2024) that discussed quantum nat-
ural language processing and its applications in a
more elaborate and detailed way. Among them,
one of the interesting articles proposed by Wu et al.
(2021) discusses and categorizes different quantum
algorithms and NLP tasks, showing that quantum
NLP models produce better or equivalent results
than classical NLP models.

3 Dataset

A completely new dataset was developed for this
experiment with sentiment and claim checkworthy
labels. The data was collected from news head-
lines from one of the popular and prominent Ben-
gali news portals, ‘Sangbad Pratidin’ 3. We uti-
lized Python’s BeautifulSoup web-scraping method
to systematically scrape news headlines and store
them in an Excel file. Following the collection of
data, the entire crawled data was reviewed by the
authors to check for inconsistent entries, such as
HTML tags or undefined Unicode characters, and
the texts were manually cleaned.

Upon collection of data, the news headlines were

*https://docs.quantinuum.com/lambeg/
3https://www.sangbadpratidin.in/
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annotated with claim checkworthy and sentiment
labels using Large Language Models (LLMs). Due
to their state-of-the-art performance across various
NLP tasks, including question answering, machine
translation, and classification tasks, we employed
three distinct LLMs for the data annotation task:
GPT-40-mini, GPT-4.1-mini, and Llama-4. It is ev-
ident that annotation data with professional human
annotation is always of high quality and provides
gold-standard annotated labels. However, the hu-
man annotation requires specialized training, sig-
nificant annotation costs, and time. Also, in the
context of resource-constrained languages, such as
Bengali, finding quality professional data annota-
tors is quite challenging. The following prompt
was provided to each LLM model to annotate the
claim and sentiment labels:

You are a language expert annotating Bengali news
headlines.

Now classify the sentiment of news headline as:

- Positive: Expresses praise, hope, success, happiness,
or celebration

- Negative: Expresses criticism,
danger, sadness, or loss

- Neutral: Factual or informational, without emotional
tone

fear, conflict,

Then decide if the headline is check-worthy:

- Check-worthy: A verifiable claim with potential
public impact

Not check-worthy:
unverifiable

= Opinion-based, vague, or

Output Format: ["<Positive|Negative|Neutral>",
"<Check-worthy|Not check-worthy>", "<A brief
justification in English enclosed with quotation>"]

Now annotate the headline: "{txt}"

All the LLM models were accessed through their
corresponding APIs, and the temperature and top-p
values were set to 0 and 0.95, respectively.

Upon annotating claim and sentiment labels with
three distinct LLMs, the final annotation was car-
ried out through a majority voting scheme. For
both sentiment and claim checkworthy labels, the
label with the most frequent outcome was selected
as the final label. The annotations, where no ma-
jority was found, were further annotated manually
by the annotators. The inter-annotation agreement
score between different LLMs was calculated using
Fleiss’ Kappa (Fleiss, 1971) and Gwet AC1 (Gwet,
2006) metrics. For the sentiment label annotation,
the Fleiss’ Kappa score was 0.7751, and the Gwet
ACI score was 0.8209. In case of claim checkwor-
thiness, the Fleiss’ Kappa and Gwet AC1 scores
were 0.3554 and 0.6516, respectively.

However, instead of fully relying on LLM anno-



tating data, all the final annotations (after majority
voting selection) were further reviewed through
a rigorous review process by three undergraduate
computer science interns. If any inconsistencies
were found, those are marked by the interns and
further reviewed and resolved by the authors. A
complete flow diagram of the overall data annota-
tion process is provided in Figure 1. The distribu-
tion of sentiment and claim labels is provided in
Table 1.

<headline_1>
<headline_2>
<headline_n>

rompt:

You are a language expert annotatil
\Bengali news headlines ...

Pool of
collected news
headlines

Provided

A7 2 L4 prompt along
— with news
@ Fbﬁ @ headlines to
annotate labels

Llama-4 Maverick

v
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<clm-gpt-40>
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<sen-gpt-4.1>;
<clm-gpt-4.1>

-/

majority voting to
identify final label

Annotated by
authors where no
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If any
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annotations O ------- »{found; reviewed
by interns — and resolved by

authors
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<headline>; !
<sentiment_label>; €--------- '
<claim_label>
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annotated
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Figure 1: Overall flow diagram of the data sentiment
and claim-checkworthy data annotation process utilizing
three state-of-the-art LLMs followed by majority voting
and manual intervention.

Label #Train  #Test
Negative 1640 396
Sentiment  Neutral 463 118
Positive 665 179
Claim Check-worthy 2164 529
Not Check-worthy 604 164
Table 1: Distribution of sentiment label and claim-

checkworthy label for training and testing set.
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4 Methodology

This section provides a brief overview of the
methodology for sentiment classification and
claim-checkworthiness detection, with a classical-
quantum LSTM framework.

4.1 Task Definition

Given a tokenized sequence S = [t1,to, t3, ..., ty]
where S is the sentence or text and t;’s are text
tokens or words. For sentiment classification, each
text was annotated with either positive, negative, or
neutral labels. For claim identification, each text
was annotated with either claim-checkworthy or
not claim-checkworthy labels. Our objective is to
predict appropriate labels using quantum machine
learning algorithms.

4.2 Framework Description

We developed three frameworks for both sentiment
analysis and claim checkworthiness identification:
1) a classical LSTM framework where no quan-
tum modules are used, 2) a 2-qubit-based classical-
quantum framework where we used a 2-qubit-
based VQC layer, and 3) a 4-qubit-based classical-
quantum framework where a 4-qubit-based VQC
layer was utilized. A flow diagram of classical
LSTM and 4-qubit-based classical-quantum frame-
work is provided in Figure 2.

As depicted in Figure 2, for both classical and
classical-quantum frameworks, the tokenized se-
quence was first provided through an embedding
layer of 128 dimensions to get a vector represen-
tation of each ¢; in S, let’s say X of dimension
n x 128. Next, the embedding matrix [X], 128
was provided as input to an LSTM layer with 128
hidden units and a tanh activation function.

Following the LSTM layer, the last hidden state
representation from the LSTM, with a dimension
of 1 x 128, was further passed through a fully con-
nected layer (FC layer) with 32 hidden units and a
sigmoid activation function.

Zte = sigmoid(LST Moy;)

Here, Z . represents the output of the FC layer and
LST M, is the last hidden state output from the
LSTM layer.

4.2.1 VQC Layer

In the case of the classical-quantum hybrid frame-
work (Figure 2 (b)), the Z. was further split into
equal chunks to serve as an input to the VQCs, i.e.,
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Figure 2: System framework for sentiment classification and claim-chekworthy identification: (a) classical LSTM
framework, (b) hybrid classical-quantum framework utilizing classical LSTM followed by a layer of VQCs

for the 2-qubit-based framework, the Z7. was di-
vided into 16 equal chunks (each chunk with vector
length 2), and for the 4-qubit-based framework, the
Z . was split into eight equal chunks (each chunk
with vector length 4).

VQC:s or Variational Quantum Circuits are a spe-
cial type of quantum circuit that has tunable param-
eters, and the parameters are updated iteratively by
the gradient descent method. A typical VQC con-
sists of three blocks: First, a data encoding block
(U(x)) where the classical data is encoded into a
quantum state, Second, a variational block (V' ())
where the encoded quantum state representation
of classical bits gets a parameterized rotation with
learnable parameter weights followed by several
CNOT gates, and a quantum measurement block
which measure the output for every qubit in the
Pauli-Z basis. The diagrammatic representation of
2-qubit and 4-qubit-based VQCs used for devel-
oping the classical-quantum hybrid framework is
provided in Figure 3.

As depicted in Figure 3, the first block is the
data encoding block (U (x)), where the H gate or
Hadamard gate first transforms each qubit state |0)
to a superposition state (|0) + |1))/2. Followed by
H gate, for each classical input z;, the R, gate is
used as an angle to rotate a qubit around the Y-axis
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Figure 3: Diagramatic representation of VQCs devel-
oped for the classical-quantum hybrid: the top figure
is the VQC with 2-qubit, and the bottom figure is the
VQC with 4-qubit. H represents the Hadamard gate,
R, Ry, R, are the rotation gates around the X-axis, Y-
axis, and Z-axis of the Bloch sphere, respectively.

of the Bloch sphere.

After data encoding, the next step is the vari-
ational block (V' (6)), where every qubit gets a
trainable Euler rotation (RX, RY, RZ), followed
by an entangling ring of CNOTS, which enables the
model to learn interactions between features. And,
the final block is the quantum measurement block,



which measures the expectations () on each qubit
(<Z> S [_17 1])

4.2.2 Classification

For classification, in the classical LSTM frame-
work, Z . was passed to a final output layer with a
softmax activation function. For sentiment classi-
fication, the output layer consists of three hidden
units; for claim checkworthiness detection, it con-
sists of two hidden units.

P = softmax(Zy.)

On the other hand, for the classical-quantum hybrid
framework, the output from each VQC unit was
concatenated and further passed through the final
output layer.

Zvoc = Concatenate(z‘l/QC, Z%/QC, o z‘k/QC)
P = softmazx(Zyqc)

Y = argmax(P)
J

Here, Z%/QC is the output of each VQC unit (z =
1,2,...,k), Zyqc is the concatenated output, P
represents the probability value for each class and
Y represents the predicted class label and j repre-
sents the number of classes.

4.3 Training

In order to accomplish the training process, the
training dataset was divided into a 90-10 ratio,
where 90% of the data was used for training the
framework and 10% of the data was reserved as a
validation set. The CrossEntropy loss was used
with a learning rate of 0.0025 to train all the frame-
works. The optimizer selected was Adam (Kingma
and Ba, 2017), and the number of epochs chosen
for training the frameworks was 10 with a batch
size of 64.

5 Experiment and Results

5.1 Experimental Setup

All experiments were performed using the PyTorch
and Pennylane libraries * with an NVIDIA RTX-
5000 GPU. PennyLane is a robust and open-source
framework for quantum computing and quantum
machine learning. It enables us to execute and
train quantum circuits with a variety of backends,
including real quantum computers and quantum
simulators.

*https://pennylane.ai/
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The VQC modules were trained and executed
using the Pennylane quantum computing simula-
tor with the ‘default.qubit’ backend. For eval-
uation, the precision, recall, and macro-F1 score
metrics were computed for the test dataset for both
sentiment classification and claim checkworthiness
identification.

To ensure a fair comparison between classical
and 2-qubit and 4-qubit-based classical-quantum
hybrid frameworks, all the frameworks were
trained on the same training data with the same
hyperparameters as reported in Section 4.3 and
evaluated on the same test datasets as mentioned in
Table 1.

5.2 Result

The performance for sentiment classification and
claim checkworthiness detection is provided in Ta-
ble 2. For sentiment classification, the best pre-
cision score of 62.14 is provided by the classical
LSTM framework. Conversely, the best recall and
F1-score of 52.64 and 52.67 is provided by a 4-
qubit-based classical-quantum framework, which
is a performance improvement of 0.25% in terms of
F1-score when compared with the classical LSTM
framework. Notably, the performance in the 2-
qubit-based classical-quantum hybrid framework
is surprisingly decreased to 47.62 F1-score, which
is a performance dropout (F1-score) of 9.36% and
9.59% compared to the classical LSTM framework
and classical-quantum hybrid framework, respec-
tively.

Framework Precision Recall F1
classical 62.14 5145 5254
Sentiment  2-gb 54.69 46.82  47.62
4-gb 56.88 52.64 52.67
classical 65.95 72.02 64.27
Claim 2-gb 68.35 65.58  66.63
4-gb 66.20 66.47  66.33

Table 2: Result of sentiment classification and claim-
chekworthy identification for test dataset. ‘classical’ rep-
resents the classical LSTM framework, ‘2qb’ and ‘4qb’
represent the 2-qubit-based and 4-qubit-based classical-
quantum hybrid frameworks, respectively.

One possible reason for the low F1-score in the
2-qubit-based classical-quantum hybrid framework
for sentiment classification is the division of the
output of the FC layer into small chunks (vector
length of 2), which loses the overall contextual
relationship in the text, resulting in a low F1-score.



In the case of claim checkworthiness detection,
both the 2-qubit and the 4-qubit-based classical-
quantum hybrid framework outperform the classi-
cal LSTM framework in terms of Fl-score. The
classical LSTM framework only provides the
best recall score of 72.02. The 2-qubit and 4-
qubit-based classical-quantum hybrid frameworks
achieved Fl1-scores of 66.63 and 66.33, repre-
senting a performance improvement of 3.67%
and 3.1%, respectively, compared to the classical
LSTM framework.

5.3 Error Analysis

Error analysis was performed using confusion ma-
trices for sentiment analysis and claim checkwor-
thiness identification in both the classical LSTM
framework and two quantum-enhanced frame-
works: the 2-qubit and 4-qubit-based classical-
quantum hybrid frameworks. The confusion matrix
for sentiment classification and claim checkwor-
thiness identification is provided in Figure 4 and
Figure 5, respectively.

Classical l-Quantum (2qb) Classical 1-Quantum (4qb)

0.101  0.030 0.894 0.063  0.043 0.798 0.162 0.040

0390 0025 -5NCEM 0203 0102 3§

E
EH 0140  0.307

uuuuuuuuuu gative Neutral positive
Predicted Label Predicted Label

0.127

0.117  0.285 é— 0.302 0.341 0.358

Negative Neutral Positive

Figure 4: Confusion matrix for sentiment classification.
The left confusion matrix is for the classical LSTM,
the middle and right confusion matrices are for the 2-
qubit and 4-qubit-based classical-quantum hybrid frame-
works, respectively.

From Figure 4, for sentiment analysis, the neu-
tral class shows the majority of error cases. In the
2-qubit-based classical-quantum hybrid framework,
only 20.3% instances are correctly classified, fol-
lowed by the classical LSTM framework, where
39% neutral instances are appropriately classified.
The 4-qubit-based classical-quantum hybrid frame-
work achieves 42.4% accuracy in identifying neu-
tral classes, which is the highest neutral class clas-
sification accuracy among the three frameworks.
The majority of misclassification for the neutral
class is observed towards the negative class, where
58.5%, 69.5%, and 44.9% of neutral instances are
misclassified as the negative class for the classi-
cal LSTM, 2-qubit-based classical-quantum, and 4-
qubit-based classical-quantum hybrid frameworks,
respectively.

This misclassification trend is also observed for
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positive classes, where 59.8% and 55.8% positive
instances are misclassified as the negative class
in classical LSTM and 2-qubit-based classical-
quantum hybrid frameworks, respectively. The mis-
classification rate for the negative class is reduced
to 30.2% for the 4-qubit-based classical-quantum
framework; however, 34.1% positive instances are
misclassified as the neutral class for the 4-qubit-
based classical-quantum hybrid framework.

One possible reason for the majority of misclassi-
fication as the negative class is that the distribution
of sentiment labels is highly imbalanced, with more
than 50% of instances tagged as the negative class,
which makes the model slightly biased towards the
negative sentiment. As a result, neutral and positive
instances are misclassified as negative sentiment.

Classical-Quantum (2b) Classical-Quantum (4gb)

0.494 0.506

NNNNNNNN

ot Claim Cai
Predicted Label Predicted Label

ccccc

Figure 5: Confusion matrix for claim checkworthiness
identification. The left confusion matrix is for the clas-
sical LSTM, the middle and right confusion matrices
are for the 2-qubit and 4-qubit-based classical-quantum
hybrid frameworks, respectively.

On the other hand, in the case of claim checkwor-
thiness identification, 37.1% claim-checkworthy
instances are misclassified in the classical LSTM
framework. Notably, this misclassification rate is
overcome in the classical-quantum hybrid frame-
works, with misclassification rates of 11.5% and
16.4% in the 2-qubit-based classical-quantum hy-
brid framework and the 4-qubit-based classical-
quantum hybrid framework, respectively.

However, while quantum-enhanced frameworks
demonstrate strong performance in classifying
checkworthy claims, their performance in identi-
fying non-checkworthy claims deteriorates, with
misclassification rates of 57.3% and 50.6% in the 2-
qubit and 4-qubit-based classical-quantum hybrid
frameworks, respectively. In contrast, the classical
LSTM framework achieves a lower error rate of
18.9% in classifying non-checkworthy claims.

Along with analyzing confusion matrices, a few
examples of error cases for sentiment classifica-
tion and claim checkworthiness identification in
different frameworks are provided in Table 3.



Predicted Label
D Text True
Label | classical 2qb 4qb
s IR STIIIEAL ([FFG, T SEool Rel TR BT {fF (T: ICC Champions Trophy reaches .. . .. ..
1 . . Lo . positive | negative | positive | positive
new heights, sets all-time record in viewership)
Y SOICE AP RIS N NRITAGT, RS JHFMGF ATTION =B (T: Mohammedan desperate to . I
S5 - . . R neutral | neutral | positive | positive
beat Punjab in the last match, hints at multiple changes in the team)
s 99 ISR RTFIE RO ¢o RIS W WM AR, A1 FFIGT (BT (MUY BTRLS TSI (T: 'If so many . . .
3 . Sy e R negative | neutral | negative | negative
cylinders explode, 50,000 people will die', Mamata expresses concern after seeing Park Street restaurant)
s CARROIR [T AR O™ 8 WHIRIE, Br751 INGTT AGHLTIF UG (T: Famine and starvation are . ..
4. R . . R negative | positive | neutral | neutral
increasing alarmingly in the world, UN report raises concerns)
OO AW (YTF IFIFNOA G2 FIPLPS WARIY! AOw beled IS fBR (T: Two farmers from . . . .
C; . . . . R claim n-claim claim claim
Balurghat kidnapped from India-Bangladesh border! Flag meeting continues all night)
EROANE T WFH, (FR1R (A(F FAPTOTY WS SIS WIHICFIDGI (T: New attraction at the zoo, . . . .
C, . . claim claim n-claim claim
green anaconda coming to Kolkata from Chennai)
R OGP QB RI6 [NTT (ST ZSHLI57, (BI6-WHITS Tl STGICIR B & SHIHS (T: East Bengal . . . .
C; . = . , ] L. n-claim | n-claim claim claim
face a hat-trick of defeats in Goa, Oscar's challenge is to shape the team due to injuries)
RGN NRBIAL WICE (2 WGy (U AHF ACGHL WRRISTT (T: Rain in Knights match at Eden? What will . . . .
Cy o n-claim claim n-claim | n-claim
the weather be like in the state today?)

Table 3: Some examples of error cases in the test dataset. S to Sy are the error cases for sentiment classification
and C to Cy are the error cases for claim checkworthiness identification. The red-coloured texts represent the
misclassified labels, and the blue-coloured texts represent the correctly classified labels. (‘T:” represents the

translation of the Bengali text)

6 Conclusion

This paper represents a novel classical-quantum
hybrid framework for sentiment classification and
claim checkworthiness identification for the less-
resourced Bengali language. We developed an
entirely new dataset for sentiment classification
and claim-checkworthiness identification, com-
prising approximately 3,000 samples, and exper-
imented with a classical LSTM framework and
two quantum-classical hybrid frameworks based
on 2-qubit and 4-qubit VQC. Our experiments and
findings show that the classical-quantum hybrid
framework outperforms the classical LSTM frame-
work for both sentiment classification and claim
checkworthiness identification.

Furthermore, to more accurately and robustly
justify our findings and observations, we’ll eval-
uate the proposed frameworks with other lan-
guages, such as English, Hindi, Assamese, and
Odia, among others. In addition, we will experi-
ment with quantum-enhanced Bi-LSTM, GRU, or
Bi-GRU models in our future work.

Limitations

Our proposed work also has some potential lim-
itations. First, all the classical-quantum hybrid
frameworks were trained and evaluated on a quan-
tum simulator, which somewhat limits the actual
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potential of real quantum hardware.

Second, we experimented with only the 2-qubit-
based and 4-qubit-based VQCs in the development
of the classical-quantum hybrid framework due to
resource limitations. Chunking the output of the FC
layer into 2 and 4 chunks and providing it through
2-qubit-based and 4-qubit-based VQCs sometimes
loses the original contextual relationship between
the words in a sentence. In our future work, we will
aim to develop advanced techniques to preserve
the contextual relationships between words while
chunking. Also, we’ll experiment with higher qubit
VQCs, such as 8-qubit or 16-qubit, in our future
work.

Third, due to the lack of trained professional an-
notators, time constraints, and economic reasons,
we have to annotate the sentiment and claim check-
worthy labels with the help of LLMs. Although
we used three LLMs, followed by majority voting
and manual verification, instead of relying on a
single LLM model, there might still be some in-
correctly annotated samples, as no LLM is 100%
accurate. However, we’ll aim to develop a fully
human-annotated dataset and evaluate our proposed
framework with that dataset in our future work.

Fourth, there is a high level of imbalance in the
claim-checkworthy labels and sentiment labels in
the dataset, which sometimes makes the frame-
works biased towards the majority labels. However,



in our future work, we’ll incorporate more sam-
ples into the existing dataset (especially those with
minority labels) to make the dataset more balanced.

Lastly, the dataset is limited to news headlines,
which restricts our ability to assess the framework’s
performance in a broader scope, such as with data
from Twitter or Reddit.
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Abstract

Paraphrase Detection is a core task in natural
language processing (NLP) that aims to deter-
mine whether two sentences convey equiva-
lent meanings. This work proposes a hybrid
quantum—classical framework that integrates
Sentence-BERT embeddings, simulated quan-
tum feature encoding, and classical machine
learning models to enhance semantic similar-
ity detection. Initially, sentence pairs are em-
bedded using Sentence-BERT and standardized
through feature scaling. These representations
are then transformed via rotation-based quan-
tum circuits to capture higher-order feature in-
teractions and non-linear dependencies. The re-
sulting hybrid feature space, combining classi-
cal and quantum-inspired components are eval-
uated using LightGBM and deep neural net-
work classifiers. Experimental results shows
that the hybrid model incorporating quantum-
inspired features achieved superior classifica-
tion performance, yielding a 10% improvement
in overall accuracy outperforming standalone
deep learning baselines. These findings demon-
strate that quantum—classical fusion enhances
semantic feature extraction and significantly
improves paraphrase detection performance.

1 Introduction

Recent studies have explored the intersection of
quantum computing and Natural Language Pro-
cessing (NLP) to enhance semantic understanding
and text similarity modeling. Paraphrase detection
is an important task in natural language process-
ing that aims to identify whether two sentences
convey the same meaning. It has applications in
areas such as question answering, plagiarism de-
tection, and semantic search (Madaan et al., 2016).
Classical machine learning methods have achieved
significant progress using embedding models and
gradient boosting techniques. However, capturing
deeper semantic relationships between sentence
pairs remains a challenge due to the limitations
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of classical representations. Quantum computing
provides an exciting way through the encoding of
linguistic information into quantum states, which
have a natural way to represent and process the
correlations that are hard to model in classical envi-
ronments. Emerging advances in Quantum NLP (Q-
NLP) demonstrate that quantum circuits can repre-
sent structural and semantic relationships between
sentence parts in manners that complement clas-
sical neural architectures (Meichanetzidis et al.,
2023).

Earlier works (Buhrman et al., 2001) introduced
quantum fingerprinting, demonstrating how quan-
tum states can represent compact data signatures
for efficient comparison—Ilaying the theoretical
foundation for quantum information comparison
techniques. (Darwish et al., 2023) proposed a
quantum genetic algorithm for semantic textual
similarity estimation in plagiarism detection, high-
lighting quantum-enhanced optimization in NLP
tasks. Gao et al. (Gao et al., 2024) developed a
quantum-inspired hierarchical semantic interaction
model for text classification that captures multi-
level contextual relations between words. Mean-
while, Guarasci et al. (Guarasci et al., 2022) dis-
cussed the broader challenges and opportunities in
quantum natural language processing, emphasizing
scalability, noise resilience, and quantum circuit
design constraints. In contrast, the present research
focuses specifically on paraphrase detection using
a hybrid quantum—classical framework, integrat-
ing both classical semantic embeddings and quan-
tum circuit-based similarity estimation for more
accurate and interpretable detection of paraphrased
sentences. Due to the exponential cost of simu-
lating larger circuits, the initial system encodes a
low-dimensional subset of SBERT features into a
4-qubit circuit as a feasibility study. This estab-
lishes a baseline for scaling quantum components
in future work.

The remainder of this paper is organized as
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follows: Section 2 defines the paraphrase detec-
tion task and describes the dataset used in this
study. Section 3 outlines the proposed hybrid quan-
tum—classical framework, including data prepro-
cessing, SBERT embeddings, quantum feature gen-
eration, and classifier design. Section 4 reports
the experimental results and performance analysis,
while Section 5 concludes the paper.

2 Task and Dataset

The task of paraphrase detection can be defined
formally as follows: given two input sentences
sl and s2, decide if they are semantically equiva-
lent. Although certain pairs can be determined by
direct word overlap, most need more in-depth mod-
eling of sentence structure, context, and meaning.
The core problem is to identify semantic similarity
that goes beyond surface-level patterns of words.
This study used a supervised Kaggle dataset, equiv-
alent to the Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005), which
consists of paired text samples divided into train-
ing and test sets. The training set contains 3,554
sentence pairs, while the test set has 1,465 pairs.
Each record in the dataset is structured with five
columns: two identifier fields (#1 ID, #2 ID), two
text fields (#1 String, #2 String), and one label
(Quality) indicating the relationship between the
sentences. The label indicates whether the two
sentences are paraphrased (1) or not (0). The data
set is in CSV format, encoded in UTF-8, and uses
consistent delimiters for easy integration into ma-
chine learning models. Its structure allows exper-
iments in sentence-level detection using classical,
deep learning, or hybrid quantum (Biamonte et al.,
2017) deep learning approaches. Using MRPC
ensures standard benchmarking and comparability
with prior NLP research.!

3 Methodology

This work explores a hybrid quantum-classical ap-
proach for paraphrase detection. The model first
encodes each pair of sentences using Sentence-
BERT (Reimers and Gurevych, 2019) to obtain
dense vector embeddings. The hybrid representa-
tion—combining both classical embeddings and
quantum features—is reduced in dimensionality
using Principal Component Analysis (PCA) (Jol-
liffe, 2002). Two main classifiers are then applied:

"https://www.kaggle.com/datasets/doctri/microsoft-
research-paraphrase-corpus
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LightGBM for boosted decision-tree learning and
a Multi-Layer Perceptron (MLP) for deep learning
inference. The final output is a binary prediction
indicating whether the input sentences are para-
phrased (1) or not (0).

Figure 1 illustrates the proposed hybrid quan-
tum—classical system architecture, which is or-
ganized into four primary layers, each contribut-
ing to efficient paraphrase detection through in-
tegrated quantum—classical processing (Havlicek
et al., 2019). The Data Preprocessing Layer is re-
sponsible for acquiring, cleaning, and organizing
the input data. It pairs sentences with their corre-
sponding labels, removes missing or noisy entries,
ensures balanced class distribution, and stores the
cleaned data along with their embeddings for sub-
sequent processing. The Embedding Layer uses
SentenceBERT that transforms textual data into
dense numerical representations using sentence-
level embedding models, capturing the semantic
relationships necessary for downstream learning.
Each of them acts as a parameter for the learning
and testing stages. The features are balanced by
standardization for fast convergence, so that each
parameter has mean O and standard deviation 1.
The Hybrid Processing Layer augments these clas-
sical embeddings with quantum-enhanced represen-
tations to capture higher-order dependencies and
improve discriminative capability. This layer inte-
grates modules for quantum feature generation, di-
mensionality reduction using PCA, and feature fu-
sion to form a unified hybrid feature space. Finally,
the Learning and Prediction Layer manages model
training and inference, leveraging both classical
and hybrid machine learning models to perform
paraphrase classification as a binary classification
task.

3.1 Data Preprocessing

The preprocessing stage begins by identifying the
text and label columns in the dataset. Rows with
missing values in these columns are removed to
maintain data consistency. The text columns are
cast to string type, and the label column to inte-
ger type. Sentence pairs are then constructed by
concatenating the two text columns with a sepa-
rator token. For embedding generation, SBERT
encodes each sentence pair into dense numeric vec-
tors, which are standardized using a StandardScaler
to achieve zero mean and unit variance. These stan-
dardized embeddings are subsequently used for
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Figure 1: Hybrid Quantum-Classical Architecture for Paraphrase Detection

quantum feature generation. No additional text
normalization, such as lowercasing or punctuation
removal, is applied.

3.2 Quantum Feature Generation

The quantum feature generation process begins
with the SBERT embeddings of sentence pairs. In
the current implementation, four qubits are em-
ployed. The first four parameters of the 384-
dimensional embedding vector are selected for
quantum encoding.The first four SBERT dimen-
sions were selected to ensure deterministic, repro-
ducible mapping for a cost-feasible simulation. Fu-
ture work will incorporate feature-selection meth-
ods (filter/wrapper techniques) to identify more dis-
criminative embedding dimensions for quantum en-
coding. Each parameter is normalized to the range
[—, 7] and mapped to a qubit using an R, rota-
tion gate. The individual qubit states are combined
using the Kronecker product to form a multi-qubit
quantum state. Entanglement is introduced through
a chain of CNOT gates connecting qubit 0 to 1,
1 to 2, and 2 to 3, thereby capturing correlations
among qubits.CNOT gates introduce entanglement
among the encoded parameters, allowing the mea-
surement distribution to capture interaction effects
beyond linear SBERT encoding. These interactions
contribute to the hybrid feature space’s expressive-
ness. The resulting quantum state is measured,
yielding two measurement values per qubit, for a
total of sixteen output values. These outputs consti-
tute the quantum feature vector, which is then used
as input to the hybrid model alongside the SBERT
embeddings. Figure 2 illustrates the quantum cir-
cuit for the hybrid models, where four qubits are
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initialized with Ry rotations, entangled via CNOT
gates. Only a 4-dimensional slice of the SBERT
vector is used for quantum encoding, as compact
encoding is designed as a nonlinear feature transfor-
mation rather than a full high-dimensional quantum
embedding. The circuit is fixed and non-trainable,
with parameters directly mapped from SBERT val-
ues.
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Figure 2: Quantum Circuit

3.3 Classifier Models

This section presents three model variants used in
our study for paraphrase detection: (1) a Light-
GBM (LGBM) classifier based on gradient boost-
ing with optimized hyperparameters; (2) a deep
learning (DL) model comprising three fully con-
nected layers with ReLU activations and dropout
regularization; and (3) a hybrid model that inte-
grates SBERT embeddings with quantum-inspired
features, used in conjunction with either the LGBM
or DL classifier to exploit both classical and quan-
tum representations.



3.3.1 LGBM

LightGBM (Ke et al., 2017) is a gradient boosting
framework that builds ensembles of decision trees
sequentially, with each tree aiming to correct the
residual errors of its predecessors. The model is
tuned using a hyperparameter grid with the num-
ber of leaves 31, 63, 127, 255 and learning rates
0.01, 0.05, 0.1, over a maximum of 1000 boosting
iterations. SBERT embeddings of sentence pairs
serve as input features, and the best combination
of leaves and learning rate is selected as the final
model. Figure 3 visually explains the "leaf-wise"
growth strategy of the LGBM algorithm. Instead of
growing level by level, the tree is built by expand-
ing the leaf that will cause the largest reduction in
error.

6 o

Figure 3: Growth strategy of the LGBM algorithm

3.3.2 DL

We employ a fully connected feedforward neural
network for classification. The model takes SBERT
embeddings as input and passes them through three
hidden layers of 2048, 1024, and 512 neurons with
ReLU activations and 0.3 dropout. It is trained for
50 epochs using the Adam (Kingma, 2014) opti-
mizer and cross-entropy loss with a batch size of
128. Figure 4 depicts the Deep Learning model
used in this study. It is a fully connected feedfor-
ward network comprising multiple hidden layers
with ReL.U activations, each followed by dropout
for regularization, and a Softmax output layer for
classification.

3.3.3 Hybrid Model

The hybrid model combines SBERT embeddings
with quantum-inspired features to enhance the
learning. The SBERT embeddings and quantum
features are concatenated to form a hybrid feature
vector. This hybrid representation serves as input
to either a hybrid LGBM classifier or a hybrid DL
model.
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Figure 4: Deep Learning Model Architecture

4 Results & Discussions

Table 1 shows the performance metrics of the mod-
els in different sizes of training data. In terms of
accuracy, the Hybrid-LGBM model achieved the
highest overall performance, reaching 0.69 in 70%
of the data. It consistently outperformed all other
models across the 20-80% data range. The DL and
Hybrid-DL models lagged behind the LGBM and
Hybrid-LGBM models, likely due to overfitting in
the DL models. The performance of Hybrid-DL
improves significantly at higher data percentages
(80-100%). In precision, the Hybrid-LGBM again
outperformed the other models, achieving its best
precision at 70% of the data. The DL and Hybrid-
DL models initially showed lower precision, but
the Hybrid-DL model steadily improved after 60%
of the data, ultimately achieving its highest preci-
sion at 100% of the dataset. Recall indicates that
LightGBM and Hybrid-LGBM perform best, both
clearly outperforming DL and Hybrid-DL, with
Hybrid-LGBM showing slightly higher recall than
LGBM. Hybrid-DL improves notably after 60%
of the data, surpassing DL at 80% and peaking at
100%. While both DL models perform similarly
on smaller datasets, Hybrid-DL achieves higher
F1 scores at larger data sizes (80—100%), outper-
forming the other models. At 100 percent training
data, the Hybrid-LGBM model exhibited higher
accuracy but a lower F1 score due to dataset class
imbalance. LGBM optimizes leaf-wise splits that
increase precision at the cost of recall, which im-
pacts the F1 metric. The best balance between ac-
curacy and F1 was observed in 70% training data.
The Hybrid-DL model showed sensitivity to over-
fitting due to the larger hybrid feature dimension.
Additional regularization and smaller architectures
will be explored in future phases.



% Model Accuracy Precision Recall F1-Score
10 LGBM 0.6767 0.6559 0.6767 0.6228
DL 0.6528 0.6270 0.6528 0.6281
Hybrid-LGBM 0.6685 0.6440 0.6685 0.5998
Hybrid-DL 0.6432 0.6262 0.6432 0.6309
20 LGBM 0.6828 0.6671 0.6828 0.6297
DL 0.6576 0.6348 0.6576 0.6365
Hybrid-LGBM 0.6849 0.6868 0.6849 0.6142
Hybrid-DL 0.6411 0.6297 0.6411 0.6338
30 LGBM 0.6842 0.6659 0.6842 0.6403
DL 0.6336 0.6226 0.6336 0.6268
Hybrid-LGBM 0.6863 0.6757 0.6863 0.6299
Hybrid-DL 0.6528 0.6281 0.6528 0.6299
40 LGBM 0.6808 0.6626 0.6808 0.6293
DL 0.6514 0.6362 0.6514 0.6405
Hybrid-LGBM 0.6883 0.6794 0.6883 0.6326
Hybrid-DL 0.6377 0.6262 0.6377 0.6305
50 LGBM 0.6863 0.6745 0.6863 0.6317
DL 0.6364 0.6321 0.6364 0.6340
Hybrid-LGBM 0.6876 0.6844 0.6876 0.6248
Hybrid-DL 0.6494 0.6391 0.6494 0.6429
60 LGBM 0.6876 0.6701 0.6876 0.6478
DL 0.6391 0.6365 0.6391 0.6377
Hybrid-LGBM 0.6958 0.7004 0.6958 0.6359
Hybrid-DL 0.6329 0.6204 0.6329 0.6250
70 LGBM 0.6931 0.6858 0.6931 0.6414
DL 0.6521 0.6472 0.6521 0.6494
Hybrid-LGBM 0.6979 0.7060 0.6979 0.6374
Hybrid-DL 0.6507 0.6426 0.6507 0.6458
80 LGBM 0.6876 0.6775 0.6876 0.6327
DL 0.6391 0.6241 0.6391 0.6289
Hybrid-LGBM 0.6910 0.6893 0.6910 0.6311
Hybrid-DL 0.6651 0.6514 0.6651 0.6551
90 LGBM 0.6958 0.6894 0.6958 0.6462
DL 0.6473 0.6413 0.6473 0.6439
Hybrid-LGBM 0.6931 0.6912 0.6931 0.6357
Hybrid-DL 0.6746 0.6624 0.6746 0.6656
100 LGBM 0.6972 0.6943 0.6972 0.6451
DL 0.6644 0.6508 0.6644 0.6545
Hybrid-LGBM 0.6924 0.6986 0.6924 0.6277
Hybrid-DL 0.6801 0.6678 0.6801 0.6708

Table 1: Performance metrics of models across different training data percentages.

Figure 5 and Figure 6 compare the accuracy and
F1 score of four models—LGBM, DL, Hybrid-
LGBM, and Hybrid-DL across varying amounts of
training data.

Accuracy for Different Models

Figure 5: Accuracy

F1 for Different Models

Models
—- LG8

—e- HYB_LGB
—e— HYBDL

5 Conclusion

We have compared quantum—classical hybrid learn-
ing with classical learning architectures in data-
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Figure 6: F1 Score




scarce environments. Evaluating LGBM, DL,
Hybrid-LGBM, and Hybrid-DL, we observed that
Hybrid-LGBM consistently delivers competitive
performance while demonstrating superior data ef-
ficiency, achieving a maximum accuracy of 0.69
with 70% of training data. Future work may further
improve accuracy by experimenting with alterna-
tive quantum circuits and varying the number of
qubits.

6 Ethics

The dataset consists of publicly available, non-
sensitive text corpora. Experiments comply with
data licenses and research standards, with no hu-
man subjects involved, so ethical approval was not
required. The hybrid quantum—classical framework
is for research purposes only, and all references are
acknowledged.
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Abstract

Deep learning models for Natural Language
Processing (NLP) tasks, such as Part-of-Speech
(POS) tagging, usually have significant param-
eter counts that make them costly to train and
deploy. Quantum Machine Learning (QML)
offers a potential approach for building more
parameter-efficient models. This paper pro-
poses a hybrid quantum-classical gated recur-
rent unit model for POS tagging in code-mixed
social media text. By integrating a quantum
layer into the recurrent framework, our model
achieved an accuracy comparable to the base-
line classical model, while needing fewer pa-
rameters. Although the cut-off point in the pa-
rameters is modest in our setup, the approach is
promising when scaled to deeper architectures.
These results suggest that hybrid models can
offer a resource-efficient alternative for NLP
tasks.

1 Introduction

Understanding natural human language, which is
a central basis of communication, has been a long-
standing goal of artificial intelligence (Russell and
Norvig, 2010). Natural language processing (NLP)
successfully tackles this problem by developing
methods for machines to read, examine, and pro-
duce natural language in ways that support tangible
real-world applications (Jurafsky, 2000). Today,
NLP supports applications such as conversational
assistants, automatic translation systems, and opin-
ion mining tools, making it an important part of
our daily engagement with digital technology.

The recent success of NLP is mainly attributed to
improvements in machine learning (Janiesch et al.,
2021). Training models on large amounts of data
makes them capable of learning and recognizing
patterns in text and making accurate predictions
for tasks like translation, sentiment analysis, and
sequence labeling. Neural networks, specifically,
have brought about significant developments by
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modeling complex relationships within language
data (Sharkawy, 2020). However, as data sets grow
larger and architectures deeper, these models be-
come resource intensive, requiring large amounts
of memory and computation for both training and
inference (Janiesch et al., 2021).

Quantum computing is one avenue that offers a
possible way forward by providing a different and
more efficient method of computation (Gyongyosi
and Imre, 2019). Quantum characteristics such
as superposition and entanglement are essential to
how information can be represented and operated
on with much greater expressive power than clas-
sical bits allow. Based on these principles, quan-
tum machine learning (QML) has emerged as a
research field that seeks to merge quantum com-
putation with machine learning methods (Schuld
and Petruccione, 2021). Although a nascent field,
QML has been explored as an alternative to design-
ing more compact models that can capture patterns
differently from their classical counterparts.

Putting these principles into practice, this work
solves an important NLP task: part-of-speech
(POS) tagging in code-mixed text data from social
networks (Pandey et al., 2023). POS tagging works
by assigning grammatical roles to each word in a
sentence and is a crucial step in syntactic and se-
mantic analysis (Basisth et al., 2023). We present
a hybrid quantum gated recurrent units (QGRU)
model that integrates a quantum layer with classi-
cal recurrent layers. To evaluate the performance
of the proposed model, we perform POS tagging on
a code-mixed dataset. Based on our findings, this
approach competes with classical baselines in accu-
racy but achieves similar performance with fewer
trainable parameters, making it parameter efficient.
Still, the approach suggests that greater savings
could be realized when scaling to larger architec-
tures, where substituting intermediate layers with
quantum circuits may yield noticeable efficiency
gains.
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The structure of this paper is as follows. Sec-
tion 2 introduces background on quantum comput-
ing and QML, Section 3 reviews related research,
Section 4 details the proposed model, Section 5
describes the dataset, Section 6 reports results and
analysis, and Section 7 concludes with future direc-
tions.

2 Background

2.1 Quantum Computing

Quantum computing is a paradigm of computation
that uses the principles of quantum mechanics to
process information in ways that are not possible
with classical systems (Gyongyosi and Imre, 2019).
In a classical computer, the basic unit of informa-
tion is the bit, which can take one of two values,
0 or 1. In quantum computing, the basic unit is
the quantum bit, or qubit. A qubit has two basic
states, |0) and |1), which are called computational
basis states. These basis states are commonly rep-
resented in vector form as

)

Unlike a classical bit, which can only be O or 1 at
a time, a qubit can exist in a superposition of both
states. The state of a single qubit can be expressed
as

[¥) = alo) + BI1),  with [a* +[8]* =1 (2)

where « and 3 are complex amplitudes. The
normalization condition ensures that the total prob-
ability of measuring the qubit in either state is one.
When multiple qubits are combined, they form a
joint system described by the tensor product of in-
dividual qubit states. For example, the state of two
qubits |¢)) ® |¢p) can be written as

|¢(;5> = a00]00> + 0501‘01> + Oé10|10> + 0411|11>

3)

This shows that a two-qubit system can represent
all four possible basis states at the same time. In
general, a n-qubit system can represent 2" states
in parallel, which provides exponential represen-
tational power compared to classical bits (Pandey
and Pakray, 2023). Another important property is
entanglement. Entangled qubits are correlated in
such a way that the state of one qubit cannot be
described independently of the other. For instance,
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an entangled two-qubit system may be described
as

1
V2

In this state, measuring the first qubit imme-
diately determines the outcome of the second.
Entanglement enables forms of information

processing that are not possible with classical
systems.

[@7) = —= (/00) + [11)) 4)

Quantum operations are carried out using quan-
tum gates, which are unitary matrices that trans-
form qubit states while preserving normalization.
For example, the Hadamard gate H creates a super-
position state:

1 1
7 E(I@ - 1)
®)

By combining such gates into circuits, quantum
computers can implement a wide variety of
computations. At the end of a computation, qubits
are measured, and the superposition collapses
into one of the basis states, with probabilities
determined by the amplitudes.

HI0) =

(10) +[1)), H[1) =

Together, these basic elements, qubits, superpo-
sition, entanglement, quantum gates, and measure-
ment, form the foundation of quantum computing.
They allow quantum systems to process and repre-
sent information in fundamentally different ways
than classical systems, opening possibilities for
speed-ups in certain computational tasks.

2.2  Quantum Machine Learning

Quantum machine learning (QML) is an emerg-
ing area of research that combines the principles of
quantum computing with machine learning (Schuld
and Petruccione, 2021). The goal is to take advan-
tage of the unique properties of quantum computa-
tion to help improve the process of learning from
data. While classical machine learning relies on al-
gorithms that run on conventional hardware, QML
explores how quantum states and operations can be
used to represent and process information.

In general, a QML model makes use of quantum
circuits whose parameters can be adjusted during
training, similar to how weights are updated in a
neural network. After a computation, quantum sys-
tems are measured, and the results are expressed as
expectation values of observables. The outcome of



a quantum measurement is typically expressed as
the expectation value of an observable. For a quan-
tum state 1)) and an observable Z, the expectation
value is defined as

(2) = (W12]y)

The output expectation values can now be used
in the same way that the output of a classical model
would be used, for instance, in calculating a loss
function during training.

The major advantages of QML include fewer
parameters, high-dimensional solution spaces, and
the possibility of forming correlations through en-
tanglement that is not possible while using classical
models. Quantum methods can also provide perfor-
mance gains for specific computation-related tasks.
However, these gains are highly dependent on the
application at hand and the current constraints of
quantum hardware. Currently, most QML meth-
ods are implemented in a hybrid manner, where
quantum circuits are merged with classical machine
learning components and trained using standard op-
timization methods (Sweke et al., 2020).

Recent work shows that there is growing interest
in applying QML to domains such as optimization,
quantum chemistry, and NLP (Pandey et al., 2023).
NLP tasks, in particular, are challenging due to
their heavy dependence on large datasets and com-
plex models with deep architectures, making them
a viable area of exploration for possible benefits of
QML. This motivates exploring QML in problems
such as POS tagging, where both efficiency and
performance are important considerations.

(6)

3 Related Work

POS tagging is a fundamental task in NLP, serving
as a foundational step for many downstream appli-
cations. The classical state-of-the-art for sequence
labeling tasks such as POS tagging has been dom-
inated by recurrent neural networks, particularly
Bidirectional Long Short-Term Memory (BiLSTM)
and Gated Recurrent Unit (GRU) architectures, of-
ten paired with a Conditional Random Field (CRF)
layer (Lample et al., 2016). However, such models
are typically parameter heavy and their applica-
tion to noisy code-mixed social media text presents
many challenges (Jamatia et al., 2015).

Coecke et al. (Coecke et al., 2020) introduced
a grammar-aware compositional DisCoCat frame-
work that maps the sentence structure to quantum
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circuits. This addresses directly the growing com-
putational demands of traditional machine learning
and deep learning models by leveraging quantum
circuits for language tasks. Our work, in contrast,
integrates a variational quantum algorithm in the
form of a parameterized circuit directly into a deep
learning model.

Many studies have shown that such a hybrid ap-
proach is valid for NLP tasks Pandey et al. (2024).
Another work by Shi et al. Shi et al. (2023) de-
tails a quantum-inspired neural network that uses
complex-valued embeddings to capture better se-
mantic information.These works showcase the po-
tential of using quantum principles to enhance clas-
sical NLP architectures.

A more recent development with a direct rela-
tion to our task, the application of quantum cir-
cuits to POS tagging, is demonstrated by Di Sipio
et al. Di Sipio et al. (2022). The authors intro-
duced a Quantum Long-Short-Term Memory (QL-
STM) model applied to a sequence tagging task.
This foundational work was extended by Pandey
et al. Pandey et al. (2022) in a low-resource lan-
guage. The same group later modified the QLSTM
model specifically for code-mixed social media
data (Pandey et al., 2023) and advanced it by mak-
ing a bidirectional variant (BiQLSTM) (Pandey
and Pakray, 2023)).

4 Architecture

This section discusses the architectures of the two
models that are compared in our study, a fully clas-
sical model, which serves as our baseline, and the
proposed hybrid quantum-classical model.

4.1 Classical Model

We chose to use a standard architecture for our base-
line model. It is built using Gated Recurrent Units
(GRU) (Cho et al., 2014). The model takes as input
sequences 100-dimensional word embeddings and
processes them via two bidirectional GRU layers
with a hidden state dimension of 16. Bidirectional-
ity allows the GRU layers to capture context-aware
representations by processing the information from
both preceding and succeeding tokens in the se-
quence. The output obtained from the GRU layers
is passed through a fully connected classification
head, which helps map the hidden states to a di-
mension corresponding to the number of POS tags.

The output of the fully connected layer is passed
to a Conditional Random Field (CRF) layer which



produces the final tag sequence (Lample et al.,
2016). CRF is a statistical modeling method that
learns transition probabilities between adjacent tags
to support sequence tagging tasks. This helps the
model to consider the context of neighboring pre-
dictions based on which the model can penalize
grammatically unlikely tag sequences, thereby im-
proving the accuracy and coherence of the output.

4.2 Hybrid Model

Our proposed hybrid model uses the same core
layers as the baseline models. Embedding, Bidi-
rectional GRU and the CRF layers are used in the
hybrid model as well. The only distinction is the
quantum layer that replaces the fully-connected
classification head. The quantum layer receives its
input from the fully connected layer attached to
the GRU layers. The main purpose of this fully
connected layer is to downsize the output from the
GRU layers to match the input size of the quan-
tum layer. It was included in the baseline model to

ensure consistency.

Fully Connected Layer

Output Tag Sequence

Figure 1: Architecture of the Hybrid Model.

d Rx oA
d Rx —b {ZI
2 Rx ¥ {ZI
ds Rx D {ZI
a 5 A
ds Rx < A
ds Rx < A
a O+ A

Figure 2: The 8-qubit variational quantum circuit. The
initial Ry gates are parameterized by input features, and

the Rx gates are parameterized by trainable weights.

This entire entangling block is repeated 6 times.

Algorithm 1 Quantum Circuit Layer

1: Input: Classical feature vector x € R®, quan-
tum circuit weights .
2: Output: Expectation values vector E € RS,
Initialize 8-qubit state to |0)5.
Encode x into the state using AngleEmbed-
ding.
Apply the variational BasicEntanglingLayers
circuit parameterized by weights W.
for: =07do
Measure (0,) on qubit .
Ei — (0’ z>i~
end for
return E.

The input to the quantum layer is an 8 dimen-
sional vector This vector is encoded and processed
by a variational quantum circuit. The quantum
circuit consists of two main components. Each
element in the input vector is first encoded on a
qubit using an AngleEmbedding layer, a standard
method for mapping feature vectors into qubit ro-
tations. Following this, a BasicEntanglingLayers
circuit is used with trainable parameters which ap-
plies one-parameter single-qubit rotations on each
qubit followed by a ring of Controlled-Not (CNOT)
gates, where each qubit is entangled with its neigh-
bor, and the last qubit is connected back to the
first, forming a closed chain. This circuit architec-
ture was chosen for the quantum layer to strike a
practical balance between circuit expressibility and
parameter efficiency. Methods for evaluating the
effectiveness of such circuits are an active area of
research (Sim et al., 2019).

The operation of the quantum circuit compu-
tation is discussed in Algorithm 1. After apply-
ing the basic entanglement layer, we measure the
qubits to output classical values. The resulting 8-
dimensional output vector of Pauli-Z expectation
values is then mapped to the tag space by a final
linear layer, which provides the input logits for the
CRF layer for the final tag prediction.

5 Dataset and Preprocessing

5.1 Corpus Description

The data set used in our experiments is a social
media corpus of code-mixed Hindi-English text. It
was originally collected and annotated by Jamatia
et al. (2015). The corpus consists of messages from
the IIT Bombay Facebook Confession page, which



contains informal posts and chat-like comments.
This type of data presents unique challenges for
NLP tasks due to non-standard grammar, transliter-
ated spellings, and informal language (Laskar et al.,
2022).

The data set used is a component of a larger cor-
pus that also includes WhatsApp and Twitter data
and covers other pairs of Indian languages such as
Bengali-English and Telugu-English (Pandey et al.,
2023). However, this study focuses exclusively on
the Hindi-English Facebook portion. The language
distribution at the token level, as reported by the
original authors, is shown in Table 1. It highlights
that the text is predominantly English, with a signif-
icant presence of Hindi and language-independent
universal tokens, such as punctuation. The data
set is annotated with a coarse-grained POS tagset,
which combines universal tags with categories spe-
cific to the text of social networks. This tagset,
which comprises 11 unique tags, is described in
Table 2. Our data set loading process yielded a
total of 1069 sentences.

5.2 Preprocessing and Data Representation

For feature representation, each word in the cor-
pus was mapped to a 100-dimensional vector
using precomputed embeddings for this data set.
Any word not present in the embedding vocabu-
lary was represented by a zero vector. To handle
variable sentence lengths for batch processing, all
sequences were standardized to a uniform length of
62 tokens by padding shorter sequences and trun-
cating longer ones. This length was determined on
the basis of the 95th percentile of sentence lengths
in the corpus. Following these preprocessing steps,
the data set was partitioned into training sets (60%),
validation (20%) and testing (20%), resulting in
641 samples for training, 214 for validation and
214 for testing.

Token Language | Distribution (%)
English 75.61
Hindi 4.17
Universal 16.53
Named Entity 2.19
Acronym 1.46
Mixed 0.02
Undefined 0.01

Table 1: Token-level language distribution for the Face-
book portion of the corpus, as reported by Jamatia et al.
(2015).

Tag Description

G N Noun

GV Verb

G_PRP | Pronoun

G_J Adjective

G R Adverb

PSP Pre- or Post-position
G_PRT | Particle

CC Conjunction
G_SYM | Quantifier / Symbol
DT Determiner

G_X Residual / Other

Table 2: Coarse-grained POS tagset used in the dataset.

6 Experiment and Results

6.1 Experimental Setup

To evaluate our proposed model, we conducted a
series of experiments to benchmark its performance
against a purely classical counterpart. The models
were implemented using PyTorch, with the quan-
tum components built in Pennylane and executed
on the default qubit simulator. The experiments
compare a classical GRU based model against the
proposed hybrid model. To ensure a fair compari-
son, a consistent set of hyperparameters was used
to train both models, as detailed in Table 3.

Both models utilize a final Conditional Random
Field (CRF) layer and were trained by minimizing
its negative log-likelihood. Performance was evalu-
ated using token-level accuracy on the held-out test
set. Training was performed for a maximum of 300
epochs, with early stopping triggered if validation
loss did not improve for 5 consecutive epochs.

Parameter Value
Embedding Dimension 100
GRU Hidden Dimension | 16
GRU Layers 2
Dropout Rate 0.3
Optimizer Adam
Learning Rate 0.001
Batch Size 32
Number of Qubits 8

Table 3: Hyperparameters used for training.

6.2 Results

The final performance of both models was deter-
mined by evaluating the best-performing check-



point, selected based on the peak validation accu-
racy observed during training. A summary of these
results, alongside the final test accuracy and total
parameter counts, is presented in Table 4. The pro-
posed Hybrid QGRU model achieved a final test
accuracy of 78.13%, a result comparable to the
80.29% accuracy achieved by the fully Classical
GRU baseline. The central finding, however, lies in
the model’s efficiency. The hybrid model required
only 16,682 trainable parameters to achieve this re-
sult, a modest but clear reduction of approximately
5.7% compared to the 17,690 parameters of the
classical model.

Model Params | Val. Acc. (%) | Test Acc. (%)
Classical GRU | 17,690 81.80 80.29
Hybrid QGRU | 16,682 71.77 78.13

Table 4: Performance comparison of the baseline and
hybrid models.

To provide a more granular analysis, Table 5
details a per-tag comparison of the F1-scores for
both models on the test set. This breakdown re-
veals a nuanced performance landscape. For high-
support, core grammatical categories such as G_N
(Noun), G_V (Verb), and DT (Determiner), the
hybrid model’s performance is nearly identical to
the classical baseline. Notably, it performs slightly
better on G_PRP (Pronoun) tags. However, the
hybrid model struggles with certain low-frequency
tags, showing a significant performance drop for
CC (Conjunction) and struggling significantly with
G_SYM (Symbol) tags, failing to correctly classify
any instance, likely due to their very low support
in the test set. This suggests that while the quan-
tum layer is effective at learning representations for
common classes, it may be less robust on sparse
data categories compared to its classical counter-
part in this configuration.

7 Conclusion

In this work, we addressed the challenge of high
parameter counts in deep learning models for NLP
by proposing and evaluating a hybrid quantum-
classical Gated Recurrent Unit (QGRU). We ap-
plied this model to the task of POS tagging on
code-mixed social media text, a domain charac-
terized by noisy and non-standard language. Our
findings indicate that the hybrid model achieves
a test accuracy of 78.13%, which is comparable
to the 80.29% accuracy of its classical counter-
part, while requiring approximately 5.7% fewer
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Tag Support | Cls. F1 | Hyb. F1 | A (Hyb-Cls)
CcC 118 0.52 0.19 -0.33
DT 238 0.89 0.91 +0.02
G 199 0.62 0.54 -0.08
G_N 755 0.82 0.81 -0.01
G_PRP 336 0.83 0.86 +0.03
G_PRT 142 0.51 0.42 -0.09
G_R 188 0.63 0.56 -0.07
G_SYM 31 0.43 0.00 -0.43
G_V 697 0.85 0.82 -0.03
G_X 478 0.96 0.95 -0.01
PSP 339 0.81 0.78 -0.03

Table 5: Per-tag F1-score comparison on the test set. A
indicates the change in F1-score for the hybrid model.

trainable parameters. This outcome serves as a suc-
cessful proof-of-concept, demonstrating that the
integration of variational quantum circuits into re-
current architectures is a viable strategy for reduc-
ing model complexity. Our work contributes to
the growing field of quantum NLP by illustrating
a practical approach to develop more compact and
parameter-efficient models.
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Abstract

While having enhanced NLP, deep learning and
pre-trained language models requires a lot of
processing power. The work showcases the po-
tential of quantum computing by mapping lin-
guistic data into vast, high-dimensional Hilbert
spaces through entanglement and superposi-
tion. It focuses on mathematical concepts that
set quantum approaches apart from classical
ones, among them being the fidelity-based sim-
ilarity and quantum probability. Various quan-
tum machine learning models are considered
in this article, including Quantum Neural Net-
works and Quantum Support Vector Machines,
each discussing the computational advantages
in pattern recognition. In addition, it consid-
ers retrieval techniques like Grover’s algorithm,
showing how quantum similarity functions give
better semantic search. Indeed, the comparison
does show that quantum techniques might yield
advantages regarding expressiveness and scala-
bility, despite obstacles such as hardware noise
and data encoding. Notwithstanding that quan-
tum technology is still in its infancy, future
improvements might advance language under-
standing.

Keywords

Quantum Computing, Text Classification, Seman-
tic Search, Information Retrieval, Natural Lan-
guage Processing (NLP), Quantum Neural Net-
works

1 Introduction

The explosive evolution of natural language pro-
cessing (NLP) has mostly been triggered by tra-
ditional machine learning and deep learning mod-
els, which have reported impressive performance
in applications like text classification, sentiment
analysis, and semantic search (Devlin et al., 2019).
Notwithstanding these breakthroughs, the ever-
growing dimensionality of text data and the com-
putational expense of large models have made it
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imperative to look for other approaches that can of-
fer efficiency without sacrificing semantic richness.
Quantum computing has, in recent years, been ex-
plored as a possible paradigm to overcome such
limitations because it can perform computations in
exponentially big Hilbert spaces and leverage prin-
ciples like superposition and entanglement (Schuld
and Petruccione, 2019).

Quantum models, such as QSVMs and QNNss,
embed texts into high-dimensional quantum fea-
ture spaces, hence being more effective for text
categorization than classical techniques. Quantum-
inspired information retrieval techniques rely on
Hilbert space formalism and fidelity measurements
while offering advantages over classical methods
by virtue of Grover’s search algorithm. The analyt-
ical framework includes quantum kernels and prob-
ability distributions that extend conventional com-
parison metrics such as cosine similarity. However,
despite theoretical advantages, noisy and resource-
limited NISQ devices make practical implementa-
tion very challenging. Therefore, hybrid quantum-
classical approaches are considered a viable ap-
proach. The current study will review the mathe-
matical underpinnings of quantum NLP research,
complexity assessments, and comparative insights
between quantum and classical approaches to high-
light the potential benefits and current challenges
in quantum NLP research.

It starts with theoretical notions (described in
Figure 1), such as Hilbert spaces and Grover’s algo-
rithm, and the review structure progresses from a
purely mathematical underpinning to a real-world
application. It falls into two main areas: one regard-
ing quantum semantic search by fidelity measures
and quantum walks, and another on quantum text
classification by means of QSVM and QNN/VQC
models. In order to identify complementarities and
trade-offs, these branches merge under a compar-
ative study that analyzes mathematical methods
and empirical behaviors. Furthermore, this frame-
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MATHEMATICAL FOUNDATIONS
Hilbert spaces; Quantum kemels;
Density matrices / Entropy; Grover's algorithm

l

QUANTUM TEXT CLASSIFICATION
- QSVM (kernels)

-QNN/VaC

- Hybrid: embeddings — quantum

QUANTUM SEMANTIC SEARCH & IR
- Fidelity & Trace Dist

- Entropy-based ranking

- Grover / Quantum Walks

COMPARATIVE ANALYSIS
[Kernels vs. Fidelity;
IComplexity (Feature-dim vs. Corpus-size);
mpirical vs. Theoretical trade-ofis

CHALLENGES FUTURE DIRECTIONS
- Encoding & Scaling - Efficient Encodings
- Noise in NISQ devices - Hardware-aware Models
- Training {barren plateaus) - Benchmarks & Hybrid Pipelines

Figure 1: Overview of the analytical review

work indicates problems like noise and encoding
and suggests future avenues of research, such as
uniform benchmarks and effective encodings.

2 Scope and Review Methodology

With a focus on text classification and semantic
search, this article reviews the integration of quan-
tum computing into NLP. It outlines the develop-
ment from early quantum-inspired frameworks to
advanced quantum kernel methods and hybrid mod-
els, surveying literature from 2010 to 2025. Among
others, IEEE Xplore, ACM Digital Library, and
arXiv can be consulted using keywords and phrases
such as "quantum NLP" and "quantum semantic
search." Only those studies that introduce quan-
tum models for natural language processing (NLP)
problems, develop theoretical insights into either
text classification or semantic search, and offer
analytical contrasts between classical and quan-
tum approaches are reviewed. Works which are
purely classical or with no direct relevance to NLP
will not be considered. To ensure a systematic
progress review in quantum NLP, contributions are
grouped into three categories: quantum models for
text categorization, quantum approaches for seman-
tic search, and supporting mathematical analyses.

3 Mathematical Foundations

The use of quantum computing in natural language
processing (NLP) is mathematically intense. The
following section presents the mathematical basics
that make up the analytical framework of quan-
tum methods in text classification and semantic
search. These are Hilbert spaces, quantum prob-
ability, measures of fidelity, kernel methods, and
computational complexity.
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3.1 Hilbert Spaces and Quantum Text
Representation

In quantum mechanics, physical systems are en-
coded in a complex Hilbert space H, and the sys-
tem’s state is specified as a normalized vector in
that space. A pure state is normally written as:

doaliy,  Dlal=1 O
1 1

where ¢; are complex probability amplitudes. {|i)}

denotes an orthonormal basis of the Hilbert space

H.

In NLP, the |i) are linked with a token, word
embedding, or latent semantic component. Super-
position is built into quantum representations to
enable more expressive encoding of semantic rela-
tions over classical embeddings.

[¥)

3.2 Quantum Probability and Density
Matrices

Quantum probability is derived from the Born rule.
For a state |1)), the probability of observing basis
state |7) is:

P(i) = |{i[y)[>. ©)

For mixed states, a density matrix p is defined as:

p=> prlve)(l, with Tr(p)=1. (3)
k

This allows ambiguous words to be modeled as
probabilistic mixtures of multiple semantic states
(Piwowarski et al., 2010). The information content
of a state is quantified using the von Neumann
entropy:

S(p) = —Tr(plogp), “4)

which generalizes Shannon entropy into quantum
systems.

3.3 Similarity and Distance Metrics

Semantic similarity in quantum models is ex-
pressed via fidelity:

Fip.0) = (Try/ Vo i) B

where p and o represent query and document states.
Fidelity generalizes cosine similarity by embedding
comparisons in Hilbert space (van der Meer et al.,
2021). Another important measure is the trace
distance:

®)

D(p,0) = 3Tr|p— o], (6)

which captures dissimilarity between semantic
states.



3.4 Illustrative Comparison: Cosine
Similarity vs. Fidelity

To better understand how quantum similarity mea-
sures differ from classical ones, consider two sim-
ple normalized 2-dimensional vectors representing
a query ¢ and document d:

V2 V2
q= (170)7 d= (2a 2) . (7

Cosine Similarity:

q-d
cos(q,d) =
(@4 = T
——1'§+0'§—@~0m7
- 1-1 T2 T '(8)

Fidelity Measure: When the same vectors are
treated as pure quantum states |¢) and |d), fidelity

is defined as:
2
) =05 9

* Cosine similarity measures geometric angle
between classical vectors.

V2

Fla,d) = {ald)* = ( 5

Interpretation:

* Fidelity measures quantum probability over-
lap between states.

Although fidelity reduces to the square of cosine
similarity for pure normalized states, the probabilis-
tic meaning of fidelity is more aligned with quan-
tum measurements. In more complex mixed-state
scenarios (e.g., density matrices), fidelity captures
richer semantic uncertainty beyond what cosine
similarity provides.

3.5 Quantum Kernels and Feature Maps

In classification tasks, quantum kernels extend the
classical kernel trick. A quantum feature map ¢(z)
encodes data into quantum states, and the kernel
function is defined as:

k(z,y) = [6@Is)P.  (10)
This helps the model to handle the large fea-

ture spaces where fewer resources can be used
(Havlicek et al., 2019).
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3.6 Complexity Considerations

In theory, quantum algorithms provide great ad-
vantages in terms of computational efficiency.
Grover’s technique reduces unstructured database
searches from O (V) to O(

sqrtN) for large document collections (Grover,
1996). The HHL algorithm can solve linear equa-
tions exponentially faster under some conditions.
These advances are certainly relevant for NLP tasks
involving high-dimensional embeddings and large
text corpora; hence, there is the prospect of quan-
tum methods outperforming classical systems for
semantic search and classification (Harrow et al.,
2009).

3.7 Implications for NLP

This paper emphasizes analytical comparisons to
classical models using Hilbert space formalism,
quantum probability, and kernel-based feature map-
ping to realize NLP tasks. In doing so, it is
shown that quantum models may decrease pro-
cessing costs while retaining the semantic infor-
mation undisturbed. These mathematical frame-
works, in essence, serve as the foundation for ap-
proaches using quantum machine learning on lin-
guistic data in practical quantum models for text
classification, such as QSVMs, QNNs, and hybrid
quantum-classical architectures.

4 Quantum Computing for Text
Classification

One of the main applications of NLP is text cate-
gorization. It is useful for various purposes, like
spam filtering and sentiment analysis etc.. While
they deliver accurate results, conventional mod-
els, including transformer-based models such as
BERT and support vector machines, are compu-
tationally expensive, particularly in the scenario
of high-dimensional feature spaces. A suitable re-
placement is quantum computing, which enhances
classification efficiency through the application of
large Hilbert spaces and ideas of superposition and
entanglement. The primary focus of this section’s
coverage of quantum models for text classification
is quantum support vector machines, quantum neu-
ral networks, and hybrid architectures.

As shown in Table 1, recent developments in
quantum computing for text classification are sum-
marized chronologically, covering the period from
2019 to 2025. The table highlights the main ap-
proaches, encoding strategies, model types, as well



Table 1: Chronological comparison of quantum (and quantum-like) approaches for text classification.

Year Approach (citation) Encoding Model Type Advantages Limitations

2019 QSVM with quantum kernels ~ Angle / amplitude QSVM kernel classi- ~ Exponential feature map-  Sensitive to noise; evaluated
(Havlicek et al., 2019) fier ping; effective separation in ~ only on small datasets

high-dim spaces

2019 Quantum Convolutional Neu-  Structured encoding Convolutional-like Parameter efficient; locality ~ Task-specific design; deeper
ral Networks (QCNN) (Cong QNN aware; some robustness to circuits required
etal., 2019) noise

2021 Quantum Neural Networks  Angle / amplitude Variational quantum  High expressivity; end-to-  Barren plateaus (gradient
(QNN) (Abbas et al., 2021) circuits (VQC) end trainable vanishing); noisy hardware

limits

2022 Quantum SVM for Text Clas- ~ Amplitude / angle QSVM +hybridem-  Uses word2vec/BERT em-  Inherits embedding costs;

sification (Li et al., 2022) from embeddings bedding beddings; competitive accu-  limited to small corpora
racy

2024 Quantum Support Vector Clas-  Angle / amplitude QSVConIBM/IonQ  First hardware validation;  Strongly affected by noise;
sifier on NISQ hardware devices real device results dataset scaling issues
(Suzuki, 2024)

2024 Quantum Self-Attention Neu-  Classical embeddings ~ Hybrid  quantum-  Captures contextual depen- ~ Only small simulator tests;
ral Networks (QSANN) (Li, — quantum attention classical attention dencies; integrates attention hardware results pending
2024) with QNN

2024 Hybrid transfer learning  Pretrained embed-  Hybrid pipeline Combines classical embed-  Dependent on pretrained
(BERT + QSVM/QNN) dings — quantum dings with quantum classi- models; added quantum
(Anonymous, 2024) classifier fiers; practical for NISQ overhead

2025 Quantum-like wave model Semantic units — Quantum-like wave Captures interference in se-  Semi-heuristic; not
for semantic classification  wave embeddings model mantics; accuracy gains  hardware-based; small
(Gruzdeva et al., 2025) over baselines datasets only

2025 Hybrid QTL with kernel self-  Classical embeddings ~ Hybrid transfer-  Improves feature separabil- ~ Complex architecture; hard-
attention (Chen and Lou, + quantum kernel learning ity; tested on real datasets ware scaling challenges
2025)

2025 Single-Qudit QNN (SQ-  Angle encoding into Qudit-based QNN Reduces qubit needs by us-  Still theoretical/simulator-

QNN) (Souza and Portugal,  qudits ing qudits; supports multi-  level;  qudit hardware
2025) class tasks needed
as their analytical advantages and limitations, pro-  tum state is expressed as:
viding a structured comparison of progress in this
[¥(0,z)) = U(8,2)|0), (11)

domain.

4.1 Quantum Support Vector Machines
(QSYM)

An optimal separating hyperplane within a feature
space is defined by the Support Vector Machine,
which is basically a supervised learning algorithm.
It is used to classify the data. The Quantum Support
Vector Machine maps data into high-dimensional
Hilbert spaces. Unitary operations are used to map
data points into quantum states in QSVM. A quan-
tum kernel defines the similarity of these states.
Basically, the architecture allows QSVMs to uti-
lize polynomial resources (Havlicek et al., 2019;
Schuld and Petruccione, 2019) on quantum hard-
ware and operate within an exponentially dimen-
sional feature space. With weighted kernel eval-
uations on training sets, a decision function in a
QSVM is analogous to traditional SVMs. QSVMs
are an interesting method because quantum kernels
are capable of separating classes that polynomial-
time classical kernels are not.

4.2 Quantum Neural Networks (QNNs)

Quantum Neural Networks (QNNSs) are constructed
using Variational Quantum Circuits (VQCs), which
consist of parameterized unitary gates optimized
with a classical optimizer. For an input x, the quan-
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where 6 represents trainable parameters. The prob-
ability of assigning class y is given by:

P(ylz) = [(yl (8, 2)) .

QNNs have been shown to achieve expressive
power that surpasses shallow classical neural net-
works, particularly in handling non-linear and high-
dimensional relationships (Abbas et al., 2021).
However, they face challenges such as barren
plateaus, where gradients vanish exponentially with
circuit depth. Recent studies have also demon-
strated the practical use of QNN-based classifiers
specifically for NLP tasks (Pandey et al., 2024).

(12)

4.3 Data Encoding Strategies

Encoding is an essential link between textual data
and quantum computation, which requires convert-
ing units of language into quantum states with se-
mantic integrity preserved. Effective encoding tech-
niques have impact on representational expressivity
and hardware viability in NISQ devices and are cru-
cial, not only for text categorization but also for
quantum semantic search and information retrieval.

Different encoding strategies have been dis-
cussed here:

» Basis encoding: Each token or feature is
placed directly into a basic quantum state.



Here,it gives a clear but sparse form in the
qubit form.

* Amplitude encoding: dense embeddings
such as word2vec or BERT are normalized
and encoded into the amplitudes of a quantum

state: 1
@) = = 3 aili)
ol 241

providing an exponentially compact form of
feature representation.

(13)

* Angle encoding: numerical features are con-
verted into rotation angles of single-qubit
gates, offering low circuit depth at the cost
of reduced representational capacity.

Amplitude encoding is particularly appealing for
NLP tasks, as it enables dense semantic embed-
dings to be represented efficiently in Hilbert space
while still benefiting from quantum parallelism
(Schuld and Petruccione, 2019). As quantum NLP
advances, developing encoding techniques that bal-
ance compactness, expressiveness, and noise re-
silience will remain a key challenge.

4.4 Hybrid Quantum-Classical Models

The NISQ era of existing quantum devices faces
challenges in quantum model development in NLP
due to the low number of qubits and pervasive noise
(Suzuki, 2024). Hybrid quantum-classical mod-
els leverage classical embeddings generated using
word2vec and BERT, which can then be fed into
a quantum classifier such as the QNN or QSVM
(Devlin et al., 2019; Abbas et al., 2021; Li et al.,
2022). The combination leverages quantum ca-
pabilities for improved feature separation and the
quality of the classification of particularly complex
text distributions but draws on classical strengths
for embeddings (Havlicek et al., 2019). Somewhat
limited in accuracy due to the hardware, QSVMs
and quantum kernel classifiers have produced suc-
cessful results on IBM and IonQ devices (Suzuki,
2024). A completely quantum solution, hybrid
models represent an exciting way to incorporate
quantum computing into NLP applications (Anony-
mous, 2024).

4.5 Complexity Analysis

Quantum Support Vector Machines employ poly-
nomial circuit resources to evaluate similarities in
exponentially vast spaces. This is done through
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the use of the quantum kernel trick. Analytical
comparisons shows that:

* For the d-dimensional embedding, the clas-
sical SVM kernel evaluation mainly requires
O(d) operations.

* Quantum kernel evaluation scales as
O(poly(n)). Here n is used as the number of
qubits, which represents the feature space.

This advantage is significant when processing high-
dimensional language embeddings is done. This is
frequently used in NLP applications. However, the
reliability of kernel estimate on NISQ hardware. It
restricted connection, and qubit noise limit realistic
speedup.

Complexity of QNN-based Models: Variational
Quantum Circuits are a novel computational regime
in QNNs, with complexities dependent on the num-
ber of qubits n, the circuit depth L and trainable
parameters |f|. At each iteration of the gradient-
based training, it is necessary to run the quantum
circuit multiple times, incurring a certain cost.

O (L - poly(n) - [0]) . (14)

For large n or L, QNNs suffer from problems
like barren plateaus due to vanishing gradients,
which make optimization costly. In contrast with
QSVMs, that rely on quantum kernel evaluation
for computation, QNNs are plagued by scalability
issues due to optimization overhead and hardware
noise. Because of optimization complexity and
coherence restrictions in NISQ devices, increased
expressiveness of QNNs can hardly be exploited in
practice.

4.6 Applications in NLP

Quantum models, like QSVMs and QNNs, have
competed with conventional models in various NLP
tasks, including sentiment analysis, spam filter-
ing, and fake news detection (Pandey et al., 2024).
Specifically, QSVMs are good at categorizing re-
views, while QNNs have high performance in iden-
tifying trustworthy news sources and filtering spam
using hybrid architectures. Moreover, applying
quantum feature spaces to enable data-efficient so-
lutions holds promising advances for multilingual
and low-resource languages. This work points to-
ward a path for future research in scalable quan-
tum hardware development, as it emphasizes not



only what has been achieved with supervised quan-
tum models in text classification but also the poten-
tial for quantum-inspired methods in information
retrieval and semantic search (discussed in Sec-
tion 5).

5 Quantum Computing for Semantic
Search and Information Retrieval

Quantum semantic search, by exploiting Hilbert
space representations and quantum similarity mea-
sures, improves the ranking of documents, thereby
outperforming conventional models based on lex-
ical matching, such as TF-IDF and BM25 (Pi-
wowarski et al., 2010; van der Meer et al., 2021).
Quantum-inspired information retrieval models
leveraged amplitude-encoded quantum states to
model documents and queries with the aim of
incorporating semantic aspects and uncertainties
(Schuld and Petruccione, 2019). While quantum
distance measures, such as trace distance, quan-
tify semantic dissimilarity (van der Meer et al.,
2021), quantum similarity measures, such as fi-
delity, augment classical cosine similarity by re-
flecting probabilistic overlaps (Piwowarski et al.,
2010). Hybrid quantum-classical methods combine
classical embeddings with quantum techniques to
make the most of existing NISQ hardware (Yamada
et al., 2024; Devlin et al., 2019), while some quan-
tum algorithms, such as Grover’s search, obtain
significant savings in search time (Grover, 1996).
In this changing approach to IR, with quantum
technologies still evolving, the representation of
deeper semantic relevance and uncertainty points
to a more expressive future for search algorithms
(Zhang et al., 2023; Gupta et al., 2025).

5.1 Hilbert Space Representations of
Documents

The documents and queries are mainly represented
as vectors in a Hilbert space H at the time of the
quantum-inspired retrieval process. This is denoted
as:

|d) = Z@i!ti%

Here |t;) represents the basis vectors, and o, 3;
represents the normalized weights.

By using the fidelity, the similarity between a
query ¢ and a document d has measured:

Flg,d) = |(dlq)

) = > Bilts), (15

2. (16)
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Compared to traditional cosine similarity, this gives
the squared inner product of the two states, which
provides a more descriptive similarity metric (Pi-
wowarski et al., 2010; van der Meer et al., 2021).

5.2 Quantum Probability and Entropy
Measures

Quantum IR can also use density matrices to en-
code uncertainty in semantic states. For a document
mixture, the density operator is given as:

pa =Y pildi){dil, (17)

where p; are probability weights. The similarity
between documents can then be computed using
trace distance or von Neumann entropy:

S(p)

Entropy-based ranking allows capturing semantic
diversity and ambiguity, beyond what is possible
in classical IR frameworks (Zhang et al., 2023).

—Tr(plog p). (18)

5.3 Grover’s Algorithm for Document
Retrieval

Grover’s quantum.search algorithm achieves a
quadratic speedup for unstructured search problems
(Grover, 1996). For a collection of N documents,
Grover’s algorithm will locate a matching docu-
ment in O(v/N) time, as opposed to O(N) classi-
cally. Mathematically, successive applications of
the Grover operator GG increase the likelihood of
the target state |d*):

G = Qls)(s| = 1) - (I =2d")(d"[), (19
where |s) is the uniform superposition of all states.
This gives theoretical speedups for large-scale IR.

5.4 Hybrid Quantum-Classical IR Models

Recent efforts integrate classical embeddings (e.g.,
BERT, word2vec) with quantum fidelity-based re-
trieval. Queries and documents are first embedded
in dense vector spaces, then encoded into quantum
states for matching. Such hybrid approaches pro-
vide practical pathways for deploying quantum IR
on NISQ-era hardware (Yamada et al., 2024).

5.5 Chronological Comparison of Approaches

Table 2 summarizes the basic developments in
quantum IR approaches from 2010 to 2025. It
highlights the encodings, models, advantages, and
limitations.



Table 2: Chronological comparison of quantum computing approaches for semantic search and information retrieval.

Year Approach (citation) Encoding Model Type Advantages Limitations
2010 Quantum-inspired IR framework (Piwowarski ~ Term basis states Hilbert space retrieval Introduced Conceptual frame-
etal., 2010) fidelity-based work; no hardware
query-document implementation
similarity; linked
IR to quantum
probability
2019 Quantum probability ranking model (Zuccon ~ Amplitude encoding  Quantum-inspired Probabilistic inter-  Early-stage model;
and Azzopardi, 2019) of terms ranking model pretation of rank-  tested on small cor-
ing; novel use of  pora
quantum probabil-
ity
2021 Quantum algorithms for IR (van der Meer  Amplitude encoding Hybrid algorithms for ~ Theoretical Lacks large-scale
etal., 2021) retrieval speedups  using  hardware bench-
Grover’s search  marks
and quantum
walks
2023 Entropy-based quantum IR (Zhang et al., 2023)  Density matrices Entropy ranking  Incorporates se-  Simulator-based;
framework mantic  diversity  hardware scaling
and  ambiguity;  not addressed
entropy-based
document ranking
2024 Hybrid embedding + quantum fidelity search ~ BERT embeddings — Hybrid quantum-  Integrates deep  Dependent on
(Yamada et al., 2024) quantum states classical IR embeddings with  pretrained em-
quantum fidelity =~ beddings; limited
search; suitable for  qubits
NISQ devices
2025 Quantum walk-based semantic retrieval (Gupta ~ Amplitude encoding  Quantum walk re-  Explores semantic =~ Experimental
et al., 2025) of graph embeddings trieval search using quan-  stage; scalability
tum walks over to large corpora
document graphs;  unproven

potential retrieval
efficiency gains

As shown in Table 2, approaches span from foun-
dational quantum-inspired frameworks in 2010 to
recent hybrid and quantum walk-based retrieval
models in 2025, demonstrating the evolution from
conceptual theory to practical hybrid implementa-
tions.

6 Comparative Analytical Insights

In this section, two core NLP tasks are de-
scribed text categorization in Table 1 and semantic
search/information retrieval in Table 2. These are
compared using quantum techniques. It mainly
highlights each domain’s unique issues, their math-
ematical formulations, and development paths
while also pointing out their trade-offs and comple-
mentarities.

6.1 Mathematical Underpinnings

Quantum text classification methods are predomi-
nantly kernel-based or variational, relying on map-
pings into exponentially large Hilbert spaces and
parameterized quantum circuits. Quantum Kernel’s
analytical construction is as follows:

k(z,y) = [(o(2)]o(y)) ],

QSVMs and hybrid kernel models are supported by
the idea like, (HavliCek et al., 2019; Li et al., 2022).
To check the similarity between a particular query
and the document, quantum probability, density

(20)
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matrices, and fidelity is used for semantic search
methods.

F(g.d) = ()%, S(p) = —Tr(plog p).
2D
Quantum kernels for text classification define
unique decision limits, making the distinction
among categories of data easier. On the other hand,
semantic search and information retrieval focus on
the relevance of the materials to the queries. They
aim to emphasize relevant pages and provide effec-
tive representation of semantic meaning through
the use of probability-based similarity and entropy

measurements.

6.2 Computational Complexity

Whereas QNNs suffer from optimization problems,
QSVMs offer implicit embeddings in O(2") di-
mensions using polynomial resources for classi-
fication (Abbas et al., 2021). Grover’s search re-
duces the query complexity in information retrieval
from O(N) to O(v/N); quantum walk-based ap-
proaches provide better document graph explo-
ration (Gupta et al., 2025). While retrieval puts an
emphasis on query scaling and ranking efficiency,
classification emphasizes decision boundary com-
plexity.



6.3 Evolution of Approaches (2010-2025)

From 2010 to 2025, research changed from con-
ceptual formulations to hybrid implementations.
For example, some classification advances that
show progress towards NISQ practicality are the
quantum-inspired classifiers of 2019, the hybrid
pipelines with BERT embeddings and QSVMs of
2024, and the single-qudit QNNs of 2025. Some
recent examples of retrieval advances include the
Hilbert space-based IR models of 2010, entropy-
driven ranking in 2023, hybrid embedding-fidelity
models in 2024, and quantum walk retrieval in doc-
ument graphs from 2025. This trajectory shows a
convergence towards hybrid paradigms, combining
quantum-enhanced classifiers and retrieval systems
with classical embeddings.

6.4 Analytical Trade-offs

The comparison analysis shows different types of
significant trade-offs:

» Expressivity vs. Stability: Entropy-based IR
techniques provide stability, but they are less
expressive in terms of model power. QNNs
have large capacity but tey are difficult to op-
timize.

* Scalability: Classification complexity scales
with embedding dimensionality, while re-
trieval scales with corpus size. Both benefit
from quantum asymptotic advantages in dis-
tinct regimes.

¢ Hardware Realization: Classification meth-
ods (e.g., QSVMs) have been experimen-
tally tested on NISQ devices (Suzuki, 2024),
whereas IR models remain mostly simulator-
bound, with limited demonstrations on hard-
ware.

6.5 Outlook

The two main approaches in quantum NLP, quan-
tum text categorization and quantum semantic
search, are complementary rather than competing.
Quantum text classification excels in supervised
tasks that involve clear-cut decision boundaries,
whereas quantum semantic search adopts probabil-
ityand entropy-based measures to capture the mean-
ing of texts and rank documents. In both areas,
researchers are moving toward hybrid quantum-
classical architectures, and thus classification and
retrieval will eventually be part of NLP systems

that have traditional components for preprocess-
ing and quantum circuits for semantic reasoning.
As quantum devices improve, various applications
and practical quantum advantages for NLP might
become possible.

7 Experimental Landscape and
Benchmarking Status

Theoretically, quantum NLP demonstrates great
possibilities, but empirical verification is not pos-
sible due to the constraints of existing NISQ hard-
ware. The majority of research uses quantum simu-
lators and short datasets, focusing on practicality
before completeness of performance. Benchmark-
ing trends are presented in this section for semantic
search and quantum text classification.

7.1 Datasets Used in Current Studies

In some instances, compact datasets have been em-
ployed to benchmark quantum-enhanced classifiers:
for instance, the SMS Spam Dataset for binary
spam filtering with QSVMs (Li et al., 2022), por-
tions of Amazon or IMDDb reviews for sentiment
analysis based on QNN-based models (Pandey
et al., 2024), and TREC-style toy retrieval sets for
query relevance assessment (van der Meer et al.,
2021). Due to qubit availability constraints, the
IR experiments often employ simulated semantic
vectors rather than complete corpus representations
(Piwowarski et al., 2010). Hybrid BERT-embedded
document matching has seen a bit more develop-
ment, although its application remains limited to
very small corpora (Yamada et al., 2024).

7.2 Evaluation Metrics

Performance evaluation typically combines estab-
lished classical metrics with quantum-specific sim-
ilarity measures:

* Accuracy, Precision, Recall, F1-score for
classification (Suzuki, 2024).

* Entropy-based ranking to measure semantic
diversity (Zhang et al., 2023).

* Fidelity as a probabilistic similarity score
between query and documents (Piwowarski
et al., 2010).

These mixed metrics reflect an ongoing effort to
account for both prediction quality and quantum
semantic overlap.



7.3 Simulators vs. Hardware Deployments

The lack of standard benchmarks due to differences
in dataset size, encoding methodologies, simulator
precision, error models, hardware platforms, and
circuit depth limits hinders precise performance
comparisons among research (van der Meer et al.,
2021). Thus, the assertions on quantum advan-
tage in NLP are prima facie tentative and bound by
experimental design (Abbas et al., 2021). Medium-
scale data sets may be manageable for future in-
formation retrieval as qubit counts and noise ro-
bustness will likely continue to improve (Suzuki,
2024). Effective data embeddings may allow multi-
lingual and low-resource tasks to benefit, and stan-
dard evaluation metrics accounting for accuracy,
fidelity, and complexity analysis will be important
moving forward (Yamada et al., 2024). Hardware-
aware model design and standard benchmarking
are necessary before large-scale demonstrations of
quantum NLP performance can be realized (Anony-
mous, 2024).

7.4 Current Limitations in Benchmarking

Current implementations mainly rely on quantum
simulators, such as Qiskit and Cirq, because of is-
sues with noise and coherence in real quantum hard-
ware (van der Meer et al., 2021). While hardware-
based evaluation is at an early stage of develop-
ment, problems such as significant losses in the
accuracy of QSVMs on IBM and IonQ systems due
to qubit decoherence and gate noise persist (Suzuki,
2024). Additionally, variational circuits suffer from
empty plateaus, demanding deeper topologies (Ab-
bas et al., 2021). Therefore, most of the studies of
QNNs are simulation-limited. Hybrid approaches,
offering a good compromise between expressive-
ness and feasibility, become the most viable ap-
proach for current experimentation (Anonymous,
2024).

8 Challenges and Open Problems

Quantum techniques for text classification and se-
mantic search face numerous obstacles regarding
mathematical, hardware, algorithmic, and bench-
marking factors. This section outlines these restric-
tions and identifies unresolved issues for further
research.

8.1 Encoding Bottlenecks in NLP Data

Encoding high-dimensional textual data into quan-
tum states remains one of the most significant bot-
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tlenecks. Given a document embedding = € RY,
amplitude encoding maps it into a normalized quan-
tum state:

1 d
|z) = mzxm}. (22)
=1

This requires O(d) operations classically, but
preparing an arbitrary d-dimensional state on a
quantum computer may require O(d) gates, offset-
ting quantum speedups. Angle encoding reduces
cost by mapping each feature into a rotation, but
sacrifices representational richness. Open problems
include:

* Developing encoding schemes that balance
expressivity with circuit depth.

* Exploring qudit-based encodings that re-
duce qubit requirements (Souza and Portugal,
2025).

* Designing noise-resilient encodings suitable
for NISQ hardware.

8.2 Hardware Constraints and Noise
Sensitivity

Most reported quantum NLP experiments have
been conducted on simulators. Real NISQ devices
introduce gate noise, decoherence, and readout er-
rors. For example, QSVM implementations on
IBM and IonQ hardware show a drastic drop in
accuracy due to noise (Suzuki, 2024). Moreover,
current devices limit circuit depth to < 100 gates
for reliable execution, restricting model complex-
ity. The open problems in NLP involve developing
specific error mitigation techniques, identifying
which NLP workloads are inherently noise-tolerant,
such as low-rank embeddings, and exploring qudit-
based systems which provide higher information
density per physical unit.

8.3 Training Challenges in Quantum Neural
Networks

Though the Quantum Neural Networks are a
promising model, they still suffer from different
serious optimization problems. The barren plateau
phenomenon leads to gradients vanishing exponen-
tially with the number of qubits or circuit depth:

).

1

E[VyL] ~ O (2n (23)



where 7 is the number of qubits. This severely
limits scalability (Abbas et al., 2021). Hybrid train-
ing with classical optimizers introduces additional
cost and convergence instability. Open problems
include:

* Gradient-free optimization methods for varia-
tional circuits.

* Cost functions that mitigate barren plateaus.

* Scalable architectures such as QCNNs or SQ-
QNNs (Cong et al., 2019; Souza and Portugal,
2025).

8.4 Scalability of Quantum IR Models

Semantic search requires efficient ranking over
massive document collections. Grover’s algorithm
provides O(v/N) query complexity, but practical
retrieval requires top-k ranking and probabilistic
scoring. Quantum walk retrieval models (Gupta
et al., 2025) explore graph-based semantics, but
remain untested at scale. Open problems include:

» Extending Grover-based search to ranked re-
trieval.

* Integrating density matrix entropy-based rank-
ing (Zhang et al., 2023) with large document
collections.

* Designing quantum IR systems that scale to
billions of documents, analogous to web-scale
search engines.

8.5 Hybrid Integration and Efficiency

Boundaries

Most NISQ-era implementations are hybrid, com-
bining classical embeddings (e.g., BERT, GloVe)
with quantum classifiers or retrieval engines (Li
et al., 2022; Anonymous, 2024). While effective,
this raises fundamental questions:

* What portion of the pipeline truly benefits
from quantum speedup?

* How can hybrid systems avoid classical bot-
tlenecks dominating end-to-end runtime?

* What is the theoretical boundary between clas-
sical preprocessing and quantum advantage?

Establishing efficiency thresholds for hybrid quan-
tum NLP architectures remains a critical open prob-
lem.
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8.6 Evaluation and Benchmarking Gaps

There is currently no standardized framework to
evaluate quantum NLP models. Classical bench-
marks (e.g., GLUE, TREC) are ill-suited for quan-
tum setups due to small dataset constraints. Open
problems include:

* Designing quantum-specific NLP benchmarks
with fidelity, entropy, and robustness metrics.

* Establishing evaluation protocols that com-
bine accuracy with complexity analysis.

* Developing open-source datasets small
enough for NISQ devices yet representative
of real tasks.

8.7 Theoretical Uncertainty of Quantum
Advantage

Finally, the biggest open problem is the lack of rig-
orous proof of quantum advantage in NLP. While
complexity-theoretic results such as Grover’s
speedup are well-established, their direct appli-
cability to semantic search and classification re-
mains uncertain. For classification, empirical stud-
ies suggest quantum kernels offer improved separa-
bility, but no formal guarantee exists. For retrieval,
entropy-based models are theoretically elegant but
lack evidence of practical superiority. Future direc-
tions include:

* Proving formal conditions under which quan-
tum models outperform classical ones.

* Linking quantum kernel theory with general-
ization bounds in NLP tasks.

* Exploring quantum information-theoretic lim-
its of semantic search.

9 Conclusion and Future Directions

This work reviews quantum computing methods for
natural language processing-related tasks, namely,
semantic search and text classification (Havlicek
et al., 2019; Li et al., 2022). Focusing on tech-
niques such as quantum kernels, variational quan-
tum neural networks (Abbas et al., 2021; Anony-
mous, 2024), and entropy-driven ranking, the study
explores the trajectory from quantum-inspired mod-
els to hybrid quantum-classical systems. A com-
parison is drawn (in Section 6) in which retrieval
performs well in both probabilistic and entropy-
based models, which currently are both trending



toward hybrid paradigms due to NISQ hardware
limitations, whereas classification makes good use
of quantum kernels. Some other promising fu-
ture avenues of research involve effective encoding
techniques, hardware-aware models, standardized
quantum benchmarking, understanding quantum
advantage, and integrated quantum NLP pipelines.
Quantum computing indeed offers a great future for
NLP applications, despite the challenges at present.

References

Amira Abbas, David Sutter, Christa Zoufal, Aurelien
Lucchi, Alessio Figalli, and Stefan Woerner. 2021.
The power of quantum neural networks. Nature Com-
putational Science, 1(6):403—409.

Anonymous. 2024. Hybrid classical-quantum trans-
fer learning for text classification. arXiv preprint
arXiv:2403.19758.

Xiaoxiao Chen and Xiaoping Lou. 2025. Enhancing
text classification through quantum transfer learning:
A hybrid quantum-classical approach with complex
kernel self-attention networks. IEEE Access.

Iris Cong, Soonwon Choi, and Mikhail D. Lukin. 2019.
Quantum convolutional neural networks. In Proceed-
ings of the 36th International Conference on Machine
Learning (ICML), pages 972-981.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 4171-4186.

Lov K. Grover. 1996. A fast quantum mechanical algo-
rithm for database search. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing
(STOC), pages 212-219.

A. S. Gruzdeva, R. N. Turev, I. A. Bessmertny, A. Y.
Khrennikov, and A. P. Alodjants. 2025. A quantum-
like approach to semantic text classification. Entropy,
27(7):767.

Arjun Gupta, Priya Mehta, and Rahul Singh. 2025.
Quantum walk-based semantic retrieval in document
graphs. Entropy.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd.
2009. Quantum algorithm for linear systems of equa-
tions. Physical Review Letters, 103(15):150502.

Vojtéch Havlicek, Antonio D. Cércoles, Kristan Temme,
Aram W. Harrow, Abhinav Kandala, Jerry M. Chow,
and Jay M. Gambetta. 2019. Supervised learn-
ing with quantum-enhanced feature spaces. Nature,
567(7747):209-212.

43

G. Li. 2024. Quantum self-attention neural networks
for text classification. Science China Information
Sciences.

Wei Li, Rui Zhang, Yuchen Liu, and Haixu Wang. 2022.
Quantum svm for text classification. Quantum Infor-
mation Processing, 21(8):1-18.

Shyambabu Pandey, Partha Pakray, and Riyanka Manna.
2024. Quantum classifier for natural language

processing applications. Computacion y Sistemas,
28(2):695-700.

Benjamin Piwowarski, Ingo Frommbholz, Mounia Lal-
mas, and Keith van Rijsbergen. 2010. A quantum-
inspired framework for information retrieval. In Pro-
ceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM),
pages 59-68.

Maria Schuld and Francesco Petruccione. 2019. Quan-
tum Machine Learning: An Introduction. Springer,
Cham, Switzerland.

Leandro C. Souza and Renato Portugal. 2025. Single-
qudit quantum neural networks for multiclass classi-
fication. arXiv preprint. ArXiv:2503.09269.

T. Suzuki. 2024. Quantum support vector machines for
classification and regression: Performance on nisq
hardware. Quantum Machine Intelligence.

Rianne van der Meer, Peter Wittek, and Jae Lee. 2021.
Quantum algorithms for information retrieval: The-

ory and applications. Quantum Information Process-
ing, 20(5):1-24.

Taro Yamada, Kenji Suzuki, and Hiroshi Tanaka. 2024.
Hybrid quantum-classical semantic search with em-
bedding fidelity. ACM Transactions on Information
Systems.

L. Zhang, H. Chen, and J. Zhao. 2023. Entropy-based
quantum information retrieval. Information Sciences,
634:81-94.

Guido Zuccon and Leif Azzopardi. 2019. Quantum
probability ranking principle for information retrieval.
In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1171-1174.



QCNN-MFND: A Novel Quantum CNN Framework for Multimodal Fake
News Detection in Social Media

Arya Suneesh
IIIT Kottayam
Kottayam, India
arya2lbcsb@iiitkottayam.ac.in

Abstract

Fake news on social media platforms poses sig-
nificant threats to public trust and information
integrity. This research explores the applica-
tion of quantum machine learning (QML) tech-
niques for detecting fake news by leveraging
quantum computing’s unique capabilities. Our
work introduces a hybrid quantum-classical
framework that utilizes quantum convolutional
neural networks (QCNNS5s) with angle and am-
plitude encoding schemes for processing multi-
modal features from text and images. Experi-
ments conducted on benchmark datasets - Gos-
sipCop and Politifact - demonstrate that our
quantum-enhanced model achieves superior
performance compared to classical approaches,
with accuracy rates of 88.52% and 85.58%, and
F1 scores of 93.19% and 90.20% respectively.
Our findings establish QML as a viable ap-
proach for addressing the challenges of fake
news detection in the digital era.

Introduction

The proliferation of misinformation on social me-
dia threatens information integrity and societal wel-
fare. Current machine learning and deep learning
models struggle with accurate fake news identifi-
cation due to insufficient feature extraction. Ef-
fective FND models must integrate textual and
visual cues to distinguish between real and fake
news, but conventional algorithms struggle to cap-
ture the subtle complexities of multi-modal data.
We explore quantum machine learning as a promis-
ing alternative, focusing on quantum convolutional
neural networks (QCNNs). Our research aims to
develop a novel FND system that leverages QML
techniques to enhance precision and robustness in
fake news detection while maintaining computa-
tional efficiency.
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2 Related Work

2.1 Unimodal FND Methods

Unimodal techniques focus either on textual or vi-
sual elements to categorize the news into fake or
real.

2.1.1 ML-based FND Methods

Various studies have employed machine learn-
ing (ML) techniques for FND (Mishra and Sadia,
2023). Verma et al. (2021) utilized Support Vec-
tor Machine (SVM) for feature extraction from
news articles but lacked deep learning (DL) mod-
els. Ozbay and Alatas (2020) adopted Decision
Trees but faced accuracy challenges due to reliance
on word count-based features. Esteban-Bravo et al.
(2024) investigated early prediction of fake news
virality using non-parametric models like Random
Forest and Support Vector Classifier (SVC).

2.1.2 DL-based FND Methods

Rai et al. (2022) integrated BERT with LSTM, im-
proving FND but suffered from low accuracy at-
tributed to inadequate contextual features. Chen
et al. (2024) tackled linguistic differences between
Cantonese and Mandarin with a Deep semantic-
aware graph convolutional network (SA-GCN) and
CantoneseBERT on the Cantonese rumour dataset.
Bazmi et al. (2023) emphasized the role of users’
socio-cognitive biases and partisan bias with the
Multi-View Co-Attention Network (MVCAN) but
overlooked the influence of political viewpoints
and credibility assessments of users.

2.1.3 QML-based FND Methods

Quantum machine learning (QML) techniques have
shown promise in FND. Aishwarya et al. (2023)
conducted a comprehensive review of Quantum
Machine Learning techniques for FND. Their study
revealed that QKNN, when integrated with Ge-
netic and Evolutionary Feature Selection (GEFeS),

Proceedings of the QuantumNLP: Integrating Quantum Computing with Natural Language Processing, pages 44-52
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achieved an impressive accuracy of 83.8%, surpass-
ing the performance of conventional KNN algo-
rithms. Tian and Baskiyar (2021) showcased the
effectiveness of QKNN combined with Genetic and
Evolutionary Feature Selection.

2.2 Multimodal FND Methods

Multimodal FND methods integrate both textual
and visual features for detection.

2.2.1 DL-based FND Methods

Raja et al. (2024) proposed Dilated Temporal
CNNs (DTCN), BiLSTM, and Contextualized
Attention Mechanism (CAM), achieving impres-
sive accuracy of 93.97% on the Dravidian_Fake
dataset. Singhal et al. (2020) employed Spot-
Fake+ but faced issues with prolonged training
time and information loss from VGG-19’s pooling
layer. Kaliyar et al. (2021) employed Feed For-
ward Neural Networks with multiple CNN chan-
nels for local sequential feature extraction, yet
generalization ability remains unexplored. Singh
et al. (2023) employed multimodal learning tech-
niques with NasNet Mobile for image analysis and
BERT+ELECTRA for text processing, achieving
85% accuracy on the Twitter MediaEval Dataset
and Weibo Corpus.

2.2.2 QML-based FND Methods

Qu et al. (2024) proposed QMFND, a quantum mul-
timodal fusion-based model designed specifically
for FND on social media platforms. By employing
quantum encoding and quantum convolutional neu-
ral networks (QCNNs), QMFND achieved notable
accuracies of 87.9% and 84.6% on the Gossipcop
and Politifact datasets, respectively. However, the
performance of QMFND is subject to limitations
imposed by current hardware constraints and sig-
nificant background noise in the operating environ-
ment of quantum computers.

3 Preliminaries

3.1 Pre-trained Language Models

Pre-trained language models form the basis for
extracting representations from news text, using
transformer architectures to capture contextual re-
lationships. BERT processes text bidirectionally
through masked language modeling, predicting ran-
domly masked tokens from surrounding context.
XLNet employs permutation-based autoregressive
pre-training, capturing bidirectional context with-
out relying on [MASK] tokens by considering all se-
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quence permutations. DistilBERT is a compressed
version of BERT that retains 97% of its language
understanding while running 60% faster through
knowledge distillation from a larger teacher model.

3.2 Pre-trained Image Models

Pre-trained convolutional neural networks extract
visual features from images. These models learn hi-
erarchical representations through successive con-
volutional layers.

VGG architectures (VGG16 and VGG19) uti-
lize small 3x3 convolutional filters throughout the
network. They stack multiple convolutional lay-
ers before pooling operations. This design enables
learning complex features while maintaining com-
putational efficiency.

ResNet50 introduces residual connections to ad-
dress vanishing gradient problems. Skip connec-
tions allow gradients to flow directly through short-
cuts. The architecture consists of 50 layers orga-
nized into residual blocks. Each block contains
convolutional layers with identity mappings.

EfficientNet applies compound scaling to bal-
ance network depth, width, and resolution. It
uses mobile inverted bottleneck blocks (MBConv)
as building components. Squeeze-and-excitation
optimization improves channel interdependencies.
This architecture achieves superior accuracy with
fewer parameters.

3.3 Understanding Quantum Mechanisms

Quantum computing transcends classical comput-
ing principles, offering the potential for unprece-
dented computational power and efficiency. One
fundamental aspect of quantum computing is quan-
tum encoding, a technique that transforms classical
information into quantum states, enabling it to be
processed and manipulated by quantum algorithms.

Quantum encoding transforms classical data into
quantum states, exploiting superposition and en-
tanglement to exponentially increase information
density and computational capabilities beyond clas-
sical methods.

Several encoding approaches exist, each with
distinct advantages LaRose and Coyle (2020):

Angle Encoding represents data through rota-
tional angles of quantum gates. Parameterized ro-
tation operations encode information directly into
angular parameters. This method offers simplic-
ity and hardware efficiency for near-term quantum
devices.
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where Ry (x;) represents a Y-axis rotation gate pa-
rameterized by the data value x;.

Amplitude Encoding represents data through
relative amplitudes of quantum states. This scheme
leverages superposition, enabling multiple infor-
mation pieces to coexist simultaneously within a
quantum system. For a normalized classical data
vector x, amplitude encoding creates:
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where ||x|| is the normalization factor ensuring
(¥|) = 1, and |i) represents the computational
basis states.

4 Proposed Methodology

4.1 Training and Evaluation Framework for
Hybrid Model

Our fake news detection system, described in figure
1 combines classical deep learning with quantum
computing. The hybrid architecture processes text
and visual content through separate pathways be-
fore quantum integration.

In data preparation, news articles pass through a
text transformer for contextual embeddings, while
images are processed via CNN for visual feature ex-
traction. A MultiHeadCrossAttention mechanism
creates connections between text and image modal-
ities, helping identify mismatches that often signal
deception.

Training follows an epoch-based approach with
early stopping to prevent overfitting. Data batches
move through classical pathways, get fused, and
pass to the QCNN (Cong et al., 2019) component,
which leverages quantum principles like superpo-
sition and entanglement. We selected QCNN over
Q-RNN or Q-LSTM because CNNs naturally pre-
serve spatial locality in quantum circuits, essential
for capturing hierarchical patterns in multimodal
data. The convolutional structure aligns with quan-
tum gate locality constraints on NISQ devices. We
initially used cross-entropy loss before switching
to focal loss due to dataset imbalance, and imple-
mented gradient clipping for stability.

The validation process runs after each epoch,
computing accuracy, precision, and recall. An

46

early stopping mechanism halts training after three
epochs without improvement in validation loss.

Final evaluation includes standard classification
metrics and threshold optimization to identify the
optimal decision boundary between real and fake
news, producing metrics using both default (0.5)
and optimized thresholds.

This pipeline balances classical deep learning’s
strength in feature extraction with quantum com-
puting’s advantages in modeling complex relation-
ships.

5 Experimental Settings

5.1 Setup

All experiments were conducted on the Kaggle plat-
form using an NVIDIA Tesla P100 GPU (16 GB
VRAM) with 13GB RAM. The models were imple-
mented using PyTorch 2.0 and trained with CUDA
12 acceleration. For transformer-based language
models, we utilized the Hugging Face Transform-
ers library. Image processing was handled with
torchvision and quantum circuit simulations were
executed using Pennylane with PyTorch interface.

The datasets were preprocessed using standard
NLP techniques for textual data, including tok-
enization, normalization, and sequence padding.
For image data, we employed standard preprocess-
ing pipelines with resizing to 224x224 pixels, nor-
malization using ImageNet statistics (mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]), and aug-
mentation techniques including random horizontal
flips and color jitter during training.

5.2 Dataset Analysis

The experiments were conducted on two bench-
mark fake news datasets: Gossipcop and Politifact.
As described in Table 1, the dataset statistics reveal
several notable characteristics. A significant class
imbalance exists in both GossipCop and Politifact
datasets, with real news consistently outnumbering
fake news. The GossipCop (GC) dataset maintains
approximately an 80-20 split between real and fake
news in both train and test sets. The Politifact (PF)
dataset shows a different ratio, with approximately
65-35 split in the training set shifting to 72-28 in
the test set.

Text length analysis exposes distinct patterns
between the two sources: Politifact articles are gen-
erally longer, with mean lengths of 8,919 and 9,494
characters for train and test sets respectively, com-
pared to GossipCop’s shorter average of around
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Figure 1: Overview of Training Process of QCNN-MFND

Table 1: Dataset Statistics Comparison

Metric GC Train GC Test PF Train PF Test
Total samples 10,010 2,830 381 104
Real 7,974 (79.7%) 2,285 (80.7%) 246 (64.6%) 75 (72.1%)
Fake 2,036 (20.3%) 545 (19.3%) 135 (35.4%) 29 (27.9%)
Mean text length 3,427.5 3,460.8 8,919.2 9,494 .2
Std dev 5,872.6 6,433.2 17,501.6 18,349.9
Min 34.0 57.0 42.0 45.0
Median 2,072.0 2,046.5 2,511.0 2,966.5
Max 100,096.0 100,055.0 100,155.0  100,077.0

3,400 characters.

5.3 Evaluation Metrics

Due to class imbalance, we employed multiple stan-
dard metrics for binary classification problems:

A TP+TN 3)
ccuracy =
Y= TPITN+FP+FN
TP
Precision = ————— 4
recision TPLFP )
TP
Recall = ———— 5
T TPYFN )
F1 Score — 9 - Precision - Recall ©)

Precision + Recall

where TP, TN, FP, FN represent true positives,
true negatives, false positives, and false negatives
respectively.

6 Results and Analysis

6.1 Textual Feature Analysis

We evaluated multiple transformer-based language
models for textual feature extraction. Tables 2
and 3 present the performance metrics across both
datasets.

XLNet achieved the highest accuracy (0.876)
on the GossipCop dataset, while DistilBERT
demonstrated superior performance on Politifact
with the highest accuracy (0.9135) and F1 score
(0.9379). These results highlight the effectiveness
of transformer-based models for fake news detec-
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Figure 2: Confusion matrices for XLNet on both
datasets.
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Figure 3: Precision-Recall curves for XLNet on both
datasets.

tion, with different architectures exhibiting distinct
strengths across different news domains.

Fig. 2 shows the confusion matrices for XL-
Net performance on both datasets, demonstrating
strong classification performance with minimal
false negatives. Fig. 3 presents the precision-recall
curves, indicating robust performance across differ-
ent threshold values.

6.2 Visual Feature Analysis

We evaluated six prominent CNN architectures for
visual feature extraction. Table 4 shows the perfor-
mance comparison on the GossipCop dataset.
ResNet50 achieved the highest performance
(79.93% accuracy, 0.7802 F1 score) among all
CNN models. Modern architectures generally
demonstrated better optimization with lower loss
values compared to traditional VGG models.

Table 2: Performance of Transformer Models on Gos-
sipCop

Model Acc. Prec. Rec. F1 Loss
BERT 0.871 0.920 0.920 0.920 0.747
RoBERTa 0.874 0.913 0.933 0.923 0.643
MPNet 0.872 0.926 0.915 0.920 0.605
DistilBERT 0.869 0.913 0.926 0.919 0.691
XLNet 0.876 0.908 0.941 0.925 0.707

Table 3: Performance of Transformer Models on Politi-
fact

Model Acc. Prec. Rec. F1 Loss
BERT 0.846 0.873 0.920 0.896 0.388
RoBERTa 0.875 0.888 0.947 0916 0.857
MPNet 0.837 0914 0.853 0.883 0.456
DistilBERT 0.914 0.971 0.907 0.938 0.584
XLNet 0.846 0.873 0.920 0.896 0.585

Table 4: Performance of CNN Models on GossipCop

Model Acc. Prec. Rec. F1 Loss
VGG16 0.765 0.745 0.765 0.753 0.992
VGG19 0.786 0.759 0.786 0.769 0.658
ResNet50  0.799 0.772 0.799 0.780 0.974
EfficientNet 0.763 0.765 0.763 0.764 0.999
ViT 0.728 0.742 0.728 0.735 1.018
ConvNeXt 0.783 0.761 0.783 0.769 1.110

e b

(a) GossipCop dataset (b) Politifact dataset

Figure 4: Confusion matrices for ResNet50 on both
datasets.

Fig. 4 shows the confusion matrices for
ResNet50 on both datasets, while Fig. 5 displays
the corresponding precision-recall curves, demon-
strating consistent performance across different
news domains.

Table 5: Performance of CNN Models on Politifact

Model Acc. Prec. Rec. F1 Loss
VGG16 0.721 0.724 0.721 0.723 1.719
VGG19 0.721 0.730 0.721 0.725 1.623
ResNet50  0.731 0.715 0.731 0.720 0.923
EfficientNet 0.731 0.720 0.731 0.724 0.744
ViT 0.731 0.720 0.731 0.724 1.170
ConvNeXt 0.721 0.744 0.721 0.729 0.791
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Figure 5: Precision-Recall curves for ResNet50 on both
datasets.
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Figure 6: Architecture of the implemented QCNN show-
ing the hierarchical quantum processing structure.

6.3 Quantum Convolutional Neural Network
Implementation

The implemented QCNN architecture consists of
three primary components: quantum convolution
layers, quantum pooling layers, and a measure-
ment layer. The network operates on 8 qubits and
implements a hierarchical structure with multiple
conv-pool operations at different scales. We se-
lected 8 qubits as a balance between expressivity
and current NISQ device limitations, aligning with
typical quantum hardware availability.

Fig. 6 illustrates our QCNN architecture, while
Fig. 7 details the convolution and pooling layer
operations, demonstrating the quantum gate opera-
tions used for feature extraction and compression.

Each convolution operation implements initial
RY rotations, CNOT entanglement, controlled-RX
rotation, and final RZ rotations. Each pooling oper-
ation uses parameterized rotations and CNOT gates
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to compress quantum information while preserving
relevant features.

6.4 Experimental Setup
6.4.1 Model Architecture

A hybrid quantum-classical model was imple-
mented with five key components. The image
pathway uses pretrained CNNs (VGG16, Efficient-
Net, ResNet50) to extract features, projecting them
to lower dimensions (gbits/2) for fusion. The
text pathway processes input through XLNet, with
mean-pooled features projected to gbits/2 dimen-
sions. MultiHeadCrossAttention aligns image fea-
tures with text context. The fusion component con-
catenates features and compresses them via a lin-
ear layer to gbits dimensions. Finally, the QCNN
processes the fused features to produce class prob-
abilities.

6.4.2 Training Protocol

Loss Functions: Two loss functions addressed
class imbalance:

Cross-Entropy Loss (CE) with class weighting
and label smoothing:

N
1
Lcg=—— E “wy, |y; log(p;)
N&e | %)

+ (1= g log(1 = pi) | + AlIoI3

where w,, is class weight (inverse frequency), p; is
predicted probability, and A = 0.1.



Focal Loss (FL) down-weights easy examples:

N
1
LrL = — N Z oy, (1 —pi)” [yz log(p:) ®)
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+ (1 — y;) log(1 —pz‘)]

__ # minority class

where oy, = samples and v = 2.0.

Training Setup: AdamW optimizer (Ir=2 x 10™%),
OneCycleLR scheduler, batch size 32, 25 epochs
with early stopping (patience=3).

6.5 Performance Across Model
Configurations

We evaluated multiple combinations of text fea-
ture extractors (XLNet), image feature extractors
(VGGI16, EfficientNet, ResNet50), and quantum
encoding methods (Angle, Amplitude) on both
datasets. Table 6 summarizes the performance met-
rics for each configuration.

On the GossipCop dataset, ResNet50 + XL-
Net with angle encoding trained with focal loss
achieved the highest performance (88.52% accu-
racy, 93.19% F1 score). Angle encoding con-
sistently outperformed amplitude encoding when
paired with the same image feature extractor.

On the Politifact dataset, EfficientNet+XLNet
with angle encoding and focal loss achieved the
best results (88.46% accuracy, 92.31% F1 score).
Focal loss significantly improved performance
across both datasets, particularly evident in recall
performance.

6.6 Classical versus Quantum Models

Table 7 presents the comparison between tradi-
tional classical approach (XLNet+ResNet50) and
our proposed quantum model (QCNN-MFND).

The comparative analysis reveals our hybrid
model outperforms classical approaches on the
GossipCop dataset, with a remarkable 65% re-
duction in false negatives, critical for minimizing
missed fake news instances. While the classical
approach performs marginally better on Politifact’s
smaller dataset, this suggests our quantum model
requires larger datasets to fully optimize its param-
eters.

7 Conclusion

We successfully developed QCNN-MFND, a novel
framework leveraging quantum computing princi-
ples for fake news detection on social media. By
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combining QML with deep learning approaches,
our architecture integrates XL Net for text analysis,
ResNet50 for visual features, and quantum convolu-
tional neural networks for multimodal fusion. The
framework achieves impressive results—88.52 %
accuracy and 93.19% F1 score on GossipCop,
and 85.58% accuracy with 90.20% F1 score on
Politifact - demonstrating significant advantages
in minimizing missed fake news instances. Our
experiments reveal that quantum computing offers
particular benefits for larger datasets, providing a
balanced precision-recall trade-off that prioritizes
false negative reduction. This advancement repre-
sents an important step toward creating more trust-
worthy information ecosystems, with potential for
greater improvements as quantum computing tech-
nology continues to mature.

Future directions include building a web appli-
cation to enable real-time detection, further QCNN
architectural exploration, and explainable quantum
models for fake news detection.

Limitations

Several limitations merit consideration. We simu-
lated quantum circuits on classical hardware; real
quantum devices introduce noise and hardware con-
straints not captured in our experiments. Our 8-
qubit architecture faces deployment challenges on
current NISQ devices.

The datasets present additional constraints. The
Politifact dataset’s small size (381 training sam-
ples) limits model learning capacity. Both datasets
focus exclusively on English-language social me-
dia news, leaving cross-domain and multilingual
generalization untested. The significant class im-
balance (80-20 and 65-35 splits) affects detection
performance despite focal loss mitigation.

Our evaluation scope remains limited to two so-
cial media datasets. Temporal robustness, adver-
sarial testing, and real-time inference performance
remain unexplored. Training requires high-end
GPU resources, and deployment costs on actual
quantum hardware are quite high.

References

C. Aishwarya, Manikanadan Venkatesan, and P. Prabha-
vathy. 2023. Research oriented reviewing of quantum
machine learning. International Research Journal on
Advanced Science Hub, 5:165-1717.

Parisa Bazmi, Masoud Asadpour, and Azadeh Shak-
ery. 2023. Multi-view co-attention network for fake



Table 6: Experiments using proposed model QCNN-MFND with various configurations

Dataset Text Image Encoding Acc. Prec. Rec. F1
VGGI16 0.877 0902 0.951 0.926

EfficientNet Angle 0.881 0.906 0.952 0.928

EfficientNet* 0.882 0.899 0.963 0.930

GossipCop XLNet  ResNet50* 0.885 0.894 0.973 0.932
VGGI16 0.877 0.899 0.955 0.926

EfficientNet Amplitude 0.875 0.916 0.931 0.923

ResNet50* 0.884 0.902 0.962 0.931

VGGI16 0.846 0.883 0.907 0.895

EfficientNet Angle 0.837 0.837 0.960 0.894

EfficientNet* 0.885 0.889 0.960 0.923

Politifact =~ XLNet  ResNet50* 0.856 0.885 0.920 0.902
VGGI16 0.875 0.897 0.933 0915

EfficientNet Amplitude 0.875 0.908 0.920 0.914

ResNet50* 0.769 0.823 0.867 0.844

* Models trained with focal loss criterion.

Table 7: Performance Comparison Between Classical
and Proposed Quantum Model

Dataset Metric Classical Proposed
(without (with
QCNN) QCNN)
Accuracy  87.39% 88.52%
GossipCop F1 S.C(.)re 0.922 0.932
Precision 0.918 0.894
Recall 0.926 0.973
Accuracy  87.50% 85.58%
Politifact F1 Score 0914 0.902
Precision 0.908 0.885
Recall 0.920 0.920

news detection by modeling topic-specific user and
news source credibility. Information Processing &
Management, 60(1):103146.

Xinyu Chen, Yifei Jian, Liang Ke, Yunxiang Qiu, Xing-
shu Chen, Yunya Song, and Haizhou Wang. 2024.
A deep semantic-aware approach for cantonese ru-
mor detection in social networks with graph convo-

lutional network. Expert Systems with Applications,
245:123007.

Iris Cong, Soonwon Choi, and Mikhail Lukin. 2019.
Quantum convolutional neural networks. Nature
Physics, 15:1-6.

Mercedes Esteban-Bravo, Lisbeth d. 1. M. Jiménez-
Rubido, and Jose M. Vidal-Sanz. 2024. Predict-
ing the virality of fake news at the early stage of
dissemination. Expert Systems with Applications,
248:123390.

Rohit Kumar Kaliyar, Anurag Goswami, and Pratik

51

Narang. 2021. Fakebert: Fake news detection in so-
cial media with a bert-based deep learning approach.
Multimedia Tools and Applications, 80(8):11765—
11788.

Ryan LaRose and Brian Coyle. 2020. Robust data en-
codings for quantum classifiers. Physical Review A,
102(3):032420.

Alok Mishra and Halima Sadia. 2023. A comprehensive
analysis of fake news detection models: A systematic
literature review and current challenges. Engineering
Proceedings, 59(1):28.

Feyza Altunbey Ozbay and Bilal Alatas. 2020. Fake
news detection within online social media using
supervised artificial intelligence algorithms. Phys-

ica A: Statistical Mechanics and its Applications,
540:123174.

Zhiguo Qu, Yunyi Meng, Ghulam Muhammad, and
Prayag Tiwari. 2024. Qmfnd: A quantum multi-
modal fusion-based fake news detection model for
social media. Information Fusion, 104:102172.

Nishant Rai, Deepika Kumar, Naman Kaushik, Chan-
dan Raj, and Ahad Ali. 2022. Fake news classifi-
cation using transformer based enhanced Istm and
bert. International Journal of Cognitive Computing
in Engineering, 3:98-105.

Eduri Raja, Badal Soni, Candy Lalrempuii, and
Samir Kumar Borgohain. 2024. An adaptive cyclical
learning rate based hybrid model for dravidian fake
news detection. Expert Systems with Applications,
241:122768.

Prabhav Singh, Ridam Srivastava, K.P.S. Rana, and
Vineet Kumar. 2023. Semi-fnd: Stacked ensemble
based multimodal inferencing framework for faster
fake news detection. Expert Systems with Applica-
tions, 215:119302.



Shivangi Singhal, Anubha Kabra, Mohit Sharma, Ra-
jiv Ratn Shah, Tanmoy Chakraborty, and Ponnu-
rangam Kumaraguru. 2020. Spotfake+: A multi-
modal framework for fake news detection via trans-
fer learning (student abstract). In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 13915-13916.

Ziyan Tian and Sanjeev Baskiyar. 2021. Fake news
detection: an application of quantum k-nearest neigh-
bors. In 2021 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1-6.

Pawan Kumar Verma, Prateek Agrawal, Ivone Amorim,
and Radu Prodan. 2021. Welfake: word embed-
ding over linguistic features for fake news detection.
IEEE Transactions on Computational Social Systems,

8(4):881-893.

52



Quantum Natural Language Processing: A Comprehensive Survey of
Models, Architectures, and Evaluation Methods

Arpita Vats Rahul Raja

Boston University Carnegie Mellon University

LinkedIn* Stanford University

LinkedIn*

Abstract

Quantum Natural Language Processing
(QNLP) is an emerging interdisciplinary field
at the intersection of quantum computing,
natural language understanding, and formal
linguistic theory. As advances in quantum
hardware and algorithms accelerate, QNLP
promises new paradigms for representation
learning, semantic modeling, and efficient
computation. However, existing literature
remains fragmented, with no unified synthesis
across modeling, encoding, and evaluation
dimensions.In this work, we present the first
systematic and taxonomy driven survey of
QNLP that holistically organizes research
spanning three core dimensions: computational
models, encoding paradigms, and evaluation
frameworks. First, we analyze foundational
approaches that map linguistic structures into
quantum formalism, including categorical
compositional models, variational quantum
circuits, and hybrid quantum classical ar-
chitectures. Second, we introduce a unified
taxonomy of encoding strategies, ranging from
quantum tokenization and state preparation
to embedding based encodings, highlighting
tradeoffs in scalability, noise resilience, and
expressiveness. Third, we provide the first
comparative synthesis of evaluation method-
ologies, benchmark datasets, and performance
metrics, while identifying reproducibility
and standardization gaps.We further contrast
quantum inspired NLP methods with fully
quantum implemented systems, offering
insights into resource efficiency, hardware
feasibility, and real world applicability. Finally,
we outline open challenges such as integration
with LLMs and unified benchmark design,
and propose a research agenda for advancing
QNLP as a scalable and reliable discipline.

1 Introduction

The intersection of quantum computing and natural
language processing (NLP) has given rise to the

This work does not relate to the authors’ positions at
LinkedIn, Proofpoint, or Amazon.
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emerging field of QNLP. Traditional NLP meth-
ods rely heavily on classical statistical and neural
approaches, which, despite recent breakthroughs
in LLMs (Brown et al., 2020), face fundamental
challenges in scalability, representation efficiency,
and capturing complex compositional semantics
(Bender et al., 2021). Quantum computing, with its
inherent parallelism and high-dimensional Hilbert
space representations, offers a fundamentally new
computational paradigm that can potentially over-
come some of these limitations (Meichanetzidis
et al., 2020; Varmantchaonala et al., 2024).
Specifically, quantum models promise exponential
speedups in linear algebra operations, richer encod-
ing of linguistic structures, and novel mechanisms
for semantic composition grounded in quantum
theory. Foundational frameworks such as categori-
cal compositional distributional models (DisCoCat)
(Coecke et al., 2010) leverage quantum formalisms
to represent grammatical structure, while hybrid
quantum classical architectures demonstrate the
feasibility of encoding word embeddings and per-
forming sentence classification tasks on near-term
quantum hardware (Lorenz et al., 2021b). Recent
work further explores quantum algorithms for com-
positional text processing (Zhang et al., 2024) and
surveys near term QNLP applications (Wiebe et al.,
2024).

This paper provides a systematic survey of
QNLP across three core dimensions: (i) compu-
tational models that define how linguistic structure
and semantics can be mapped to quantum circuits
and algorithms, (ii) encoding paradigms that de-
termine how text tokens, syntactic dependencies,
or embeddings are represented in quantum states,
and (iii) evaluation frameworks that assess the ef-
fectiveness, efficiency, and robustness of QNLP
methods. By categorizing and analyzing existing
approaches, we highlight key tradeoffs in expres-
siveness, scalability, and noise resilience. Further-
more, we contrast quantum inspired NLP tech-
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Figure 1: Taxonomy of QNLP highlighting core components computational models, encoding paradigms, evaluation

frameworks, and future challenges.

niques, which adapt ideas from quantum mechanics
within classical settings, with implementations on
actual quantum hardware, thereby clarifying both
theoretical promise and current practical limita-
tions. The overall evolution of QNLP approaches
from foundational categorical frameworks to hy-
brid quantum classical architectures is illustrated
in Figure 1, which presents the taxonomy of major
model families and their interrelations across com-
putational, encoding, and evaluation dimensions.

2 Background
2.1 Quantum Computing Fundamentals

Quantum computing leverages the laws of quantum
mechanics to perform computations beyond the
reach of classical machines. Its fundamental unit of
information, the qubit, generalizes the classical bit
by existing in a superposition of states. A quantum
state |1)) is a vector in a complex Hilbert space H
(Moretti and Oppio, 2017), where the state of a
single qubit can be expressed as:

[¥) = al0)+511),

Here, o and 3 are complex amplitudes, and the nor-
malization condition ensures a probabilistic inter-
pretation. Multiple qubits are represented through
tensor products, e.g., |1) 45 = |¥) 4®[¢) 5. Entan-
glement arises when such states cannot be decom-
posed into tensor products, a phenomenon critical
to quantum advantage in algorithms.

a,BeC, |af+[pf =1
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Quantum computation is driven by unitary opera-
tors U acting on states:

W) =U ),

which ensure reversibility and preserve probability
amplitudes. Measurement collapses the superpo-
sition into classical outcomes, with probabilities
determined by the squared amplitudes of the state
vector. Together, superposition, entanglement, uni-
tary evolution, and measurement define the compu-
tational paradigm of quantum mechanics.

2.2  Quantum Machine Learning Foundations

QML studies how quantum mechanical princi-
ples can enhance or accelerate learning algorithms
(Schuld et al., 2015). It leverages the expressive
power of quantum states and the computational ef-
ficiency of quantum operations to address tasks in
classification, regression, clustering, and generative
modeling.

A key concept is the quantum feature map,
which encodes classical data = € R? into a quan-
tum state |¢(x)) within a high-dimensional Hilbert
space H. This encoding induces a kernel:

k(z,a') = [{o(x)]o(x)) %,

allowing quantum models to exploit feature spaces
that may be exponentially larger than those acces-
sible classically (Schuld et al., 2015). Quantum



kernels have been investigated for support vector
machines (SVMs) and nearest-neighbor methods,
showing theoretical potential for improved separa-
bility.

Another foundational algorithm is the Har-
row—Hassidim—Lloyd (HHL) method, which pro-
vides exponential speedups for solving linear sys-
tems of equations (Harrow et al., 2009). Since solv-
ing linear systems underpins many ML tasks (e.g.,
regression, Gaussian processes), HHL exemplifies
how quantum algorithms could drastically reduce
complexity from polynomial to logarithmic in the
number of variables. In the near term, variational

Quantum Machine Learning

41.2%
W2K & W2KXS
5.4%
QBW
20.3%
TPR
7.5%
DisCoCat

25.6%

Figure 2: Adoption rates of QNLP models derived from
the analyzed papers (Varmantchaonala et al., 2024).

quantum algorithms (VQAs) have become the dom-
inant paradigm for NISQ era devices (Cerezo et al.,
2021b). These models use parameterized quantum
circuits U (6), where 6 denotes tunable gate param-
eters, to transform input states. The circuits are
trained by minimizing an objective function:

C(0) = (olUT(0)HU(6) o),

with a classical optimizer updating 6 based on quan-
tum hardware evaluations. Variational circuits are
flexible and have been applied to supervised learn-
ing (e.g., quantum classifiers), unsupervised tasks
(e.g., clustering), and generative models.
Another critical building block is the quantum neu-
ral network (QNN), which uses variational circuits
as analogues of neural layers. Entanglement plays
a role similar to non-linear activation functions
by enabling complex correlations between inputs.
Hybrid QNNs combine quantum layers with classi-
cal networks, demonstrating performance gains in
cases such as image and text classification.

From a complexity-theoretic perspective, QML
offers potential advantages when classical methods
suffer from the curse of dimensionality. Quantum
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states inhabit exponentially large Hilbert spaces nat-
urally, enabling compact representation of complex
data distributions. However, practical challenges
remain, including noise, barren plateaus in vari-
ational optimization (McClean et al., 2018), and
efficient data encoding (also known as the quantum
data-loading problem).

For QNLP specifically, QML foundations pro-
vide the computational substrate: quantum feature
maps offer new embedding paradigms for tokens,
variational circuits serve as sequence-processing
units, and entanglement provides a mechanism for
modeling compositionality and long-range linguis-
tic dependencies. These align with the goals of
QNLP frameworks such as DisCoCat and hybrid
quantum-—classical pipelines, making QML an in-
dispensable component of quantum language un-
derstanding.The distribution of QNLP model adop-
tion across surveyed studies is shown in Figure 2,
highlighting the dominance of Quantum Machine
Learning based frameworks, followed by DisCoCat
and Quantum Bag-of-Words models.

2.3 Natural Language Processing

NLP provides the computational basis for rep-
resenting and interpreting linguistic data. Its
core principle, distributional semantics, states that
words appearing in similar contexts tend to have
similar meanings. Early models such as Latent Se-
mantic Analysis (LSA), Word2Vec, and GloVe en-
coded words as dense vectors e,, € R%, capturing
semantic similarity through geometric proximity.

Modern NLP advances this idea through contex-
tual embeddings using Transformer architectures
such as BERT (Devlin et al., 2019), GPT (Radford
et al., 2019), and T5 (Raffel et al., 2020). The
self-attention mechanism

QK > v

Vi

enables long-range dependency modeling by relat-
ing all tokens within a sequence (Vaswani et al.,
2017). Despite their success, Transformers face
O(n?) time and memory complexity with sequence
length n, motivating efficient variants such as
sparse and linearized attention.

Classical NLP also employs grammatical for-
malisms context-free grammars (CFGs), depen-
dency parsing, and formal semantics to capture
compositionality, yet integrating syntax with dis-
tributed semantics at scale remains challenging.

T

Attention(Q, K, V') = softmax (



Quantum approaches address this limitation: quan-
tum states in high-dimensional Hilbert spaces can
encode inter-token dependencies through entangle-
ment. Frameworks such as DisCoCat (Categori-
cal Compositional Distributional Models) (Coecke
et al., 2010) unify grammar and semantics via cate-
gory theory, suggesting that QNLP can yield richer
and more efficient representations than classical
embeddings.

2.4 Quantum Classical Hybrids

Fully fault-tolerant quantum computers remain a
long-term goal, but present-day devices fall into
the category of Noisy Intermediate-Scale Quan-
tum (NISQ) systems (Preskill, 2018). These ma-
chines contain on the order of 50-500 qubits, which
are sufficient for exploring quantum advantage but
are limited by decoherence, gate errors, and con-
nectivity constraints. As a result, most practical
QML and QNLP approaches rely on hybrid quan-
tum—classical methods. Variational Circuits is
a central paradigm in the NISQ era is the use of
variational quantum circuits (VQCs) as shown in
Figure 3. These are parameterized circuits U ()
with tunable gates, where parameters 6 are opti-
mized iteratively by a classical optimizer. Given an
input state |t)p) and a Hamiltonian H encoding the
objective, the optimization task is defined as:

C(8) = (wolU (0)HU(9) |¢0o).

The quantum device computes expectation val-
ues, while the classical optimizer updates 6 using
gradient-based or gradient-free methods (Jéger
et al., 2025). This feedback loop exploits quan-
tum representational capacity while avoiding long
quantum coherence times, which are difficult to
sustain on NISQ devices. In a typical hybrid learn-
ing pipeline, classical pre-processing transforms
raw data into a form suitable for quantum encoding
(e.g., token embeddings or feature normalization).
The encoded data are passed to a quantum circuit
that performs transformations, such as entangling
operations to capture correlations. The measure-
ment outcomes are then post-processed by classical
neural layers or decision functions. This integration
allows quantum circuits to act as specialized layers
within a larger classical deep learning framework.

For natural language tasks, hybrid models pro-
vide a practical compromise between expressive-
ness and feasibility. Classical components han-
dle tasks such as subword tokenization, syntactic
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Figure 3: Applications of Variational Quantum Al-
gorithms (VQAs) across optimization, simulation,
machine learning, and emerging quantum domains.
(Cerezo et al., 2021a).

parsing, or initial embedding generation, while the
quantum layer captures higher-order dependencies
using entanglement. For example, a hybrid QNLP
pipeline might map token embeddings into quan-
tum states, apply a variational circuit to model con-
textual interactions, and then use a classical clas-
sifier to predict sentiment or semantic similarity.
Such approaches combine the scalability of classi-
cal preprocessing with the structural advantages of
quantum computation.

3 Computational Models for QNLP

Several computational paradigms have been pro-
posed for QNLP, each exploiting different aspects
of quantum mechanics to model linguistic struc-
ture, meaning, and tasks. This section surveys cat-
egorical compositional frameworks, circuit based
models, variational approaches, quantum kernel
methods, and quantum inspired NLP techniques.

3.1 Categorical Compositional Models

The categorical compositional distributional model
(DisCoCat) (Wu and Wang, 2019) was one of the
first frameworks to unify grammatical structure and
distributional semantics in a quantum-compatible
setting. It leverages compact closed categories to
map syntactic derivations to tensor contractions in
Hilbert spaces. Each word is represented as a ten-
sor, and sentence meaning arises compositionally
through linear maps:

§=f(Wa®Wp), f:A®B—C,

with entanglement naturally encoding word depen-
dencies.



Building on this foundation, several extensions
have been proposed: DisCoCirc (Chang et al.,
2023): introduces discourse-level dynamics by up-
dating word states via variational quantum circuits,
e.g., jw) = U.|w). Quantum Graph Transform-
ers (QGT) (Xu et al., 2025): integrate dependency
graphs with quantum self-attention, where attention
weights are computed by parameterized circuits:

exp({p(z:)|U(0)¢(x5)))
22k exp((¢(z:) U (0)| (k)

Quantum Context-Sensitive Embeddings (QCSE)
(Liu et al., 2025b): generalize contextual em-
beddings (e.g., BERT) into Hilbert space with
|lw,¢) = U(C)|w). Quantum Text Pretraining
Networks (QTP-Net) (Zhang et al., 2025): en-
code word senses as quantum superpositions |w) =
>, @i |s;) aligned with knowledge bases. MultiQ-
NLP (Wang et al., 2024): extends composition
to multimodal data, using entanglement to model
cross-modal dependencies (text—image).

Together, these models have evolved DisCo-
Cat from a purely categorical semantic formalism
into dynamic, contextual, pretrained, and multi-
modal frameworks, demonstrating the adaptability
of QNLP across linguistic and hybrid tasks.

Oéij =

3.2 Quantum Circuit-based Models

Quantum circuits map linguistic structure directly
into hardware-executable operations. Tokens are
encoded into quantum states, syntactic relations
are represented by entangling gates, and grammati-
cal reductions correspond to circuit modules (Ge
et al., 2024). For example, a dependency relation
between two words may be represented as a con-
trolled rotation or CNOT gate applied between
their corresponding qubits (Hu and Kais). Sen-
tence meaning then emerges from the full circuit
state, with measurements providing semantic out-
puts (Lan et al., 2024). An example of such a
circuit implementation for a simple transitive sen-
tence is shown in Figure 4.

Circuit-based approaches highlight the structural
parallel between parse trees and quantum circuit di-
agrams, making them natural candidates for syntax-
sensitive tasks (Liu et al., 2025a).They are partic-
ularly attractive for experiments on NISQ devices
since circuits can be compiled directly into gate
sequences supported by current hardware (Ven-
turelli et al., 2019). However, their scalability de-
pends on efficient encoding schemes and noise-
aware compilation, as circuit depth grows with
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Figure 4: Quantum circuit for a transitive sentence. The
circuit based on DisCoCat model, maps a simple sen-
tence into quantum operations. Qubits on the left encode
word embeddings via rotation gates, while the right re-
gion represents grammatical contractions through entan-
gle gates such as CNOT

sentence length. Hybrid pipelines that combine
shallow circuits with classical post-processing are
commonly used to mitigate hardware limitations.
A recent circuit-based approach proposes Quantum
Parameter Adaptation (QPA), where quantum neu-
ral networks are used during training to generate
classical model weights. This enables parameter ef-
ficient fine tuning of LLMs while keeping inference
entirely classical (Liu et al., 2025a).

3.3 Variational Quantum Models

Variational quantum circuits (VQCs) U (#) extend
circuit-based models by introducing tunable param-
eters 6 optimized via classical loops (Liu et al.,
2024).

0y —
[0} —

U(x) Va(81) V1(82)

[0} —]

%(_/

Encoding Block Variational Block

Figure 5: Variational Quantum Circuit (VQC) architec-
ture illustrating how linguistic inputs are encoded into
quantum states and processed by parameterized varia-
tional layers whose parameters are trained in a classical
optimization loop. (Liu et al., 2024).

This paradigm makes VQCs the most widely ex-
plored approach in QNLP. Tokens are embedded
into quantum states via feature maps, processed
through parameterized entangling layers, and mea-
sured to produce outputs (Kankeu et al., 2025).



Training minimizes a loss function:
i

where / is typically cross-entropy or mean squared
error.

VQCs have been applied to tasks such as text
classification, semantic similarity, and sentiment
analysis. They benefit from the expressive capac-
ity of entanglement to capture contextual infor-
mation, and from their hybrid nature which inte-
grates well with classical neural networks. Key
challenges include barren plateaus in optimization,
noise-induced instability, and the high cost of quan-
tum state preparation (Novdk et al., 2025). Recent
work explores hardware efficient ansétze and error
aware training to address these limitations (Gujju
et al., 2025), making VQCs a practical testbed for
QNLP research.

3.4 Quantum Kernel Methods

Quantum kernel methods leverage quantum feature
maps |¢(x)) that embed linguistic data into Hilbert
spaces of potentially exponential dimension. The
induced kernel is defined as:

k(z,2") = [{¢(x)]o(2))[?,

which can be used with classical machine learning
models such as support vector machines (SVMs)
or Gaussian processes (Wang et al., 2025). These
methods are particularly well-suited to similarity-
based tasks, including semantic textual similarity
(STS), paraphrase detection, and clustering of em-
beddings (Herbold, 2024). They offer the ad-
vantage of being mathematically rigorous, pro-
viding provable separability properties in high-
dimensional spaces. However, scalability is a ma-
jor limitation, since evaluating kernels requires re-
peated state preparation and measurement. Approx-
imate quantum kernel estimation and hybrid quan-
tum—classical kernel learning have been proposed
as intermediate solutions.

4 Encoding Paradigms
4.1 Basic Encoding

A recent proposal introduces a learnable basic en-
coding layer that maps each token to a qubit regis-
ter with minimal parameter overhead (Munikote,
2024). Instead of relying purely on fixed rotation
or amplitude maps, the method applies small pa-
rameterized gates on basis states, adapting them
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during training to better reflect token distributions.
Concretely, a token index ¢ is first mapped to a
basis state |i), and then acted upon by a shallow
trainable unitary F(¢):

i) = E(9)[0) -

Here, E(¢) is composed of single-qubit rotations
and entanglers whose parameters ¢ are learned
jointly with the downstream task, offering a flexi-
ble compromise between rigid encodings and heavy
variational circuits.

The scheme retains the discrete structure of
token identities while allowing adaptation to se-
mantic space, enabling gradients to flow directly
through the encoder (Baek et al., 2025). Because
only a small unitary is applied, the circuit depth
overhead remains modest, making it compatible
with NISQ devices. Its parameters can absorb dif-
ferences in token frequency or contextual distribu-
tions, positioning this method between static basis
encoding and hybrid embeddings. As such, it pro-
vides a more expressive and scalable representation
for QNLP tasks than one-hot or rotation-only map-

pings.
4.2 Amplitude Encoding

Embed dense vectors into amplitudes:

1 d
e € B! o 1o(e)) = or > e}
j=1

This method is highly qubit-efficient (log d) and
preserves inner-product geometry, allowing simi-
larity to be computed via inner products in Hilbert
space. The main drawback is that state preparation
can be computationally expensive, often requiring
O(d) operations, and the resulting states are sen-
sitive to noise. To mitigate this, amplitude encod-
ing is often combined with problem-specific quan-
tum feature maps, enabling kernel methods that
exploit the high-dimensional Hilbert space struc-
ture (Schuld and Killoran, 2019).

Recent advances show that amplitude encoding
can deliver exponential data compression in hybrid
quantum-classical architectures. For instance, a
dataset with d = 2" features can be represented us-
ing only n qubits, whereas angle encoding would
require d. Chen et al. (Chen et al., 2025) inte-
grate amplitude encoding into hybrid Quantum
Neural Networks (QNNs) for recovery rate pre-
diction, demonstrating superior generalization on



small-sample, high-dimensional financial datasets.
Embedding amplitude-encoded inputs into Param-
eterized Quantum Circuits (PQCs) preserves uni-
tarity and avoids costly orthogonality constraints,
yielding two key benefits: improved computational
efficiency through fewer qubits and parameters, and
richer representational capacity compared to angle
encoding for tasks requiring high-dimensional em-
beddings.

4.3 Entanglement-based Encodings

Introduce entanglers (CNOT/CZ) to correlate token
subsystems (Schuld et al., 2021):

1) = Uent (Jw1) @+ - -@|wy,) ).

This approach explicitly captures syntactic and se-
mantic dependencies by creating correlations be-
tween token representations, mirroring categorical
contraction in compositional semantics. Entangle-
ment allows local word embeddings to be com-
bined into global sentence states, enriching expres-
sivity beyond independent encodings.

The trade-off is that entanglement substantially
increases circuit depth and noise sensitivity, espe-
cially on NISQ hardware (Gonzdilez-Garcia et al.,
2022). Efficient design therefore requires carefully
chosen ansitze and compilation strategies to mini-
mize gate counts and error accumulation. When op-
timized, entanglement-based encodings provide a
direct mechanism for modeling relational structure,
but scalability remains a major challenge compared
to simpler schemes.

4.4 Hybrid Embedding Strategies

A hybrid approach first uses a classical model (e.g.,
BERT or Word2Vec) (Devlin et al., 2019) to com-
pute an embedding e, and then applies a feature
map e — |¢(e)) followed by a trainable quantum
circuit U (6) before measurement. This combines
the semantic richness of pretrained embeddings
with quantum layers that can model higher-order
correlations and capture non-linear dependencies
in Hilbert space (Dschl and Bohrdt, 2025).

Such strategies represent the most practical and
NISQ-friendly pathway, since heavy semantic lift-
ing is done classically and quantum resources are
reserved for expressive refinements. By leverag-
ing classical pretraining, hybrid embeddings re-
duce qubit demands and training cost, while still
offering the potential to uncover representational
structures inaccessible to purely classical methods.
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This makes them a dominant design choice for
early QNLP systems and applied quantum machine
learning pipelines.

4.5 Space-efficient tensorized embeddings.

A line of work factorizes the embedding matrix
into low-order tensor products inspired by entan-
glement, yielding word2ket-style embeddings that
compress parameters by 102 x or more with negli-
gible accuracy loss on standard NLP tasks (Panahi
et al., 2019). These embeddings can be used purely
classically or as quantum-ready parametrizations
(tensor factors = shallow preparation circuits).
This offers a principled bridge between tensor-
network structure and learnable word representa-
tions.

4.6 Trainable quantum embedding circuits.

A 2024 study proposes a recurrent quantum em-
bedding neural network (RQENN) with a trainable
encoding based on parameterized binary indices
that learns token embeddings within a small quan-
tum circuit cell; the cell is reused across sequence
positions to capture context with fewer qubits and
measurements than prior QNLP approaches (Var-
mantchaonala et al., 2025). Reported results show
reduced parameter count and bits used, and accu-
racy gains over earlier QNLP baselines on a text-
like vulnerability detection task, highlighting the
value of learned encoders (vs. fixed maps) under
NISQ constraints (Kea et al., 2024).

4.7 Resource Cost Modeling

We characterize encodings by qubits ¢, depth L,
state-prep cost Tprep, and shot complexity m. For
amplitude encoding,

d
1
e € R [g(e)) = Tl deili), M
j=1

q = [logsy d], Torep = O(d).  (2)

with low depth but prep-bound runtime. An-
gle/rotation encoding yields ¢ = O(d), Tprep =
O(d) and often better robustness on NISQ.
Entanglement-based composition adds syntax or
graph-induced two qubit layers; we report L =
Lo+ E where E is the number of entangling edges
(Susulovska, 2024). For hybrid embeddings, q is
constant (few qubit head) with classical compute
absorbing semantics; we report wall clock and de-
vice usage alongside accuracy.



5 Evaluation Frameworks

Evaluation in QNLP spans both empirical per-
formance and theoretical efficiency. At the task
level, models are assessed on standard NLP ob-
jectives such as sentiment classification, seman-
tic similarity, and sequence labeling, with accu-
racy, F1, or correlation metrics compared against
compute-matched classical baselines (Tomal et al.,
2025). Because quantum circuits produce proba-
bilistic outputs, metrics are accompanied by con-
fidence intervals derived from measurement shots,
and evaluations must also report resource costs
including qubit counts g, circuit depth L, gate com-
plexity, state-preparation cost 7pep, and shot bud-
gets m, ensuring fairness under NISQ constraints
(Ma and Li, 2024). To validate results beyond
simulation, a hardware-in-the-loop protocol is fol-
lowed: device backend, transpilation strategy, cal-
ibration snapshot, and shot counts are disclosed,
with paired simulator—device runs performed using
identical seeds (Nguyen et al., 2017). Robustness
is further probed through noise modeling, barren-
plateau stress tests, and lightweight error mitigation
(readout calibration, zero-noise extrapolation, and
gradient-preserving initialization).

Beyond raw task performance, evaluation em-
phasizes comparability and reproducibility. Canon-
ical ablations such as removing entanglers, swap-
ping amplitude versus angle encodings, reducing
data re-uploading depth, or replacing quantum
heads with classical ones are standardized to at-
tribute improvements to specific design choices
(Aktar et al., 2025). Benchmarking remains
challenging due to the lack of large standard-
ized QNLP corpora, so we propose compact,
structure-sensitive tasks (compositional classifica-
tion, semantic similarity, and sequence labeling
with nested constituents) with fixed splits and op-
tional precomputed embeddings for hybrid mod-
els. Together with artifact release (QASM cir-
cuits, seeds, calibration snapshots, and ablation
configs) (Li et al., 2022), these practices enable
like for like comparisons across models and clar-
ify where QNLP shows unique strengths captur-
ing compositionality, contextual dependencies, and
high-dimensional correlations while highlighting
the tradeoffs in scalability, noise resilience, and
hardware feasibility relative to classical NLP sys-
tems (Lhoest et al., 2021).
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6 Challenges and Future Directions

Despite encouraging theoretical advances and early
experiments, QNLP still faces significant chal-
lenges. Current NISQ hardware limits circuit depth,
qubit counts, and gate fidelity, restricting scala-
bility and necessitating noise-resilient encodings
and carefully designed variational ansétze (Preskill,
2018; McClean et al., 2018). Encoding strategies
such as amplitude or entanglement-based mappings
offer expressive representational power but suffer
from costly state preparation and noise sensitiv-
ity, motivating the exploration of adaptive encod-
ings and resource efficient parameterization meth-
ods that balance expressivity with hardware fea-
sibility (Chen et al., 2025). At the evaluation
level, the absence of standardized QNLP bench-
marks makes comparisons across models difficult;
task-specific corpora and quantum-compatible eval-
uation suites are needed to validate theoretical
speedups and measure robustness under realistic
conditions (Lorenz et al., 2021a).

Looking ahead, hybrid quantum classical
pipelines remain the most practical path, though
their advantage over strong classical baselines such
as transformers is not yet conclusive. Further re-
search into quantum inspired embeddings and hy-
brid variational architectures may clarify where
QNLP offers unique value (Huang et al., 2021;
Kartsaklis et al., 2021). Achieving scalability will
require moving beyond toy corpora to industrial-
scale applications such as semantic search, ques-
tion answering, and multimodal reasoning. Meet-
ing these goals will demand not only algorithmic
innovation but also advances in quantum hard-
ware and close collaboration between NLP re-
searchers and quantum computing specialists, en-
suring QNLP matures into a robust framework for
structure-sensitive language tasks.

7 Conclusion

QNLP lies at the intersection of quantum comput-
ing and natural language processing, introducing
new paradigms for compositional semantics, effi-
cient representation, and contextual modeling. This
survey reviews foundational models DisCoCat, cir-
cuit based, variational, and hybrid architectures
alongside encoding strategies, evaluation frame-
works, and open challenges. Although still nascent,
advances in hybrid embeddings, quantum feature
maps, and noise mitigation indicate near-term feasi-
bility. Future progress will hinge on scalable bench-
marks, tighter integration with classical NLP, and



improved quantum hardware. QNLP thus holds
promise to advance beyond proof-of-concept stud-
ies and deliver tangible computational gains for
structure sensitive language tasks.
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Task Method Design Highlights Input Data Type Label Type Loss
Sentence DisCoCat (Coecke Maps grammatical reductions to tensor Tokenized Sentiment / Cross-entropy
Classification et al., 2010) contractions in Hilbert space (compact-closed sentences Topic
categories); sentence meaning via categorical
compositionality with quantum-ready tensors.
VQC-QNLP (Gujju Parameterized quantum circuit U (6) on encoded Token Binary / Weighted
et al., 2025) tokens; hybrid loop minimizes expectation; embeddings Multi-class Cross-entropy
entanglement captures long-range dependencies
under NISQ.
Semantic QBW (Lorenz et al., Quantum Bag-of-Words; embeds words as Sentence pairs Similarity /  Fidelity or MSE
Similarity 2021a) quantum states; measures similarity via state Paraphrase
fidelity/overlaps instead of cosine distance.
Quantum Kernel Quantum feature map |¢(z)) induces kernel Sentences / STS/ Hinge loss / GP
(QK-NLP) (Schuld  k(z,z') = [{¢(x)|p(z"))|*; classical SVM/GP embeddings Entailment NLL
and Killoran, 2019; on quantum kernel matrix.
Wang et al., 2025)
Sequence DisCoCirc (Chang  Discourse-aware extension of DisCoCat; circuit Token sequences POS /NER/ Token-level
Labeling et al., 2023) evolution updates word states across context; chunks cross-entropy
syntax—semantics via variational updates.
QCSE (Liuetal,, Quantum Context-Sensitive Embeddings: context Token sequences Sequence tags MSE/
2025b) unitary U (C) |w) entangles tokens; contextual Cross-entropy
vectors in Hilbert space for tagging.

Hybrid Hybrid-QNN (Chen Classical encoder (e.g., BERT) — Pretrained text Sentiment / Cross-entropy

Embedding et al., 2025) amplitude/angle map — shallow PQC refinement;  embeddings Intent (hybrid)
Learning few-qubit head for NISQ robustness.

Low- MultiQ-NLP (Wang Entangles text-image qubits; cross-modal Text-image pairs Match / Tags Contrastive

Resource / etal., 2024) attention via controlled rotations; improves (InfoNCE)
Multi-Modal transfer in few-shot regimes.

Sense QTP-Net (Zhang  Encodes word senses as quantum superpositions Large text Sense / NLL;
Modeling / etal., 2025) |w) = >, a; |s;); learns sense mixture via corpora Masked superposition
Pretraining measurement-driven objectives. tokens reconstruction

Encoding Trainable Basic Learnable encoder F(¢) on basis states prior to  Token indices  Task-specific Task loss +
Learning Encoding PQC; low-depth, NISQ-friendly alternative to encoder reg.
(Munikote, 2024) fixed angle/amplitude maps.
Resource- word2ket / Factorizes embedding matrix into low-order Vocabulary Task-specific Task loss;
Efficient Tensorized (Panahi tensor products; quantum-ready prep with embeddings tensor-factor regs
Embeddings et al., 2019) shallow circuits; large parameter compression.

Table 1: Summary of representative Quantum Natural Language Processing (QNLP) models across core
linguistic tasks. The table aligns prior work by task, model type, and architectural design to illustrate how
quantum principles are applied to language understanding. Task denotes the linguistic objective (e.g., classification,
similarity, or tagging); Method names the quantum or hybrid framework; Design Highlights summarize each
model’s encoding scheme (amplitude, angle, entanglement, or hybrid), circuit structure, and optimization strategy.
Input and Label Type describe the data and prediction targets, while Loss / Objective lists the corresponding
training criterion. Together, these entries show how QNLP architectures integrate formal semantics with quantum
computation, balancing expressivity, resource efficiency, and NISQ-era feasibility.

Encoding Paradigm Core Idea / Map Qubits ¢ State-Prep Cost Tprep Strengths Limitations
Basic / Learnable Token index i+ |i) with shallow O(log V) (index Low (shallow E(¢)) Very low depth; parameter-efficient; Needs downstream entanglers/PQC for
Encoding trainable unitary E(¢) |i) map) preserves discrete identity; NISQ-friendly expressivity; tuning still task-dependent
Angle / Rotation Map features to single-qubit rotations O(d) O(d) Simple, robust, transparent geometry; pairs Linear qubit growth with d; underuses
Encoding (e.g., Ry(-)/R-(-)) per dimension; well with re-uploading in VQCs Hilbert space unless combined with
supports data re-uploading entanglement
Amplitude Encoding ecR? s |¢(e)) = H‘TH ZJ ejlg) [log, d] ©O(d) (state loading)  Exponential compression of d; strong for  Expensive loaders; noise-sensitive; benefits

(inner-products preserved) kernel/similarity tasks; unitary-friendly from high-fidelity prep

Apply Uent (CNOT/CZ) to correlate token
subsystems; syntax/relations via
entanglers

Entanglement-based
Composition

Task-dependent ~ Entanglers dominate ~ Directly captures compositional/relational

structure; aligns with categorical semantics

Increases depth and error on NISQ; careful
compilation needed

Hybrid Embedding
Strategies

Classical embedding e (e.g.,
BERT/Word2Vec) — quantum feature
map [6(e)) — PQC U(6)

Few-qubit heads
common

Modest; depends on
chosen feature map

Best near-term trade-off; leverages
pretrained semantics; smaller ¢ / shots

Classical front-end may dominate compute;
quantum benefit is task- and map-dependent

Space-efficient
Tensorized
(word2ket)

Factorize embedding matrix into
low-order tensor products; shallow
quantum prep from factors

By factorization
design

10 compression reported; principled
bridge to tensor networks; shallow circuits

Low (from tensor
factors)

Quality depends on factorization
rank/structure; extra design choices required

Low-moderate
(per-cell)

Trainable Quantum
Embedding Circuits

Small reusable quantum cell learns
token/context encoding in-circuit; reused
across positions

Few (cell reused) Parameter-efficient; context-aware; fewer

qubits/shots than naive per-token circuits

Requires careful training/stability on NISQ;
generalization may be dataset-dependent

Table 2: Encoding paradigms discussed in this survey. V': vocabulary size; d: feature dimension. For fair NISQ
comparisons, report g, circuit depth L, state-prep cost Tprep, and shot budgets m alongside task metrics.
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Abstract

Quantum Natural Language Processing
(QNLP) has emerged as a novel paradigm
that leverages the principles of quantum
mechanics to address fundamental chal-
lenges in language modeling, particularly
in capturing compositional meaning. This
survey charts the evolution of QNLP, from its
theoretical foundations in the Distributional
Compositional ~ Categorical  (DisCoCat)
framework to its modern implementation on
Noisy Intermediate-Scale Quantum (NISQ)
hardware. We review the primary architectural
approaches, including variational quantum
circuits and tensor networks, and summarize
the growing body of empirical work in tasks
such as text classification, sentence similarity,
and question answering. A recurring finding is
the potential for QNLP models to achieve com-
petitive performance with significantly fewer
parameters than their classical counterparts.
However, the field is critically constrained
by the limitations of NISQ-era hardware.
We conclude by discussing these challenges
and outlining the future trajectory towards
achieving a demonstrable quantum advantage
and building more interpretable, efficient
language models.

1 Introduction

Quantum Natural Language Processing (QNLP)
is an integrative and rapidly developing field that
applies the principles of quantum computing to the
challenges of natural language processing (Pallavi
and Prasanna Kumar, 2025). It is motivated by a
foundational hypothesis that extends beyond the
simple pursuit of computational speedup: the idea
that language is “quantum native” (Widdows et al.,
2024). This proposition suggests that the mathe-
matical formalism of quantum mechanics, particu-
larly the compositional structure of Hilbert spaces,
provides a natural and perhaps ideal framework
for modeling the compositional nature of linguis-
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tic meaning. By grounding language in a physi-
cal computational model, QNLP seeks a paradigm
shift from the purely statistical and often opaque
methods of classical NLP to a more structured and
interpretable approach (Phukan et al., 2024).

This pursuit is driven by the persistent limita-
tions of classical models. Even state-of-the-art
Large Language Models (LLMs) struggle to ro-
bustly handle the principle of compositionality, the
process by which the meanings of individual words
combine according to grammatical rules to form the
meaning of a sentence (Song et al., 2025). Many
classical architectures effectively treat sentences as
a “bag of words” or a flat sequence of tokens, fail-
ing to capture the deep, hierarchical relationships
encoded in syntax (Chen et al., 2024b). Further-
more, natural language is inherently ambiguous. A
phrase such as “The bank was crowded” presents
a challenge that classical models resolve through
statistical inference (Wu et al., 2021). Quantum
mechanics, with its principles of superposition and
entanglement, offers a potentially more efficient
solution, allowing for the simultaneous representa-
tion and processing of multiple meanings within a
single quantum state (Schuld and Killoran, 2019;
Phukan et al., 2025). This quantum representation
can then “collapse” to a definite meaning as more
context becomes available, a process that arguably
mirrors human cognitive processing of ambiguity
(Phukan and Ekbal, 2023).

Finally, the exponential growth in the parameter
counts and energy consumption of classical LLMs
has created an urgent need for more efficient and
scalable learning paradigms (Ji and Jiang, 2026).
QNLP presents a potential path toward models that
are not only more powerful but also more resource-
efficient (Phukan et al., 2024; Phukan and Ekbal,
2023).

This survey provides a comprehensive overview
of the QNLP landscape. Section 2 details the foun-
dational Distributional Compositional Categorical
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(DisCoCat) (Coecke et al., 2010) framework. Sec-
tion 3 reviews the primary architectures used for
implementing QNLP models on near-term quan-
tum devices. Section 4 summarizes the empirical
progress across key NLP tasks. Section 5 offers a
critical discussion of the field’s current challenges
and future outlook.

2 Foundational Framework:
Compositionality via DisCoCat

The theoretical cornerstone of modern QNLP is
the Distributional Compositional Categorical (Dis-
CoCat) framework (Coecke et al., 2010), which
provides a mathematically rigorous unification of
two central pillars of linguistic theory: the distri-
butional hypothesis (a word’s meaning is defined
by its context) and the principle of composition-
ality (the meaning of a whole is a function of the
meaning of its parts and how they are combined).

The DisCoCat model operates through a formal
mapping between grammar and meaning. On the
grammatical side, it employs a categorial grammar,
typically a pregroup grammar, where words are
assigned abstract grammatical types. For instance,
a noun might be assigned type n, while a transitive
verb that takes a noun as its object and a noun as
its subject to form a sentence would have the type
n"sn!, where s is the type for a sentence and the
superscripts  and [ denote right and left adjoints,
respectively (Refer Figure 1). A sequence of words
is considered grammatical if its sequence of types
can be reduced to the sentence type s through a
series of predefined rules (Yeung and Kartsaklis,
2021).

On the semantic side, word meanings are repre-
sented as vectors (or more generally, tensors) in a
high-dimensional Hilbert space, following standard
distributional semantics. The central innovation of
DisCoCat is the use of category theory to define
a structure-preserving function that maps the cate-
gory of grammar to the category of vector spaces
(i.e., semantics). This ensures that the reduction
of grammatical types corresponds directly to a spe-
cific mathematical operation on the meaning vec-
tors, namely, tensor contraction (Sadrzadeh et al.,
2018). This entire compositional process can be vi-
sualized and reasoned about using string diagrams,
an intuitive graphical calculus where boxes repre-
sent word meanings (tensors) and wires represent
their grammatical types (tensor indices).

The profound insight that catalyzed the field of
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QNLP was the observation that the mathematical

structure of pregroup grammars and the structure

of quantum processes both form a rigid monoidal

category. This shared structure allows for a direct

and systematic translation from a sentence’s gram-
matical string diagram to a quantum circuit. In this

mapping, words become quantum states or oper-
ations, and the grammatical rules dictating their
composition become entangling gates or measure-
ments (Correia et al., 2022). This correspondence

makes quantum computers the “native environment™
for executing DisCoCat models. The framework
can thus be conceptualized as a “compiler” for lan-
guage: it takes a high-level linguistic structure (a
sentence) as input, parses it according to a formal

grammar, and outputs a low-level, executable rep-
resentation (a quantum circuit) (Peral-Garcia et al.,
2024; Laakkonen et al.). Toolkits such as 1lambeq’

and DisCoPy? have been developed to automate

this compilation pipeline, providing a principled
method for generating quantum algorithms for NLP

tasks.

3 Architectures for Quantum Language
Models

The implementation of QNLP models on present-
day hardware has led to a variety of architec-
tural approaches (Refer Table 1). These can be
seen as existing on a spectrum, reflecting a fun-
damental trade-off between adherence to the pure,
linguistically-grounded theory of DisCoCat and the
pragmatic need to achieve robust performance on
noisy, resource-constrained quantum devices.

3.1 Variational Quantum Circuits (VQCs)

Variational Quantum Circuits® (VQC) (Qi et al.,
2023) are the dominant paradigm for executing ma-
chine learning tasks on Noisy Intermediate-Scale
Quantum (NISQ) hardware (Phukan et al., 2024).
A VQC is a quantum circuit that includes gates
with adjustable parameters (e.g., rotation angles).
It operates within a hybrid quantum-classical loop:
the circuit is executed on a quantum processing
unit (QPU), the output is measured to compute a
classical loss function, and a classical optimizer
updates the circuit parameters to minimize this
loss, analogous to training a classical neural net-
work(Bashiri and Naderi, 2024; Hong and Lopez,

"https://github.com/CQCL/lambeq

2https ://discopy.org/

3https ://pennylane.ai/gml/glossary/
variational_circuit
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Figure 1: DisCoCat compositional diagram for “After my NLP PhD, I’ve become a stopword in most social

conversations.”

2025). Instead of loading pre-computed word vec-
tors, the meanings of words are learned directly
as the parameters of the quantum circuits (Zeng
and Coecke, 2016). The DisCoCat framework pro-
vides the “quantum circuit skeleton” based on a
sentence’s grammar, and the free parameters within
this structure are then optimized end-to-end for a
specific downstream task, such as text classifica-
tion.

3.2 Tensor Network (TN) Representations

Tensor Networks are a set of techniques origi-
nating from many-body quantum physics for ef-
ficiently representing and manipulating large, high-
dimensional tensors (Christandl et al., 2024). This
framework is deeply connected to QNLP, as quan-
tum circuits themselves can be formally described
as a specific class of tensor network (Rieser et al.,
2023; Zhang et al., 2019). TNs, particularly one-
dimensional structures like Matrix Product States
(MPS), are naturally suited for modeling sequential
data like language, as they are designed to effi-
ciently capture local correlations (Berezutskii et al.,
2025; Zhang et al., 2019; Teixeira et al.). They
serve a dual role in QNLP: as a powerful tool for
classically simulating quantum language models
and as a class of machine learning models in their
own right, offering a structured approach that lies
between classical recurrent models and full quan-
tum implementations (Berezutskii et al., 2025).

3.3 Hybrid Quantum-Classical Models

Representing the most pragmatic end of the archi-
tectural spectrum, hybrid models seek to enhance
proven classical architectures by replacing specific
components with quantum counterparts (Pandey
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et al., 2022, 2023; Phukan and Ekbal, 2023; Pandey
and Pakray, 2023; Phukan et al., 2025). This ap-
proach aims to leverage quantum effects for compu-
tationally challenging subroutines while retaining
the overall power and stability of classical frame-
works.

A prominent example is the Quantum Trans-
former, which replaces classical modules like the
self-attention mechanism with a VQC-based im-
plementation (Concepcion, 2025; Kerenidis et al.,
2024). The goal is to harness quantum proper-
ties like entanglement to capture complex contex-
tual relationships between tokens more efficiently
than is possible classically (Chen et al., 2024a).
A specific instantiation of this idea is the Quan-
tum Self-Attention Neural Network (QSANN) (Li
et al., 2024a), which introduces a quantum version
of self-attention designed to be scalable and imple-
mentable on NISQ devices. Notably, this model
bypasses the need for rigid syntactic pre-processing
required by pure DisCoCat models, making it more
readily applicable to larger, real-world dataset.

These distinct architectural philosophies high-
light the field’s dynamic search for an optimal bal-
ance between theoretical elegance and empirical
viability in the NISQ era.

4 Empirical Progress in QNLP Tasks

Despite the constraints of NISQ hardware, a grow-
ing body of empirical work has begun to explore
the capabilities of QNLP models on a range of stan-
dard NLP tasks (Refer Table 2). A consistent theme
emerging from these experiments is not necessarily
a quantum speedup in terms of wall-clock time, but
a significant advantage in terms of parameter and



Approach

Core Principle

Strengths

Limitations/Challeng

CoCat)

Compositional (Dis-

Maps grammatical structure directly to
quantum processes via category theory.

Theoretically grounded, highly inter-
pretable, “quantum-native” foundation.

Relies on rigid grammatical parsing, can
be brittle; may be inefficient without vari-
ational training.

Variational QNLP
(VQC-based)

Uses grammar-informed circuit skeletons
with parameters learned via a hybrid
quantum-classical loop.

Enables training on NISQ hardware,
learns word meanings from data, avoids
need for QRAM.

Susceptible to barren plateaus, optimiza-
tion is challenging, performance is lim-
ited by hardware noise.

tum Transformer)

Hybrid (e.g., Quan-

Replaces specific components of classical
architectures (e.g., attention) with quan-
tum circuits.

Leverages power of established classi-
cal models, targets specific computational
bottlenecks.

Less theoretically pure, potential for
quantum advantage is localized to a sin-
gle component.

Table 1: Comparison of Various Approaches

data efficiency.

4.1 Text Classification

Text classification is a foundational NLP task that
involves assigning predefined labels to text data,
with applications ranging from spam detection to
topic analysis (Taha et al., 2024; Sun et al., 2023;
Li et al., 2024b). It is the most widely explored
task in experimental QNLP, serving as a primary
benchmark for new models (Peral-Garcia et al.,
2024).

4.1.1 Sentiment Classification

Sentiment classification, a task focused on identify-
ing the emotional tone (e.g., positive, negative, neu-
tral) of a text, has been a key testbed for QNLP (Jim
et al., 2024). Early proof-of-concept experiments
on IBM’s quantum computers successfully demon-
strated that VQC-based models derived from Dis-
CoCat could be trained to solve simple classifica-
tion problems (Ganguly et al., 2022). These studies
also showed that on carefully constructed datasets,
syntax-aware models provided a performance ad-
vantage over syntax-agnostic “bag-of-words” base-
lines, validating the core premise of the composi-
tional approach (Kando et al., 2022).

More recent work has scaled these experiments
to real-world data. The QSANN model (Li et al.,
2024a), for example, was evaluated on sentiment
classification tasks using subsets of the Yelp #,
IMDb (Maas et al., 2011), and Amazon datasets
(McAuley and Leskovec, 2013). It was shown to
outperform a comparable classical self-attention
baseline while using dramatically fewer trainable
parameters, for instance, 49 quantum parameters
versus 785 classical parameters on the Yelp dataset.
Other architectures, such as Quantum Recurrent
Neural Networks (QRNNSs) (Pandey et al., 2024),
have also been proposed for classification, though
current implementations remain limited to smaller
datasets. While comparative studies acknowledge

*http://www.yelp.com/dataset_challenge
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that classical methods generally still achieve higher
accuracy on standard benchmarks, the potential
for QNLP models to learn effectively with greater
model efficiency is a key finding (Zhang et al.,
2024).

4.1.2 Aspect-Based Sentiment Analysis
(ABSA)

Aspect-Based Sentiment Analysis (ABSA) is a
fine-grained sentiment analysis task that aims to
identify the sentiment expressed towards specific
aspects or features within a text (Hua et al., 2024).
For example, in the sentence “The phone has a
great camera but a poor battery life,” ABSA would
identify a positive sentiment towards the “camera’
(aspect) and a negative sentiment towards the “bat-
tery life” (aspect) (Zhang et al., 2022). This level
of detail is crucial for applications like customer
feedback analysis. While ABSA is a significant
area of research in classical NLP, its exploration
using dedicated QNLP models is still an emerging
field (Kayal et al., 2025).

’

4.2 Sentence Similarity

The task of measuring the semantic similarity be-
tween two sentences classically involves encod-
ing them into vector embeddings and calculating
a distance metric, such as cosine similarity (Gao
et al., 2025). Quantum approaches have explored
this task using several methods, such as seman-
tic matching frameworks that leverage the density
matrix formalism in Hilbert space (Zhang et al.,
2025).

4.2.1 Semantic Textual Similarity

One prominent technique for semantic textual sim-
ilarity is Quantum Kernel Methods (Schuld et al.,
2015; Schuld and Killoran, 2019), where sentences
are mapped to quantum states via a quantum fea-
ture map. The similarity between two sentences
is then calculated as the inner product (or fidelity)

5https ://www.sciencedirect.com/topics/
computer-science/aspect-based-sentiment-analysis



of their corresponding quantum states, f(x;, ;) =
| < (z;)|[¢(z;) > |*. This value serves as a
kernel that can be fed into a classical support vec-
tor machine for classification or similarity tasks
(Egginger et al., 2024).

Another innovative, quantum-inspired approach
involves using a quantum circuit-based architec-
ture (simulated on classical hardware) as a projec-
tion head to compress high-dimensional sentence
embeddings from a classical model like BERT
(Kankeu et al., 2025). The similarity between the
resulting compressed representations is measured
using a metric based on the fidelity of quantum
states. This method achieved performance compet-
itive with classical techniques but with 32 times
fewer parameters, and it demonstrated particularly
strong performance in low-data settings.

4.2.2 Paraphrase Identification

Paraphrase identification is a specific binary clas-
sification task within sentence similarity that de-
termines whether two sentences convey the same
meaning, even if they use different wording (Alvi
et al., 2021). This task is critical for applica-
tions such as plagiarism detection, text summariza-
tion, and improving question answering systems
(Palivela, 2021). While a core challenge in clas-
sical NLP, the development of specialized QNLP
models for paraphrase identification is an active
area of research.

4.2.3 Information Retrieval (IR)

Information Retrieval is the task of finding relevant
documents or information from a large collection
in response to a user’s query. The connection to
sentence similarity is foundational; vector space
models, which represent both queries and docu-
ments as vectors, measure relevance based on the
similarity between these vectors (Sordoni and Nie,
2013). This vector-based paradigm is well-suited
for quantum implementation. Mathematical mod-
els for language explicitly motivated by quantum
theory have been successfully applied to IR (Fan
et al., 2024), suggesting that quantum computers
could offer a natural and efficient environment for
these tasks. This link is formally demonstrated by
frameworks that generalize the probability frame-
work of quantum physics for interactive retrieval
tasks (Piwowarski and Lalmas, 2009).
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4.3 Question Generation (QG)

Question Generation is the task of automatically
generating natural language questions from a given
input, such as a text passage or a knowledge base
(Mulla and Gharpure, 2023). QG has important
applications in creating educational materials, aug-
menting datasets for QA systems, and enhancing
conversational agents (Duan et al., 2017; Dey and
Rudrapal, 2024). While QNLP has been success-
fully applied to the dual task of question answering,
direct applications to the generative task of QG are
still in the early stages of exploration, with current
research still focused on addressing core challenges
in classical settings (Dey and Rudrapal, 2024), and
thus represent a key direction for future research.

4.4 Question Answering (QA)

Question answering remains a nascent but promis-
ing application area for QNLP, with research ex-
ploring how quantum algorithms can provide ad-
vantages like potential speedups (Correia et al.,
2022). While classical QA systems involve com-
plex pipelines for information retrieval and answer
generation, quantum-inspired techniques are begin-
ning to emerge. One such innovation is the Quan-
tum Fusion Module (QFM) (Duan et al., 2024),
designed for open-domain QA. This module ap-
plies principles from quantum theory to fuse the
token embeddings from a question and a candidate
passage into a single representation analogous to
a “quantum mixed state.” This fused representa-
tion allows a classifier to more accurately predict
whether the passage contains the answer, thereby
improving the performance of a larger, classical
T5-based model (Raffel et al., 2020).

4.5 Processing Multimodal Data

A significant new field for QNLP is the process-
ing of multimodal data, which involves integrating
information from different formats such as text,
images/video, and audio (Li et al., 2021; Phukan
and Ekbal, 2023; Phukan et al., 2024, 2025). The
MultiQ-NLP framework (Hawashin and Sadrzadeh,
2024) has been developed specifically for this pur-
pose, extending the compositional, structure-aware
models of QNLP to handle both text and images.
In this framework, both linguistic components and
image features are translated into quantum circuits.
This allows the model to create a unified repre-
sentation that captures the interactions between
modalities. When tested on an image classification



task that requires understanding the relationship
between a subject, verb, and object (SVO-Probes),
the structure-aware quantum model performed on
par with state-of-the-art classical models, demon-
strating the viability of QNLP for complex mul-
timodal reasoning. Phukan and Ekbal (2023) in-
troduced QeMMA, a framework for multimodal
sentiment analysis. On the CMU-MOSETI dataset
(Zadeh et al., 2018), their model, implemented with
Qiskit® and executed on quantum hardware, out-
performed classical baselines by 3.52% in accu-
racy and 10.14% in F1-score, providing concrete
evidence of the empirical advantage of quantum
approaches.

Further advancing this line of work, Phukan et al.
(2024) proposed a hybrid quantum-classical archi-
tecture designed to jointly tackle the interrelated
tasks of sarcasm, emotion, and sentiment detection.
Their model integrates a Variational Quantum Cir-
cuit (VQC) with a classical deep neural network,
hypothesizing that quantum entanglement and state
space properties can more effectively model the
nuanced cross-modal interactions and task correla-
tions present in such complex inference problems.

4.5.1 Emotion Recognition

Emotion recognition is a more granular task than
sentiment analysis, aiming to identify specific emo-
tions like joy, anger, or guilt from data (Rasool
et al., 2025). While much of the work in this area
uses classical NLP models on text, QNLP research
has begun to explore this task, often by processing
multimodal data. Quantum-enhanced models have
been applied to recognize emotions from physio-
logical signals using quantum-enhanced Support
Vector Machines (SVMs) (Bayro and Jeong, 2025),
and from facial expressions using Quantum Neural
Networks (QNNs) (Alsubai et al., 2024). Further-
more, hybrid quantum-classical models have been
developed for multimodal data, including speech
and text (Li et al., 2025). Such frameworks are in-
creasingly designed to analyze sentiment, emotion,
and other related states simultaneously, leveraging
quantum properties to model the complex correla-
tions between them (Li et al., 2025).

4.5.2 Sarcasm Detection

Sarcasm detection is a particularly challenging
NLP task due to the inherent incongruity between
the literal and intended meaning of an utterance (Xi
et al., 2025; Lu et al., 2025). Quantum computing

6ht’cps ://www.ibm.com/quantum/qiskit
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has been applied to this problem to better model
such complex linguistic phenomena, for instance,
through Quantum Neural Networks (QNNs) for an-
alyzing sentiment, emotion, and sarcasm (Singh
et al., 2025; Phukan et al., 2024). Other quantum-
based models designed directly for this task include
the Quantum Fuzzy Neural Network (QFNN) for
multimodal sarcasm detection (analyzing text, au-
dio, and visuals) (Tiwari et al., 2024) and frame-
works that use the mathematics of quantum prob-
ability to jointly model sarcasm, sentiment, and
emotion (Singh et al., 2025; Phukan et al., 2025).

5 Challenges and Future Outlook

The trajectory of QNLP is shaped by a dynamic in-
terplay between the ambitious theoretical promises
of quantum computation and the stark realities of
current hardware. Progress in the field can be un-
derstood as advancing on two parallel but inter-
dependent fronts: a hardware-aware effort to ex-
tract value from today’s imperfect machines, and a
theory-forward exploration of what will be possible
with the fault-tolerant computers of the future.

5.1 The NISQ Bottleneck

The primary constraint on QNLP research is the
Noisy Intermediate-Scale Quantum (NISQ) era of
hardware (Rai et al., 2022). Today’s quantum pro-
cessors are limited by several fundamental factors:

* Low Qubit Counts: Systems with 50-100
qubits are typical, which severely restricts
the size and complexity of the language mod-
els that can be implemented (Riel, 2021; Pan
et al., 2025).

High Error Rates: Qubits are extremely sensi-
tive to their environment, suffering from deco-
herence that introduces noise and leads to high
error rates (typically 0.1%-1%) in gate oper-
ations and measurements (Rai et al., 2022).
This noise accumulates rapidly, corrupting the
results of all but the simplest computations
(Khan et al., 2024).

Limited Circuit Depth: Because noise accu-
mulates with every operation, there is a strict
limit on the number of gates (circuit depth,
typically 20-100 layers) that can be applied
before the quantum signal is overwhelmed by
noise (Pan et al., 2025).



Task

Model/Approach

Dataset(s)

Key Finding / Reported Advantage

Text Classification

DisCoCat + VQC (Ganguly
et al., 2022)

Synthetic (Ganguly et al., 2022)

Syntax-aware model outperforms bag-of-words.

Text Classification

QSANN (Li et al., 2024a)

Yelp’, IMDb (Maas et al, 2011),
and Amazon datasets (McAuley and
Leskovec, 2013)

Outperforms classical baseline with >90% fewer
parameters.

Sentence Similarity

Quantum-Inspired Projection
Head (Kankeu et al., 2025)

TREC 2019 DL (Voorhees et al., 2020)
and TREC 2020 DL (Craswell et al.,
2021)

Competitive performance with 32x fewer parame-
ters; excels in low-data regimes.

Question Answer-
ing

Quantum-Inspired Fusion-in-
Decoder (QFiD) (Duan et al.,

Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017)

Quantum-inspired fusion improves relationship pre-
diction over baseline.

2024)

Multimodal Classi- | MultiQ-NLP (Hawashin and SVO-Probes

(Hendricks

and Ne- | Performs on par with classical models while offer-

fication Sadrzadeh, 2024) matzadeh, 2021) ing better interpretability.
Multimodal Classi- | HQNN (VQC+NN) (Phukan Extended MUStARD(Chauhan et al., Outperforms classical baselines for multitask sar-
fication etal., 2024) 2020) casm, sentiment, and emotion detection.

Table 2: QNLP Tasks

These hardware limitations collectively mean that
current QNLP experiments are necessarily confined
to small-scale datasets and simplified “toy” prob-
lems. Scaling these models to handle the complex-
ity and volume of data processed by modern LLMs
is, for now, impossible.

5.2 Algorithmic Hurdles

Beyond hardware, significant algorithmic chal-
lenges must be overcome. A primary obstacle
in training VQCs is the phenomenon of barren
plateaus, where the gradient of the loss function
vanishes exponentially as the number of qubits
increases, rendering the optimization process in-
tractable for larger models (Pande, 2023). Further-
more, the task of data encoding, efficiently trans-
lating classical text data into quantum states, is a
non-trivial problem that can itself become a com-
putational bottleneck (Ranga et al., 2024). Active
research on the hardware-aware front is focused on
developing mitigation strategies, including noise-
aware training protocols (Rahman and Zhuang,
2025), quantum error mitigation techniques (At-
ban et al., 2025), and the design of specialized loss
functions and optimizers (Pande, 2023).

6 Conclusion

The long-term vision for QNLP is to achieve a
demonstrable quantum advantage, where a quan-
tum computer solves a practical NLP problem more
efficiently, more accurately, or with fewer resources
than is possible with any classical machine. While
theoretical results have shown that quantum lan-
guage models are, in principle, more expressive
than their classical counterparts (i.e., the problem
is BQP-complete), a practical advantage has not
yet been realized.

Perhaps one of the most compelling promises of
the theory-forward front is the potential for QNLP
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to deliver more interpretable and trustworthy Al.
By building models on the transparent, composi-
tional structure of DisCoCat, QNLP offers a path
away from the “black box” nature of many LLMs,
toward systems whose reasoning can be traced and
understood.

Ultimately, the future of QNLP depends on the
co-evolution of hardware and theory. As quan-
tum technology matures beyond the NISQ era and
toward fault-tolerance, the full potential of these
linguistically-grounded, quantum-native models
can be explored. The goal is not merely to repli-
cate classical NLP on a different substrate, but to
fundamentally reimagine language modeling by
leveraging the unique computational capabilities
of the quantum world, potentially leading to a new
generation of Al that is more powerful, efficient,
and reliable.

7 Limitations

This survey provides a broad overview of the QNLP
landscape, but it is subject to several inherent limi-
tations reflecting the nascent and rapidly evolving
nature of the field.

First, the scope of this review is primarily cen-
tered on the theoretical lineage from the DisCo-
Cat framework to its empirical implementation
on NISQ-era hardware. While we touch upon
quantum-inspired classical models and tensor net-
works, an exhaustive analysis of all classical al-
gorithms that leverage principles from quantum
theory is beyond the scope of this paper.

Second, the field of QNLP is advancing at an ex-
ceptional pace. This survey represents a snapshot
of the research landscape at the time of writing.
New hardware developments, algorithmic break-
throughs, and empirical findings are published fre-
quently, and some emerging work may not be cap-
tured here.



References

Shtwai Alsubai, Abdullah Algahtani, Abed Alanazi, Mo-
hemmed Sha, and Abdu Gumaei. 2024. Facial emo-
tion recognition using deep quantum and advanced
transfer learning mechanism. Frontiers in Computa-
tional Neuroscience, 18:1435956.

Faisal Alvi, Mark Stevenson, and Paul Clough. 2021.
Paraphrase type identification for plagiarism detec-
tion using contexts and word embeddings. Interna-

tional Journal of Educational Technology in Higher
Education, 18(1):42.

Furkan Atban, Muhammed Yusuf Kiigiikkara, and
Ciineyt Bayilmig. 2025. Enhancing variational quan-
tum classifier performance with meta-heuristic fea-
ture selection for credit card fraud detection. The
European Physical Journal Special Topics, pages 1—
14.

Hadis Bashiri and Hassan Naderi. 2024. Comprehen-
sive review and comparative analysis of transformer
models in sentiment analysis. Knowledge and Infor-
mation Systems, 66(12):7305-7361.

Allison Bayro and Heejin Jeong. 2025. Enhancing emo-
tional response detection in virtual reality with quan-
tum support vector machine learning. Computers &
Graphics, 128:104196.

Aleksandr Berezutskii, Minzhao Liu, Atithi Acharya,
Roman Ellerbrock, Johnnie Gray, Reza Haghshenas,
Zichang He, Abid Khan, Viacheslav Kuzmin, Dmitry
Lyakh, and 1 others. 2025. Tensor networks for quan-
tum computing. Nature Reviews Physics, pages 1—
13.

Dushyant Singh Chauhan, SR Dhanush, Asif Ekbal, and
Pushpak Bhattacharyya. 2020. Sentiment and emo-
tion help sarcasm? a multi-task learning framework
for multi-modal sarcasm, sentiment and emotion anal-
ysis. In Proceedings of the 58th annual meeting of
the association for computational linguistics, pages
4351-4360.

I-Chi Chen, Harshdeep Singh, VL Anukruti, Brian
Quanz, and Kavitha Yogaraj. 2024a. A survey of
classical and quantum sequence models. In 2024
16th International Conference on COMmunication
Systems & NETworkS (COMSNETS), pages 1006—
1011. IEEE.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaigiang Song,
Xiaoyang Wang, Dong Yu, and Jianshu Chen. 2024b.
Skills-in-context: Unlocking compositionality in
large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 13838—13890.

Matthias Christandl, Vladimir Lysikov, Vincent Stef-
fan, Albert H Werner, and Freek Witteveen. 2024.
The resource theory of tensor networks. Quantum,
8:1560.

72

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark.
2010. Mathematical foundations for a compositional
distributional model of meaning. arXiv preprint
arXiv:1003.4394.

Wesley Concepcion. 2025. Hybrid quantum transformer
for natural language processing.

Adriana D Correia, Michael Moortgat, and Henk TC
Stoof. 2022. Quantum computations for disambigua-
tion and question answering. Quantum Information
Processing, 21(4):126.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2021. Overview of the TREC 2020
deep learning track. CoRR, abs/2102.07662.

Debopam Dey and Dwijen Rudrapal. 2024. An analysis
of automatic question generation research progress
and challenges. In International Conference on Data
Science and Network Engineering, pages 247-258.
Springer.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866-874, Copenhagen, Denmark. Association for
Computational Linguistics.

Ruixue Duan, Xin Liu, Zhigang Ding, and Yangsen
Zhang. 2024. Quantum-inspired fusion for
open-domain question answering.  Electronics,
13(20):4135.

Sebastian Egginger, Alona Sakhnenko, and
Jeanette Miriam Lorenz. 2024. A hyperpa-
rameter study for quantum kernel methods. Quantum
Machine Intelligence, 6(2):44.

Zipeng Fan, Jing Zhang, Peng Zhang, Qianxi Lin, Yizhe
Li, and Yuhua Qian. 2024. Quantum-inspired lan-
guage models based on unitary transformation. Infor-
mation Processing & Management, 61(4):103741.

Srinjoy Ganguly, Sai Nandan Morapakula, and Luis
Miguel Pozo Coronado. 2022. Quantum natural lan-
guage processing based sentiment analysis using lam-
beq toolkit. In 2022 Second International Confer-
ence on Power, Control and Computing Technologies
(ICPC2T), pages 1-6. IEEE.

Hui Gao, Peng Zhang, Jing Zhang, and Chang Yang.
2025. Qsim: a quantum-inspired hierarchical seman-
tic interaction model for text classification. Neuro-
computing, 611:128658.

Hala Hawashin and Mehrnoosh Sadrzadeh. 2024. Mul-
timodal structure-aware quantum data processing.
arXiv preprint arXiv:2411.04242.

Lisa Anne Hendricks and Aida Nematzadeh. 2021.
Probing image-language transformers for verb un-
derstanding. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3635-3644.



Ying-Yi Hong and Dylan Josh Domingo Lopez. 2025.
A review on quantum machine learning in applied
systems and engineering. IEEE Access.

Yan Cathy Hua, Paul Denny, Jorg Wicker, and Katerina
Taskova. 2024. A systematic review of aspect-based
sentiment analysis: domains, methods, and trends.
Artificial Intelligence Review, 57(11):296.

Zhenya Ji and Ming Jiang. 2026. A systematic review
of electricity demand for large language models: eval-
uations, challenges, and solutions. Renewable and
Sustainable Energy Reviews, 225:116159.

Jamin Rahman Jim, Md Apon Riaz Talukder, Partha
Malakar, Md Mohsin Kabir, Kamruddin Nur, and
Mohammed Firoz Mridha. 2024. Recent advance-
ments and challenges of nlp-based sentiment analysis:
A state-of-the-art review. Natural Language Process-
ing Journal, 6:100059.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Shunsuke Kando, Hiroshi Noji, and Yusuke Miyao.
2022. Multilingual syntax-aware language modeling
through dependency tree conversion. In Proceedings
of the Sixth Workshop on Structured Prediction for
NLP, pages 1-10, Dublin, Ireland. Association for
Computational Linguistics.

Ivan Kankeu, Stefan Gerd Fritsch, Gunnar Schon-
hoff, Elie Mounzer, Paul Lukowicz, and Maximilian
Kiefer-Emmanouilidis. 2025. Quantum-inspired em-
beddings projection and similarity metrics for repre-
sentation learning. arXiv preprint arXiv:2501.04591.

Mrinmoy Kayal, Mohinikanta Sahoo, Jayadeep Pati,
and Ranjan Kumar Behera. 2025. Quantum-inspired
aspect-based sentiment analysis using natural lan-
guage processing. In Advances in Quantum Inspired
Artificial Intelligence: Techniques and Applications,
pages 151-169. Springer.

Tordanis Kerenidis, Natansh Mathur, Jonas Landman,
Martin Strahm, Yun Yvonna Li, and 1 others. 2024.
Quantum vision transformers. Quantum, 8:1265.

Misha Urooj Khan, Muhammad Ahmad Kamran,
Wajiha Rahim Khan, Malik Muhammad Ibrahim,
Muhammad Umair Ali, and Seung Won Lee. 2024.
Error mitigation in the nisq era: Applying measure-
ment error mitigation techniques to enhance quantum
circuit performance. Mathematics, 12(14):2235.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, and 1 others. 2019. Natural questions: a
benchmark for question answering research. Trans-
actions of the Association for Computational Linguis-
tics, 7:453-466.

73

Tuomas Laakkonen, Konstantinos Meichanetzidis, and
Bob Coecke. Quantum algorithms for compositional
text processing. EPTCS 406, page 162.

Guangxi Li, Xuanqgiang Zhao, and Xin Wang. 2024a.
Quantum self-attention neural networks for text clas-
sification.  Science China Information Sciences,
67(4):142501.

Qiuchi Li, Dimitris Gkoumas, Christina Lioma, and
Massimo Melucci. 2021. Quantum-inspired multi-
modal fusion for video sentiment analysis. Informa-
tion Fusion, 65:58-71.

Xintong Li, Jinya Jiang, Ria Dharmani, Jayanth Srini-
vasa, Gaowen Liu, and Jingbo Shang. 2024b. Open-
world multi-label text classification with extremely
weak supervision. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 15084-15096, Miami, Florida, USA.
Association for Computational Linguistics.

YaoChong Li, Yi Qu, Ri-Gui Zhou, and Jing Zhang.
2025. Qmlsc: A quantum multimodal learning model
for sentiment classification. [Information Fusion,
120:103049.

Ming Lu, Zhigiang Dong, Ziming Guo, Xiaoming
Zhang, Xinxi Lu, Tianbo Wang, and Litian Zhang.
2025. A multi-modal sarcasm detection model based
on cue learning. Scientific Reports, 15(1):10261.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th

ACM conference on Recommender systems, pages
165-172.

Nikahat Mulla and Prachi Gharpure. 2023. Auto-
matic question generation: a review of methodolo-
gies, datasets, evaluation metrics, and applications.
Progress in Artificial Intelligence, 12(1):1-32.

Hemant Palivela. 2021. Optimization of paraphrase
generation and identification using language mod-
els in natural language processing. International
Journal of Information Management Data Insights,
1(2):100025.

Gundala Pallavi and Rangarajan Prasanna Kumar. 2025.
Quantum natural language processing and its appli-
cations in bioinformatics: a comprehensive review
of methodologies, concepts, and future directions.
Frontiers in Computer Science, 7:1464122.



Yi Pan, Hangqi Jiang, Junhao Chen, Yiwei Li, Huaqin
Zhao, Lin Zhao, Yohannes Abate, Yingfeng Wang,
and Tianming Liu. 2025. Bridging classical and quan-
tum computing for next-generation language models.
arXiv preprint arXiv:2508.07026.

Mandaar B Pande. 2023. Review of optimization tech-
niques and barren plateaus in training of quantum
machine learning problems. In International Confer-
ence on Computing and Network Communications,
pages 3—15. Springer.

Shyambabu Pandey, Nihar Jyoti Basisth, Tushar Sachan,
Neha Kumari, and Partha Pakray. 2023. Quantum
machine learning for natural language processing
application. Physica A: Statistical Mechanics and its
Applications, 627:129123.

Shyambabu Pandey, Pankaj Dadure, Morrel VL Nun-
sanga, and Partha Pakray. 2022. Parts of speech
tagging towards classical to quantum computing. In
2022 IEEE Silchar Subsection Conference (SILCON),
pages 1-6. IEEE.

Shyambabu Pandey and Partha Pakray. 2023. Bi-
quantum long short-term memory for part-of-speech
tagging. In Proceedings of the 20th International
Conference on Natural Language Processing (ICON),
pages 301-307.

Shyambabu Pandey, Partha Pakray, and Riyanka Manna.
2024. Quantum classifier for natural language
processing applications. Computacion y Sistemas,
28(2):695-700.

David Peral-Garcia, Juan Cruz-Benito, and Fran-
cisco José Garcia-Pefialvo. 2024. Comparing natural
language processing and quantum natural process-
ing approaches in text classification tasks. Expert
Systems with Applications, 254:124427.

Arpan Phukan and Asif Ekbal. 2023. Qemma:
Quantum-enhanced multi-modal sentiment analysis.
In Proceedings of the 20th International Conference
on Natural Language Processing (ICON), pages 815—
821.

Arpan Phukan, Anas Anwarul Haq Khan, and Asif Ek-
bal. 2025. Qumin: quantum multi-modal data fusion
for humor detection. Multimedia Tools and Applica-
tions, 84(18):18855-18872.

Arpan Phukan, Santanu Pal, and Asif Ekbal. 2024.
Hybrid quantum-classical neural network for mul-
timodal multitask sarcasm, emotion, and sentiment

analysis. IEEE Transactions on Computational So-
cial Systems, 11(5):5740-5750.

Benjamin Piwowarski and Mounia Lalmas. 2009. A
quantum-based model for interactive information re-
trieval. In Conference on the Theory of Information
Retrieval, pages 224-231. Springer.

Jun Qi, Chao-Han Yang, and Pin-Yu Chen. 2023. Qtn-
vqc: An end-to-end learning framework for quantum
neural networks. Physica Scripta, 99(1):015111.

74

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Magsudur Rahman and Jun Zhuang. 2025. Ngnn:
Noise-aware quantum neural networks for medical
image classification. In International Conference on
Medical Image Computing and Computer-Assisted
Intervention, pages 433-442. Springer.

Anshuman Rai, Amey Talekar, Javed Khan, and Ahlam
Ansari. 2022. A review article on quantum natural
language processing. Int J Res Appl Sci Eng Technol,
10(1).

Deepak Ranga, Aryan Rana, Sunil Prajapat, Pankaj
Kumar, Kranti Kumar, and Athanasios V Vasilakos.
2024. Quantum machine learning: Exploring the role
of data encoding techniques, challenges, and future
directions. Mathematics, 12(21):3318.

Abdur Rasool, Saba Aslam, Naeem Hussain, Sharjeel
Imtiaz, and Wagqar Riaz. 2025. nbert: Harnessing nlp
for emotion recognition in psychotherapy to trans-
form mental health care. Information, 16(4):301.

Heike Riel. 2021. Quantum computing technology. In
2021 IEEE international Electron devices meeting
(IEDM), pages 1-3. IEEE.

Hans-Martin Rieser, Frank Koster, and Arne Peter
Raulf. 2023. Tensor networks for quantum ma-
chine learning. Proceedings of the Royal Society
A, 479(2275):20230218.

Mehrnoosh Sadrzadeh, Dimitri Kartsaklis, and Esma
Balkar. 2018. Sentence entailment in compositional
distributional semantics. Annals of Mathematics and
Artificial Intelligence, 82(4):189-218.

Maria Schuld and Nathan Killoran. 2019. Quantum
machine learning in feature hilbert spaces. Physical
review letters, 122(4):040504.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruc-
cione. 2015. An introduction to quantum machine
learning. Contemporary Physics, 56(2):172—185.

Jaiteg Singh, Kamalpreet Singh Bhangu, Abdulrhman
Alkhanifer, Ahmad Ali Alzubi, and Farman Ali. 2025.
Quantum neural networks for multimodal sentiment,
emotion, and sarcasm analysis. Alexandria Engineer-
ing Journal, 124:170-187.

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. 2025.
Out-of-distribution generalization via composition:
a lens through induction heads in transformers.
Proceedings of the National Academy of Sciences,
122(6):€2417182122.

Alessandro Sordoni and Jian-Yun Nie. 2013. Looking at
vector space and language models for ir using density
matrices. In International Symposium on Quantum
Interaction, pages 147-159. Springer.



Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei
Guo, Tianwei Zhang, and Guoyin Wang. 2023. Text
classification via large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 8990-9005, Singapore.
Association for Computational Linguistics.

Kamal Taha, Paul D Yoo, Chan Yeun, Dirar Homouz,
and Aya Taha. 2024. A comprehensive survey of
text classification techniques and their research ap-
plications: Observational and experimental insights.
Computer Science Review, 54:100664.

Erico Souza Teixeira, Yara Rodrigues Inicio, and
Pamela TL Bezerra. Applying quantum tensor net-
works in machine learning: A systematic.

Prayag Tiwari, Lailei Zhang, Zhiguo Qu, and Ghulam
Muhammad. 2024. Quantum fuzzy neural network
for multimodal sentiment and sarcasm detection. In-
formation Fusion, 103:102085.

Ellen M Voorhees, Nick Craswell, Bhaskar Mitra,
Daniel Campos, and Emine Yilmaz. 2020. Overview
of the trec 2019 deep learning track.

Dominic Widdows, Willie Aboumrad, Dohun Kim, Say-
onee Ray, and Jonathan Mei. 2024. Quantum natu-

ral language processing. KI-Kiinstliche Intelligenz,
38(4):293-310.

Sixuan Wu, Jian Li, Peng Zhang, and Yue Zhang. 2021.
Natural language processing meets quantum physics:
A survey and categorization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3172-3182.

Zhonghao Xi, Bengong Yu, and Haoyu Wang. 2025.
Multimodal sarcasm detection based on sentiment-
clue inconsistency global detection fusion network.
Expert Systems with Applications, 275:127020.

Richie Yeung and Dimitri Kartsaklis. 2021. A CCG-
based version of the DisCoCat framework. In Pro-
ceedings of the 2021 Workshop on Semantic Spaces
at the Intersection of NLP, Physics, and Cognitive
Science (SemSpace), pages 20-31, Groningen, The
Netherlands. Association for Computational Linguis-
tics.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,
Erik Cambria, and Louis-Philippe Morency. 2018.
Multimodal language analysis in the wild: Cmu-
mosei dataset and interpretable dynamic fusion graph.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2236-2246.

William Zeng and Bob Coecke. 2016. Quantum algo-
rithms for compositional natural language processing.
EPTCS, 221 (arXiv: 1608.01406):67-75.

Chenchen Zhang, Qiuchi Li, Dawei Song, and Prayag
Tiwari. 2025. Quantum-inspired semantic matching
based on neural networks with the duality of den-
sity matrices. Engineering Applications of Artificial
Intelligence, 140:109667.

75

Hui Zhang, Qinglin Zhao, and Chuangtao Chen. 2024.
A light-weight quantum self-attention model for

classical data classification. Applied Intelligence,
54(4):3077-3091.

Lipeng Zhang, Peng Zhang, Xindian Ma, Shuqin Gu,
Zhan Su, and Dawei Song. 2019. A generalized
language model in tensor space. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7450-7458.

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing,
and Wai Lam. 2022. A survey on aspect-based senti-
ment analysis: Tasks, methods, and challenges. IEEE

Transactions on Knowledge and Data Engineering,
35(11):11019-11038.



Author Index

Bal, Sauvik, 33
Bandyopadhyay, Sivaji, 1
Bhattacharyya, Siddhartha, 10
Bohra, Abhinav, 53

Das, Dipankar, 10
Dhar, Debjit, 1

Ekbal, Asif, 65

K, Devanarayanan, 20
Kattamuri, Ashish, 53
Kolya, Anup Kumar, 10

Lahiri, Soham, 1

Mohamad, Fayas S, 20
Mohan, Dheeraj V, 20

76

Mondal, Tapabrata, 1

Pakray, Partha, 26

Pal, Pritam, 10

Palani, Balasubramanian, 44
Pandey, Shyambabu, 26
Phukan, Arpan, 65

Rai, Ashutosh, 26
Raja, Rahul, 53

Sheik, Reshma, 20
Srikumar, Karthik, 6
Suneesh, Arya, 44

Vats, Arpita, 53



	Title page
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Keynote Talk: Quantum Machine Learning: Concepts and Applications
	Table of Contents
	Quantum-Infused Whisper: A Framework for Replacing Classical Components
	These Aren't the Vectors You're Looking For: A Proof of Quantum Advantage in Compositional Generalization
	Hybrid Classical-Quantum Framework for Sentiment Classification and Claim Check-Worthiness Identification in Bengali
	A Hybrid Quantum-Classical Fusion for Deep Semantic Paraphrase Detection
	Quantum-Enhanced Gated Recurrent Units for Part-of-Speech Tagging
	A Review of Quantum Computing Approaches to Semantic Search and Text Classification in Natural Language Processing
	QCNN-MFND: A Novel Quantum CNN Framework for Multimodal Fake News Detection in Social Media
	A Systematic Survey of Quantum Natural Language Processing: Models, Encoding Paradigms, and Evaluation Methods
	A Survey of Quantum Natural Language Processing: From Compositional Models to NISQ-Era Empiricism

