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Abstract

Quantum Natural Language Processing
(QNLP) has emerged as a novel paradigm
that leverages the principles of quantum
mechanics to address fundamental chal-
lenges in language modeling, particularly
in capturing compositional meaning. This
survey charts the evolution of QNLP, from its
theoretical foundations in the Distributional
Compositional Categorical (DisCoCat)
framework to its modern implementation on
Noisy Intermediate-Scale Quantum (NISQ)
hardware. We review the primary architectural
approaches, including variational quantum
circuits and tensor networks, and summarize
the growing body of empirical work in tasks
such as text classification, sentence similarity,
and question answering. A recurring finding is
the potential for QNLP models to achieve com-
petitive performance with significantly fewer
parameters than their classical counterparts.
However, the field is critically constrained
by the limitations of NISQ-era hardware.
We conclude by discussing these challenges
and outlining the future trajectory towards
achieving a demonstrable quantum advantage
and building more interpretable, efficient
language models.

1 Introduction

Quantum Natural Language Processing (QNLP)
is an integrative and rapidly developing field that
applies the principles of quantum computing to the
challenges of natural language processing (Pallavi
and Prasanna Kumar, 2025). It is motivated by a
foundational hypothesis that extends beyond the
simple pursuit of computational speedup: the idea
that language is “quantum native” (Widdows et al.,
2024). This proposition suggests that the mathe-
matical formalism of quantum mechanics, particu-
larly the compositional structure of Hilbert spaces,
provides a natural and perhaps ideal framework
for modeling the compositional nature of linguis-

tic meaning. By grounding language in a physi-
cal computational model, QNLP seeks a paradigm
shift from the purely statistical and often opaque
methods of classical NLP to a more structured and
interpretable approach (Phukan et al., 2024).

This pursuit is driven by the persistent limita-
tions of classical models. Even state-of-the-art
Large Language Models (LLMs) struggle to ro-
bustly handle the principle of compositionality, the
process by which the meanings of individual words
combine according to grammatical rules to form the
meaning of a sentence (Song et al., 2025). Many
classical architectures effectively treat sentences as
a “bag of words” or a flat sequence of tokens, fail-
ing to capture the deep, hierarchical relationships
encoded in syntax (Chen et al., 2024b). Further-
more, natural language is inherently ambiguous. A
phrase such as “The bank was crowded” presents
a challenge that classical models resolve through
statistical inference (Wu et al., 2021). Quantum
mechanics, with its principles of superposition and
entanglement, offers a potentially more efficient
solution, allowing for the simultaneous representa-
tion and processing of multiple meanings within a
single quantum state (Schuld and Killoran, 2019;
Phukan et al., 2025). This quantum representation
can then “collapse” to a definite meaning as more
context becomes available, a process that arguably
mirrors human cognitive processing of ambiguity
(Phukan and Ekbal, 2023).

Finally, the exponential growth in the parameter
counts and energy consumption of classical LLMs
has created an urgent need for more efficient and
scalable learning paradigms (Ji and Jiang, 2026).
QNLP presents a potential path toward models that
are not only more powerful but also more resource-
efficient (Phukan et al., 2024; Phukan and Ekbal,
2023).

This survey provides a comprehensive overview
of the QNLP landscape. Section 2 details the foun-
dational Distributional Compositional Categorical
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(DisCoCat) (Coecke et al., 2010) framework. Sec-
tion 3 reviews the primary architectures used for
implementing QNLP models on near-term quan-
tum devices. Section 4 summarizes the empirical
progress across key NLP tasks. Section 5 offers a
critical discussion of the field’s current challenges
and future outlook.

2 Foundational Framework:
Compositionality via DisCoCat

The theoretical cornerstone of modern QNLP is
the Distributional Compositional Categorical (Dis-
CoCat) framework (Coecke et al., 2010), which
provides a mathematically rigorous unification of
two central pillars of linguistic theory: the distri-
butional hypothesis (a word’s meaning is defined
by its context) and the principle of composition-
ality (the meaning of a whole is a function of the
meaning of its parts and how they are combined).

The DisCoCat model operates through a formal
mapping between grammar and meaning. On the
grammatical side, it employs a categorial grammar,
typically a pregroup grammar, where words are
assigned abstract grammatical types. For instance,
a noun might be assigned type n, while a transitive
verb that takes a noun as its object and a noun as
its subject to form a sentence would have the type
nrsnl, where s is the type for a sentence and the
superscripts r and l denote right and left adjoints,
respectively (Refer Figure 1). A sequence of words
is considered grammatical if its sequence of types
can be reduced to the sentence type s through a
series of predefined rules (Yeung and Kartsaklis,
2021).

On the semantic side, word meanings are repre-
sented as vectors (or more generally, tensors) in a
high-dimensional Hilbert space, following standard
distributional semantics. The central innovation of
DisCoCat is the use of category theory to define
a structure-preserving function that maps the cate-
gory of grammar to the category of vector spaces
(i.e., semantics). This ensures that the reduction
of grammatical types corresponds directly to a spe-
cific mathematical operation on the meaning vec-
tors, namely, tensor contraction (Sadrzadeh et al.,
2018). This entire compositional process can be vi-
sualized and reasoned about using string diagrams,
an intuitive graphical calculus where boxes repre-
sent word meanings (tensors) and wires represent
their grammatical types (tensor indices).

The profound insight that catalyzed the field of

QNLP was the observation that the mathematical
structure of pregroup grammars and the structure
of quantum processes both form a rigid monoidal
category. This shared structure allows for a direct
and systematic translation from a sentence’s gram-
matical string diagram to a quantum circuit. In this
mapping, words become quantum states or oper-
ations, and the grammatical rules dictating their
composition become entangling gates or measure-
ments (Correia et al., 2022). This correspondence
makes quantum computers the “native environment”
for executing DisCoCat models. The framework
can thus be conceptualized as a “compiler” for lan-
guage: it takes a high-level linguistic structure (a
sentence) as input, parses it according to a formal
grammar, and outputs a low-level, executable rep-
resentation (a quantum circuit) (Peral-García et al.,
2024; Laakkonen et al.). Toolkits such as lambeq1

and DisCoPy2 have been developed to automate
this compilation pipeline, providing a principled
method for generating quantum algorithms for NLP
tasks.

3 Architectures for Quantum Language
Models

The implementation of QNLP models on present-
day hardware has led to a variety of architec-
tural approaches (Refer Table 1). These can be
seen as existing on a spectrum, reflecting a fun-
damental trade-off between adherence to the pure,
linguistically-grounded theory of DisCoCat and the
pragmatic need to achieve robust performance on
noisy, resource-constrained quantum devices.

3.1 Variational Quantum Circuits (VQCs)
Variational Quantum Circuits3 (VQC) (Qi et al.,
2023) are the dominant paradigm for executing ma-
chine learning tasks on Noisy Intermediate-Scale
Quantum (NISQ) hardware (Phukan et al., 2024).
A VQC is a quantum circuit that includes gates
with adjustable parameters (e.g., rotation angles).
It operates within a hybrid quantum-classical loop:
the circuit is executed on a quantum processing
unit (QPU), the output is measured to compute a
classical loss function, and a classical optimizer
updates the circuit parameters to minimize this
loss, analogous to training a classical neural net-
work(Bashiri and Naderi, 2024; Hong and Lopez,

1https://github.com/CQCL/lambeq
2https://discopy.org/
3https://pennylane.ai/qml/glossary/

variational_circuit

66



After my NLP PhD I’ve become a stopword in most socialconversations

n · s · nl n · nl n · nl n n nr · s · nl n · nl n nr · n · nl n · nl n · nl n

n (noun phrase)

Legend:
n = noun, s = sentence
nr , nl = right/left adjoints
Cups connect canceling types

Figure 1: DisCoCat compositional diagram for “After my NLP PhD, I’ve become a stopword in most social
conversations.”

2025). Instead of loading pre-computed word vec-
tors, the meanings of words are learned directly
as the parameters of the quantum circuits (Zeng
and Coecke, 2016). The DisCoCat framework pro-
vides the “quantum circuit skeleton” based on a
sentence’s grammar, and the free parameters within
this structure are then optimized end-to-end for a
specific downstream task, such as text classifica-
tion.

3.2 Tensor Network (TN) Representations
Tensor Networks are a set of techniques origi-
nating from many-body quantum physics for ef-
ficiently representing and manipulating large, high-
dimensional tensors (Christandl et al., 2024). This
framework is deeply connected to QNLP, as quan-
tum circuits themselves can be formally described
as a specific class of tensor network (Rieser et al.,
2023; Zhang et al., 2019). TNs, particularly one-
dimensional structures like Matrix Product States
(MPS), are naturally suited for modeling sequential
data like language, as they are designed to effi-
ciently capture local correlations (Berezutskii et al.,
2025; Zhang et al., 2019; Teixeira et al.). They
serve a dual role in QNLP: as a powerful tool for
classically simulating quantum language models
and as a class of machine learning models in their
own right, offering a structured approach that lies
between classical recurrent models and full quan-
tum implementations (Berezutskii et al., 2025).

3.3 Hybrid Quantum-Classical Models
Representing the most pragmatic end of the archi-
tectural spectrum, hybrid models seek to enhance
proven classical architectures by replacing specific
components with quantum counterparts (Pandey

et al., 2022, 2023; Phukan and Ekbal, 2023; Pandey
and Pakray, 2023; Phukan et al., 2025). This ap-
proach aims to leverage quantum effects for compu-
tationally challenging subroutines while retaining
the overall power and stability of classical frame-
works.

A prominent example is the Quantum Trans-
former, which replaces classical modules like the
self-attention mechanism with a VQC-based im-
plementation (Concepcion, 2025; Kerenidis et al.,
2024). The goal is to harness quantum proper-
ties like entanglement to capture complex contex-
tual relationships between tokens more efficiently
than is possible classically (Chen et al., 2024a).
A specific instantiation of this idea is the Quan-
tum Self-Attention Neural Network (QSANN) (Li
et al., 2024a), which introduces a quantum version
of self-attention designed to be scalable and imple-
mentable on NISQ devices. Notably, this model
bypasses the need for rigid syntactic pre-processing
required by pure DisCoCat models, making it more
readily applicable to larger, real-world dataset.

These distinct architectural philosophies high-
light the field’s dynamic search for an optimal bal-
ance between theoretical elegance and empirical
viability in the NISQ era.

4 Empirical Progress in QNLP Tasks

Despite the constraints of NISQ hardware, a grow-
ing body of empirical work has begun to explore
the capabilities of QNLP models on a range of stan-
dard NLP tasks (Refer Table 2). A consistent theme
emerging from these experiments is not necessarily
a quantum speedup in terms of wall-clock time, but
a significant advantage in terms of parameter and
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Approach Core Principle Strengths Limitations/Challenges
Compositional (Dis-
CoCat)

Maps grammatical structure directly to
quantum processes via category theory.

Theoretically grounded, highly inter-
pretable, “quantum-native” foundation.

Relies on rigid grammatical parsing, can
be brittle; may be inefficient without vari-
ational training.

Variational QNLP
(VQC-based)

Uses grammar-informed circuit skeletons
with parameters learned via a hybrid
quantum-classical loop.

Enables training on NISQ hardware,
learns word meanings from data, avoids
need for QRAM.

Susceptible to barren plateaus, optimiza-
tion is challenging, performance is lim-
ited by hardware noise.

Hybrid (e.g., Quan-
tum Transformer)

Replaces specific components of classical
architectures (e.g., attention) with quan-
tum circuits.

Leverages power of established classi-
cal models, targets specific computational
bottlenecks.

Less theoretically pure, potential for
quantum advantage is localized to a sin-
gle component.

Table 1: Comparison of Various Approaches

data efficiency.

4.1 Text Classification

Text classification is a foundational NLP task that
involves assigning predefined labels to text data,
with applications ranging from spam detection to
topic analysis (Taha et al., 2024; Sun et al., 2023;
Li et al., 2024b). It is the most widely explored
task in experimental QNLP, serving as a primary
benchmark for new models (Peral-García et al.,
2024).

4.1.1 Sentiment Classification
Sentiment classification, a task focused on identify-
ing the emotional tone (e.g., positive, negative, neu-
tral) of a text, has been a key testbed for QNLP (Jim
et al., 2024). Early proof-of-concept experiments
on IBM’s quantum computers successfully demon-
strated that VQC-based models derived from Dis-
CoCat could be trained to solve simple classifica-
tion problems (Ganguly et al., 2022). These studies
also showed that on carefully constructed datasets,
syntax-aware models provided a performance ad-
vantage over syntax-agnostic “bag-of-words” base-
lines, validating the core premise of the composi-
tional approach (Kando et al., 2022).

More recent work has scaled these experiments
to real-world data. The QSANN model (Li et al.,
2024a), for example, was evaluated on sentiment
classification tasks using subsets of the Yelp 4,
IMDb (Maas et al., 2011), and Amazon datasets
(McAuley and Leskovec, 2013). It was shown to
outperform a comparable classical self-attention
baseline while using dramatically fewer trainable
parameters, for instance, 49 quantum parameters
versus 785 classical parameters on the Yelp dataset.
Other architectures, such as Quantum Recurrent
Neural Networks (QRNNs) (Pandey et al., 2024),
have also been proposed for classification, though
current implementations remain limited to smaller
datasets. While comparative studies acknowledge

4 http://www.yelp.com/dataset_challenge

that classical methods generally still achieve higher
accuracy on standard benchmarks, the potential
for QNLP models to learn effectively with greater
model efficiency is a key finding (Zhang et al.,
2024).

4.1.2 Aspect-Based Sentiment Analysis
(ABSA)

Aspect-Based Sentiment Analysis (ABSA)5 is a
fine-grained sentiment analysis task that aims to
identify the sentiment expressed towards specific
aspects or features within a text (Hua et al., 2024).
For example, in the sentence “The phone has a
great camera but a poor battery life,” ABSA would
identify a positive sentiment towards the “camera”
(aspect) and a negative sentiment towards the “bat-
tery life” (aspect) (Zhang et al., 2022). This level
of detail is crucial for applications like customer
feedback analysis. While ABSA is a significant
area of research in classical NLP, its exploration
using dedicated QNLP models is still an emerging
field (Kayal et al., 2025).

4.2 Sentence Similarity

The task of measuring the semantic similarity be-
tween two sentences classically involves encod-
ing them into vector embeddings and calculating
a distance metric, such as cosine similarity (Gao
et al., 2025). Quantum approaches have explored
this task using several methods, such as seman-
tic matching frameworks that leverage the density
matrix formalism in Hilbert space (Zhang et al.,
2025).

4.2.1 Semantic Textual Similarity
One prominent technique for semantic textual sim-
ilarity is Quantum Kernel Methods (Schuld et al.,
2015; Schuld and Killoran, 2019), where sentences
are mapped to quantum states via a quantum fea-
ture map. The similarity between two sentences
is then calculated as the inner product (or fidelity)

5https://www.sciencedirect.com/topics/
computer-science/aspect-based-sentiment-analysis
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of their corresponding quantum states, f(xi, xj) =
| < ψ(xi)|ψ(xj) > |2. This value serves as a
kernel that can be fed into a classical support vec-
tor machine for classification or similarity tasks
(Egginger et al., 2024).

Another innovative, quantum-inspired approach
involves using a quantum circuit-based architec-
ture (simulated on classical hardware) as a projec-
tion head to compress high-dimensional sentence
embeddings from a classical model like BERT
(Kankeu et al., 2025). The similarity between the
resulting compressed representations is measured
using a metric based on the fidelity of quantum
states. This method achieved performance compet-
itive with classical techniques but with 32 times
fewer parameters, and it demonstrated particularly
strong performance in low-data settings.

4.2.2 Paraphrase Identification

Paraphrase identification is a specific binary clas-
sification task within sentence similarity that de-
termines whether two sentences convey the same
meaning, even if they use different wording (Alvi
et al., 2021). This task is critical for applica-
tions such as plagiarism detection, text summariza-
tion, and improving question answering systems
(Palivela, 2021). While a core challenge in clas-
sical NLP, the development of specialized QNLP
models for paraphrase identification is an active
area of research.

4.2.3 Information Retrieval (IR)

Information Retrieval is the task of finding relevant
documents or information from a large collection
in response to a user’s query. The connection to
sentence similarity is foundational; vector space
models, which represent both queries and docu-
ments as vectors, measure relevance based on the
similarity between these vectors (Sordoni and Nie,
2013). This vector-based paradigm is well-suited
for quantum implementation. Mathematical mod-
els for language explicitly motivated by quantum
theory have been successfully applied to IR (Fan
et al., 2024), suggesting that quantum computers
could offer a natural and efficient environment for
these tasks. This link is formally demonstrated by
frameworks that generalize the probability frame-
work of quantum physics for interactive retrieval
tasks (Piwowarski and Lalmas, 2009).

4.3 Question Generation (QG)

Question Generation is the task of automatically
generating natural language questions from a given
input, such as a text passage or a knowledge base
(Mulla and Gharpure, 2023). QG has important
applications in creating educational materials, aug-
menting datasets for QA systems, and enhancing
conversational agents (Duan et al., 2017; Dey and
Rudrapal, 2024). While QNLP has been success-
fully applied to the dual task of question answering,
direct applications to the generative task of QG are
still in the early stages of exploration, with current
research still focused on addressing core challenges
in classical settings (Dey and Rudrapal, 2024), and
thus represent a key direction for future research.

4.4 Question Answering (QA)

Question answering remains a nascent but promis-
ing application area for QNLP, with research ex-
ploring how quantum algorithms can provide ad-
vantages like potential speedups (Correia et al.,
2022). While classical QA systems involve com-
plex pipelines for information retrieval and answer
generation, quantum-inspired techniques are begin-
ning to emerge. One such innovation is the Quan-
tum Fusion Module (QFM) (Duan et al., 2024),
designed for open-domain QA. This module ap-
plies principles from quantum theory to fuse the
token embeddings from a question and a candidate
passage into a single representation analogous to
a “quantum mixed state.” This fused representa-
tion allows a classifier to more accurately predict
whether the passage contains the answer, thereby
improving the performance of a larger, classical
T5-based model (Raffel et al., 2020).

4.5 Processing Multimodal Data

A significant new field for QNLP is the process-
ing of multimodal data, which involves integrating
information from different formats such as text,
images/video, and audio (Li et al., 2021; Phukan
and Ekbal, 2023; Phukan et al., 2024, 2025). The
MultiQ-NLP framework (Hawashin and Sadrzadeh,
2024) has been developed specifically for this pur-
pose, extending the compositional, structure-aware
models of QNLP to handle both text and images.
In this framework, both linguistic components and
image features are translated into quantum circuits.
This allows the model to create a unified repre-
sentation that captures the interactions between
modalities. When tested on an image classification
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task that requires understanding the relationship
between a subject, verb, and object (SVO-Probes),
the structure-aware quantum model performed on
par with state-of-the-art classical models, demon-
strating the viability of QNLP for complex mul-
timodal reasoning. Phukan and Ekbal (2023) in-
troduced QeMMA, a framework for multimodal
sentiment analysis. On the CMU-MOSEI dataset
(Zadeh et al., 2018), their model, implemented with
Qiskit6 and executed on quantum hardware, out-
performed classical baselines by 3.52% in accu-
racy and 10.14% in F1-score, providing concrete
evidence of the empirical advantage of quantum
approaches.

Further advancing this line of work, Phukan et al.
(2024) proposed a hybrid quantum-classical archi-
tecture designed to jointly tackle the interrelated
tasks of sarcasm, emotion, and sentiment detection.
Their model integrates a Variational Quantum Cir-
cuit (VQC) with a classical deep neural network,
hypothesizing that quantum entanglement and state
space properties can more effectively model the
nuanced cross-modal interactions and task correla-
tions present in such complex inference problems.

4.5.1 Emotion Recognition
Emotion recognition is a more granular task than
sentiment analysis, aiming to identify specific emo-
tions like joy, anger, or guilt from data (Rasool
et al., 2025). While much of the work in this area
uses classical NLP models on text, QNLP research
has begun to explore this task, often by processing
multimodal data. Quantum-enhanced models have
been applied to recognize emotions from physio-
logical signals using quantum-enhanced Support
Vector Machines (SVMs) (Bayro and Jeong, 2025),
and from facial expressions using Quantum Neural
Networks (QNNs) (Alsubai et al., 2024). Further-
more, hybrid quantum-classical models have been
developed for multimodal data, including speech
and text (Li et al., 2025). Such frameworks are in-
creasingly designed to analyze sentiment, emotion,
and other related states simultaneously, leveraging
quantum properties to model the complex correla-
tions between them (Li et al., 2025).

4.5.2 Sarcasm Detection
Sarcasm detection is a particularly challenging
NLP task due to the inherent incongruity between
the literal and intended meaning of an utterance (Xi
et al., 2025; Lu et al., 2025). Quantum computing

6https://www.ibm.com/quantum/qiskit

has been applied to this problem to better model
such complex linguistic phenomena, for instance,
through Quantum Neural Networks (QNNs) for an-
alyzing sentiment, emotion, and sarcasm (Singh
et al., 2025; Phukan et al., 2024). Other quantum-
based models designed directly for this task include
the Quantum Fuzzy Neural Network (QFNN) for
multimodal sarcasm detection (analyzing text, au-
dio, and visuals) (Tiwari et al., 2024) and frame-
works that use the mathematics of quantum prob-
ability to jointly model sarcasm, sentiment, and
emotion (Singh et al., 2025; Phukan et al., 2025).

5 Challenges and Future Outlook

The trajectory of QNLP is shaped by a dynamic in-
terplay between the ambitious theoretical promises
of quantum computation and the stark realities of
current hardware. Progress in the field can be un-
derstood as advancing on two parallel but inter-
dependent fronts: a hardware-aware effort to ex-
tract value from today’s imperfect machines, and a
theory-forward exploration of what will be possible
with the fault-tolerant computers of the future.

5.1 The NISQ Bottleneck

The primary constraint on QNLP research is the
Noisy Intermediate-Scale Quantum (NISQ) era of
hardware (Rai et al., 2022). Today’s quantum pro-
cessors are limited by several fundamental factors:

• Low Qubit Counts: Systems with 50-100
qubits are typical, which severely restricts
the size and complexity of the language mod-
els that can be implemented (Riel, 2021; Pan
et al., 2025).

• High Error Rates: Qubits are extremely sensi-
tive to their environment, suffering from deco-
herence that introduces noise and leads to high
error rates (typically 0.1%-1%) in gate oper-
ations and measurements (Rai et al., 2022).
This noise accumulates rapidly, corrupting the
results of all but the simplest computations
(Khan et al., 2024).

• Limited Circuit Depth: Because noise accu-
mulates with every operation, there is a strict
limit on the number of gates (circuit depth,
typically 20-100 layers) that can be applied
before the quantum signal is overwhelmed by
noise (Pan et al., 2025).
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Task Model/Approach Dataset(s) Key Finding / Reported Advantage
Text Classification DisCoCat + VQC (Ganguly

et al., 2022)
Synthetic (Ganguly et al., 2022) Syntax-aware model outperforms bag-of-words.

Text Classification QSANN (Li et al., 2024a) Yelp4, IMDb (Maas et al., 2011),
and Amazon datasets (McAuley and
Leskovec, 2013)

Outperforms classical baseline with >90% fewer
parameters.

Sentence Similarity Quantum-Inspired Projection
Head (Kankeu et al., 2025)

TREC 2019 DL (Voorhees et al., 2020)
and TREC 2020 DL (Craswell et al.,
2021)

Competitive performance with 32x fewer parame-
ters; excels in low-data regimes.

Question Answer-
ing

Quantum-Inspired Fusion-in-
Decoder (QFiD) (Duan et al.,
2024)

Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017)

Quantum-inspired fusion improves relationship pre-
diction over baseline.

Multimodal Classi-
fication

MultiQ-NLP (Hawashin and
Sadrzadeh, 2024)

SVO-Probes (Hendricks and Ne-
matzadeh, 2021)

Performs on par with classical models while offer-
ing better interpretability.

Multimodal Classi-
fication

HQNN (VQC+NN) (Phukan
et al., 2024)

Extended MUStARD(Chauhan et al.,
2020)

Outperforms classical baselines for multitask sar-
casm, sentiment, and emotion detection.

Table 2: QNLP Tasks

These hardware limitations collectively mean that
current QNLP experiments are necessarily confined
to small-scale datasets and simplified “toy” prob-
lems. Scaling these models to handle the complex-
ity and volume of data processed by modern LLMs
is, for now, impossible.

5.2 Algorithmic Hurdles
Beyond hardware, significant algorithmic chal-
lenges must be overcome. A primary obstacle
in training VQCs is the phenomenon of barren
plateaus, where the gradient of the loss function
vanishes exponentially as the number of qubits
increases, rendering the optimization process in-
tractable for larger models (Pande, 2023). Further-
more, the task of data encoding, efficiently trans-
lating classical text data into quantum states, is a
non-trivial problem that can itself become a com-
putational bottleneck (Ranga et al., 2024). Active
research on the hardware-aware front is focused on
developing mitigation strategies, including noise-
aware training protocols (Rahman and Zhuang,
2025), quantum error mitigation techniques (At-
ban et al., 2025), and the design of specialized loss
functions and optimizers (Pande, 2023).

6 Conclusion

The long-term vision for QNLP is to achieve a
demonstrable quantum advantage, where a quan-
tum computer solves a practical NLP problem more
efficiently, more accurately, or with fewer resources
than is possible with any classical machine. While
theoretical results have shown that quantum lan-
guage models are, in principle, more expressive
than their classical counterparts (i.e., the problem
is BQP-complete), a practical advantage has not
yet been realized.

Perhaps one of the most compelling promises of
the theory-forward front is the potential for QNLP

to deliver more interpretable and trustworthy AI.
By building models on the transparent, composi-
tional structure of DisCoCat, QNLP offers a path
away from the “black box” nature of many LLMs,
toward systems whose reasoning can be traced and
understood.

Ultimately, the future of QNLP depends on the
co-evolution of hardware and theory. As quan-
tum technology matures beyond the NISQ era and
toward fault-tolerance, the full potential of these
linguistically-grounded, quantum-native models
can be explored. The goal is not merely to repli-
cate classical NLP on a different substrate, but to
fundamentally reimagine language modeling by
leveraging the unique computational capabilities
of the quantum world, potentially leading to a new
generation of AI that is more powerful, efficient,
and reliable.

7 Limitations

This survey provides a broad overview of the QNLP
landscape, but it is subject to several inherent limi-
tations reflecting the nascent and rapidly evolving
nature of the field.

First, the scope of this review is primarily cen-
tered on the theoretical lineage from the DisCo-
Cat framework to its empirical implementation
on NISQ-era hardware. While we touch upon
quantum-inspired classical models and tensor net-
works, an exhaustive analysis of all classical al-
gorithms that leverage principles from quantum
theory is beyond the scope of this paper.

Second, the field of QNLP is advancing at an ex-
ceptional pace. This survey represents a snapshot
of the research landscape at the time of writing.
New hardware developments, algorithmic break-
throughs, and empirical findings are published fre-
quently, and some emerging work may not be cap-
tured here.
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