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Abstract
Quantum Natural Language Processing
(QNLP) is an emerging interdisciplinary field
at the intersection of quantum computing,
natural language understanding, and formal
linguistic theory. As advances in quantum
hardware and algorithms accelerate, QNLP
promises new paradigms for representation
learning, semantic modeling, and efficient
computation. However, existing literature
remains fragmented, with no unified synthesis
across modeling, encoding, and evaluation
dimensions.In this work, we present the first
systematic and taxonomy driven survey of
QNLP that holistically organizes research
spanning three core dimensions: computational
models, encoding paradigms, and evaluation
frameworks. First, we analyze foundational
approaches that map linguistic structures into
quantum formalism, including categorical
compositional models, variational quantum
circuits, and hybrid quantum classical ar-
chitectures. Second, we introduce a unified
taxonomy of encoding strategies, ranging from
quantum tokenization and state preparation
to embedding based encodings, highlighting
tradeoffs in scalability, noise resilience, and
expressiveness. Third, we provide the first
comparative synthesis of evaluation method-
ologies, benchmark datasets, and performance
metrics, while identifying reproducibility
and standardization gaps.We further contrast
quantum inspired NLP methods with fully
quantum implemented systems, offering
insights into resource efficiency, hardware
feasibility, and real world applicability. Finally,
we outline open challenges such as integration
with LLMs and unified benchmark design,
and propose a research agenda for advancing
QNLP as a scalable and reliable discipline.

1 Introduction
The intersection of quantum computing and natural
language processing (NLP) has given rise to the

∗This work does not relate to the authors’ positions at
LinkedIn, Proofpoint, or Amazon.

emerging field of QNLP. Traditional NLP meth-
ods rely heavily on classical statistical and neural
approaches, which, despite recent breakthroughs
in LLMs (Brown et al., 2020), face fundamental
challenges in scalability, representation efficiency,
and capturing complex compositional semantics
(Bender et al., 2021). Quantum computing, with its
inherent parallelism and high-dimensional Hilbert
space representations, offers a fundamentally new
computational paradigm that can potentially over-
come some of these limitations (Meichanetzidis
et al., 2020; Varmantchaonala et al., 2024).
Specifically, quantum models promise exponential
speedups in linear algebra operations, richer encod-
ing of linguistic structures, and novel mechanisms
for semantic composition grounded in quantum
theory. Foundational frameworks such as categori-
cal compositional distributional models (DisCoCat)
(Coecke et al., 2010) leverage quantum formalisms
to represent grammatical structure, while hybrid
quantum classical architectures demonstrate the
feasibility of encoding word embeddings and per-
forming sentence classification tasks on near-term
quantum hardware (Lorenz et al., 2021b). Recent
work further explores quantum algorithms for com-
positional text processing (Zhang et al., 2024) and
surveys near term QNLP applications (Wiebe et al.,
2024).

This paper provides a systematic survey of
QNLP across three core dimensions: (i) compu-
tational models that define how linguistic structure
and semantics can be mapped to quantum circuits
and algorithms, (ii) encoding paradigms that de-
termine how text tokens, syntactic dependencies,
or embeddings are represented in quantum states,
and (iii) evaluation frameworks that assess the ef-
fectiveness, efficiency, and robustness of QNLP
methods. By categorizing and analyzing existing
approaches, we highlight key tradeoffs in expres-
siveness, scalability, and noise resilience. Further-
more, we contrast quantum inspired NLP tech-
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Figure 1: Taxonomy of QNLP highlighting core components computational models, encoding paradigms, evaluation
frameworks, and future challenges.

niques, which adapt ideas from quantum mechanics
within classical settings, with implementations on
actual quantum hardware, thereby clarifying both
theoretical promise and current practical limita-
tions. The overall evolution of QNLP approaches
from foundational categorical frameworks to hy-
brid quantum classical architectures is illustrated
in Figure 1, which presents the taxonomy of major
model families and their interrelations across com-
putational, encoding, and evaluation dimensions.

2 Background
2.1 Quantum Computing Fundamentals
Quantum computing leverages the laws of quantum
mechanics to perform computations beyond the
reach of classical machines. Its fundamental unit of
information, the qubit, generalizes the classical bit
by existing in a superposition of states. A quantum
state |ψ⟩ is a vector in a complex Hilbert space H
(Moretti and Oppio, 2017), where the state of a
single qubit can be expressed as:

|ψ⟩ = α |0⟩+β |1⟩ , α, β ∈ C, |α|2+|β|2 = 1.

Here, α and β are complex amplitudes, and the nor-
malization condition ensures a probabilistic inter-
pretation. Multiple qubits are represented through
tensor products, e.g., |ψ⟩AB = |ψ⟩A⊗|ψ⟩B . Entan-
glement arises when such states cannot be decom-
posed into tensor products, a phenomenon critical
to quantum advantage in algorithms.

Quantum computation is driven by unitary opera-
tors U acting on states:

|ψ′⟩ = U |ψ⟩ ,

which ensure reversibility and preserve probability
amplitudes. Measurement collapses the superpo-
sition into classical outcomes, with probabilities
determined by the squared amplitudes of the state
vector. Together, superposition, entanglement, uni-
tary evolution, and measurement define the compu-
tational paradigm of quantum mechanics.

2.2 Quantum Machine Learning Foundations
QML studies how quantum mechanical princi-
ples can enhance or accelerate learning algorithms
(Schuld et al., 2015). It leverages the expressive
power of quantum states and the computational ef-
ficiency of quantum operations to address tasks in
classification, regression, clustering, and generative
modeling.

A key concept is the quantum feature map,
which encodes classical data x ∈ Rd into a quan-
tum state |ϕ(x)⟩ within a high-dimensional Hilbert
space H. This encoding induces a kernel:

k(x, x′) = |⟨ϕ(x)|ϕ(x′)⟩|2,

allowing quantum models to exploit feature spaces
that may be exponentially larger than those acces-
sible classically (Schuld et al., 2015). Quantum
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kernels have been investigated for support vector
machines (SVMs) and nearest-neighbor methods,
showing theoretical potential for improved separa-
bility.

Another foundational algorithm is the Har-
row–Hassidim–Lloyd (HHL) method, which pro-
vides exponential speedups for solving linear sys-
tems of equations (Harrow et al., 2009). Since solv-
ing linear systems underpins many ML tasks (e.g.,
regression, Gaussian processes), HHL exemplifies
how quantum algorithms could drastically reduce
complexity from polynomial to logarithmic in the
number of variables. In the near term, variational

Figure 2: Adoption rates of QNLP models derived from
the analyzed papers (Varmantchaonala et al., 2024).

quantum algorithms (VQAs) have become the dom-
inant paradigm for NISQ era devices (Cerezo et al.,
2021b). These models use parameterized quantum
circuits U(θ), where θ denotes tunable gate param-
eters, to transform input states. The circuits are
trained by minimizing an objective function:

C(θ) = ⟨ψ0|U †(θ)HU(θ)|ψ0⟩,

with a classical optimizer updating θ based on quan-
tum hardware evaluations. Variational circuits are
flexible and have been applied to supervised learn-
ing (e.g., quantum classifiers), unsupervised tasks
(e.g., clustering), and generative models.
Another critical building block is the quantum neu-
ral network (QNN), which uses variational circuits
as analogues of neural layers. Entanglement plays
a role similar to non-linear activation functions
by enabling complex correlations between inputs.
Hybrid QNNs combine quantum layers with classi-
cal networks, demonstrating performance gains in
cases such as image and text classification.

From a complexity-theoretic perspective, QML
offers potential advantages when classical methods
suffer from the curse of dimensionality. Quantum

states inhabit exponentially large Hilbert spaces nat-
urally, enabling compact representation of complex
data distributions. However, practical challenges
remain, including noise, barren plateaus in vari-
ational optimization (McClean et al., 2018), and
efficient data encoding (also known as the quantum
data-loading problem).

For QNLP specifically, QML foundations pro-
vide the computational substrate: quantum feature
maps offer new embedding paradigms for tokens,
variational circuits serve as sequence-processing
units, and entanglement provides a mechanism for
modeling compositionality and long-range linguis-
tic dependencies. These align with the goals of
QNLP frameworks such as DisCoCat and hybrid
quantum–classical pipelines, making QML an in-
dispensable component of quantum language un-
derstanding.The distribution of QNLP model adop-
tion across surveyed studies is shown in Figure 2,
highlighting the dominance of Quantum Machine
Learning based frameworks, followed by DisCoCat
and Quantum Bag-of-Words models.

2.3 Natural Language Processing

NLP provides the computational basis for rep-
resenting and interpreting linguistic data. Its
core principle, distributional semantics, states that
words appearing in similar contexts tend to have
similar meanings. Early models such as Latent Se-
mantic Analysis (LSA), Word2Vec, and GloVe en-
coded words as dense vectors ew ∈ Rd, capturing
semantic similarity through geometric proximity.

Modern NLP advances this idea through contex-
tual embeddings using Transformer architectures
such as BERT (Devlin et al., 2019), GPT (Radford
et al., 2019), and T5 (Raffel et al., 2020). The
self-attention mechanism

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

enables long-range dependency modeling by relat-
ing all tokens within a sequence (Vaswani et al.,
2017). Despite their success, Transformers face
O(n2) time and memory complexity with sequence
length n, motivating efficient variants such as
sparse and linearized attention.

Classical NLP also employs grammatical for-
malisms context-free grammars (CFGs), depen-
dency parsing, and formal semantics to capture
compositionality, yet integrating syntax with dis-
tributed semantics at scale remains challenging.
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Quantum approaches address this limitation: quan-
tum states in high-dimensional Hilbert spaces can
encode inter-token dependencies through entangle-
ment. Frameworks such as DisCoCat (Categori-
cal Compositional Distributional Models) (Coecke
et al., 2010) unify grammar and semantics via cate-
gory theory, suggesting that QNLP can yield richer
and more efficient representations than classical
embeddings.

2.4 Quantum Classical Hybrids

Fully fault-tolerant quantum computers remain a
long-term goal, but present-day devices fall into
the category of Noisy Intermediate-Scale Quan-
tum (NISQ) systems (Preskill, 2018). These ma-
chines contain on the order of 50–500 qubits, which
are sufficient for exploring quantum advantage but
are limited by decoherence, gate errors, and con-
nectivity constraints. As a result, most practical
QML and QNLP approaches rely on hybrid quan-
tum–classical methods. Variational Circuits is
a central paradigm in the NISQ era is the use of
variational quantum circuits (VQCs) as shown in
Figure 3. These are parameterized circuits U(θ)
with tunable gates, where parameters θ are opti-
mized iteratively by a classical optimizer. Given an
input state |ψ0⟩ and a Hamiltonian H encoding the
objective, the optimization task is defined as:

C(θ) = ⟨ψ0|U †(θ)HU(θ)|ψ0⟩.

The quantum device computes expectation val-
ues, while the classical optimizer updates θ using
gradient-based or gradient-free methods (Jäger
et al., 2025). This feedback loop exploits quan-
tum representational capacity while avoiding long
quantum coherence times, which are difficult to
sustain on NISQ devices. In a typical hybrid learn-
ing pipeline, classical pre-processing transforms
raw data into a form suitable for quantum encoding
(e.g., token embeddings or feature normalization).
The encoded data are passed to a quantum circuit
that performs transformations, such as entangling
operations to capture correlations. The measure-
ment outcomes are then post-processed by classical
neural layers or decision functions. This integration
allows quantum circuits to act as specialized layers
within a larger classical deep learning framework.

For natural language tasks, hybrid models pro-
vide a practical compromise between expressive-
ness and feasibility. Classical components han-
dle tasks such as subword tokenization, syntactic

Figure 3: Applications of Variational Quantum Al-
gorithms (VQAs) across optimization, simulation,
machine learning, and emerging quantum domains.
(Cerezo et al., 2021a).

parsing, or initial embedding generation, while the
quantum layer captures higher-order dependencies
using entanglement. For example, a hybrid QNLP
pipeline might map token embeddings into quan-
tum states, apply a variational circuit to model con-
textual interactions, and then use a classical clas-
sifier to predict sentiment or semantic similarity.
Such approaches combine the scalability of classi-
cal preprocessing with the structural advantages of
quantum computation.

3 Computational Models for QNLP
Several computational paradigms have been pro-
posed for QNLP, each exploiting different aspects
of quantum mechanics to model linguistic struc-
ture, meaning, and tasks. This section surveys cat-
egorical compositional frameworks, circuit based
models, variational approaches, quantum kernel
methods, and quantum inspired NLP techniques.

3.1 Categorical Compositional Models
The categorical compositional distributional model
(DisCoCat) (Wu and Wang, 2019) was one of the
first frameworks to unify grammatical structure and
distributional semantics in a quantum-compatible
setting. It leverages compact closed categories to
map syntactic derivations to tensor contractions in
Hilbert spaces. Each word is represented as a ten-
sor, and sentence meaning arises compositionally
through linear maps:

s⃗ = f(w⃗A ⊗ w⃗B), f : A⊗B → C,

with entanglement naturally encoding word depen-
dencies.
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Building on this foundation, several extensions
have been proposed: DisCoCirc (Chang et al.,
2023): introduces discourse-level dynamics by up-
dating word states via variational quantum circuits,
e.g., |w⟩′ = Uc |w⟩. Quantum Graph Transform-
ers (QGT) (Xu et al., 2025): integrate dependency
graphs with quantum self-attention, where attention
weights are computed by parameterized circuits:

αij =
exp(⟨ϕ(xi)|U(θ)|ϕ(xj)⟩)∑
k exp(⟨ϕ(xi)|U(θ)|ϕ(xk)⟩)

.

Quantum Context-Sensitive Embeddings (QCSE)
(Liu et al., 2025b): generalize contextual em-
beddings (e.g., BERT) into Hilbert space with
|w, c⟩ = U(C) |w⟩. Quantum Text Pretraining
Networks (QTP-Net) (Zhang et al., 2025): en-
code word senses as quantum superpositions |w⟩ =∑

i αi |si⟩ aligned with knowledge bases. MultiQ-
NLP (Wang et al., 2024): extends composition
to multimodal data, using entanglement to model
cross-modal dependencies (text–image).

Together, these models have evolved DisCo-
Cat from a purely categorical semantic formalism
into dynamic, contextual, pretrained, and multi-
modal frameworks, demonstrating the adaptability
of QNLP across linguistic and hybrid tasks.

3.2 Quantum Circuit-based Models
Quantum circuits map linguistic structure directly
into hardware-executable operations. Tokens are
encoded into quantum states, syntactic relations
are represented by entangling gates, and grammati-
cal reductions correspond to circuit modules (Ge
et al., 2024). For example, a dependency relation
between two words may be represented as a con-
trolled rotation or CNOT gate applied between
their corresponding qubits (Hu and Kais). Sen-
tence meaning then emerges from the full circuit
state, with measurements providing semantic out-
puts (Lan et al., 2024). An example of such a
circuit implementation for a simple transitive sen-
tence is shown in Figure 4.

Circuit-based approaches highlight the structural
parallel between parse trees and quantum circuit di-
agrams, making them natural candidates for syntax-
sensitive tasks (Liu et al., 2025a).They are partic-
ularly attractive for experiments on NISQ devices
since circuits can be compiled directly into gate
sequences supported by current hardware (Ven-
turelli et al., 2019). However, their scalability de-
pends on efficient encoding schemes and noise-
aware compilation, as circuit depth grows with

Figure 4: Quantum circuit for a transitive sentence. The
circuit based on DisCoCat model, maps a simple sen-
tence into quantum operations. Qubits on the left encode
word embeddings via rotation gates, while the right re-
gion represents grammatical contractions through entan-
gle gates such as CNOT

sentence length. Hybrid pipelines that combine
shallow circuits with classical post-processing are
commonly used to mitigate hardware limitations.
A recent circuit-based approach proposes Quantum
Parameter Adaptation (QPA), where quantum neu-
ral networks are used during training to generate
classical model weights. This enables parameter ef-
ficient fine tuning of LLMs while keeping inference
entirely classical (Liu et al., 2025a).

3.3 Variational Quantum Models

Variational quantum circuits (VQCs) U(θ) extend
circuit-based models by introducing tunable param-
eters θ optimized via classical loops (Liu et al.,
2024).

Figure 5: Variational Quantum Circuit (VQC) architec-
ture illustrating how linguistic inputs are encoded into
quantum states and processed by parameterized varia-
tional layers whose parameters are trained in a classical
optimization loop. (Liu et al., 2024).

This paradigm makes VQCs the most widely ex-
plored approach in QNLP. Tokens are embedded
into quantum states via feature maps, processed
through parameterized entangling layers, and mea-
sured to produce outputs (Kankeu et al., 2025).
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Training minimizes a loss function:

C(θ) =
∑

i

ℓ(yi, fθ(xi)),

where ℓ is typically cross-entropy or mean squared
error.

VQCs have been applied to tasks such as text
classification, semantic similarity, and sentiment
analysis. They benefit from the expressive capac-
ity of entanglement to capture contextual infor-
mation, and from their hybrid nature which inte-
grates well with classical neural networks. Key
challenges include barren plateaus in optimization,
noise-induced instability, and the high cost of quan-
tum state preparation (Novák et al., 2025). Recent
work explores hardware efficient ansätze and error
aware training to address these limitations (Gujju
et al., 2025), making VQCs a practical testbed for
QNLP research.

3.4 Quantum Kernel Methods
Quantum kernel methods leverage quantum feature
maps |ϕ(x)⟩ that embed linguistic data into Hilbert
spaces of potentially exponential dimension. The
induced kernel is defined as:

k(x, x′) = |⟨ϕ(x)|ϕ(x′)⟩|2,

which can be used with classical machine learning
models such as support vector machines (SVMs)
or Gaussian processes (Wang et al., 2025). These
methods are particularly well-suited to similarity-
based tasks, including semantic textual similarity
(STS), paraphrase detection, and clustering of em-
beddings (Herbold, 2024). They offer the ad-
vantage of being mathematically rigorous, pro-
viding provable separability properties in high-
dimensional spaces. However, scalability is a ma-
jor limitation, since evaluating kernels requires re-
peated state preparation and measurement. Approx-
imate quantum kernel estimation and hybrid quan-
tum–classical kernel learning have been proposed
as intermediate solutions.

4 Encoding Paradigms
4.1 Basic Encoding
A recent proposal introduces a learnable basic en-
coding layer that maps each token to a qubit regis-
ter with minimal parameter overhead (Munikote,
2024). Instead of relying purely on fixed rotation
or amplitude maps, the method applies small pa-
rameterized gates on basis states, adapting them

during training to better reflect token distributions.
Concretely, a token index i is first mapped to a
basis state |i⟩, and then acted upon by a shallow
trainable unitary E(ϕ):

|ψi⟩ = E(ϕ) |i⟩ .

Here, E(ϕ) is composed of single-qubit rotations
and entanglers whose parameters ϕ are learned
jointly with the downstream task, offering a flexi-
ble compromise between rigid encodings and heavy
variational circuits.

The scheme retains the discrete structure of
token identities while allowing adaptation to se-
mantic space, enabling gradients to flow directly
through the encoder (Baek et al., 2025). Because
only a small unitary is applied, the circuit depth
overhead remains modest, making it compatible
with NISQ devices. Its parameters can absorb dif-
ferences in token frequency or contextual distribu-
tions, positioning this method between static basis
encoding and hybrid embeddings. As such, it pro-
vides a more expressive and scalable representation
for QNLP tasks than one-hot or rotation-only map-
pings.

4.2 Amplitude Encoding
Embed dense vectors into amplitudes:

e ∈ Rd 7→ |ϕ(e)⟩ = 1

∥e∥
d∑

j=1

ej |j⟩ .

This method is highly qubit-efficient (log d) and
preserves inner-product geometry, allowing simi-
larity to be computed via inner products in Hilbert
space. The main drawback is that state preparation
can be computationally expensive, often requiring
O(d) operations, and the resulting states are sen-
sitive to noise. To mitigate this, amplitude encod-
ing is often combined with problem-specific quan-
tum feature maps, enabling kernel methods that
exploit the high-dimensional Hilbert space struc-
ture (Schuld and Killoran, 2019).

Recent advances show that amplitude encoding
can deliver exponential data compression in hybrid
quantum-classical architectures. For instance, a
dataset with d = 2n features can be represented us-
ing only n qubits, whereas angle encoding would
require d. Chen et al. (Chen et al., 2025) inte-
grate amplitude encoding into hybrid Quantum
Neural Networks (QNNs) for recovery rate pre-
diction, demonstrating superior generalization on
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small-sample, high-dimensional financial datasets.
Embedding amplitude-encoded inputs into Param-
eterized Quantum Circuits (PQCs) preserves uni-
tarity and avoids costly orthogonality constraints,
yielding two key benefits: improved computational
efficiency through fewer qubits and parameters, and
richer representational capacity compared to angle
encoding for tasks requiring high-dimensional em-
beddings.

4.3 Entanglement-based Encodings

Introduce entanglers (CNOT/CZ) to correlate token
subsystems (Schuld et al., 2021):

|ψ⟩ = Uent
(
|w1⟩⊗· · ·⊗|wn⟩

)
.

This approach explicitly captures syntactic and se-
mantic dependencies by creating correlations be-
tween token representations, mirroring categorical
contraction in compositional semantics. Entangle-
ment allows local word embeddings to be com-
bined into global sentence states, enriching expres-
sivity beyond independent encodings.

The trade-off is that entanglement substantially
increases circuit depth and noise sensitivity, espe-
cially on NISQ hardware (González-García et al.,
2022). Efficient design therefore requires carefully
chosen ansätze and compilation strategies to mini-
mize gate counts and error accumulation. When op-
timized, entanglement-based encodings provide a
direct mechanism for modeling relational structure,
but scalability remains a major challenge compared
to simpler schemes.

4.4 Hybrid Embedding Strategies

A hybrid approach first uses a classical model (e.g.,
BERT or Word2Vec) (Devlin et al., 2019) to com-
pute an embedding e, and then applies a feature
map e 7→ |ϕ(e)⟩ followed by a trainable quantum
circuit U(θ) before measurement. This combines
the semantic richness of pretrained embeddings
with quantum layers that can model higher-order
correlations and capture non-linear dependencies
in Hilbert space (Döschl and Bohrdt, 2025).

Such strategies represent the most practical and
NISQ-friendly pathway, since heavy semantic lift-
ing is done classically and quantum resources are
reserved for expressive refinements. By leverag-
ing classical pretraining, hybrid embeddings re-
duce qubit demands and training cost, while still
offering the potential to uncover representational
structures inaccessible to purely classical methods.

This makes them a dominant design choice for
early QNLP systems and applied quantum machine
learning pipelines.

4.5 Space-efficient tensorized embeddings.

A line of work factorizes the embedding matrix
into low-order tensor products inspired by entan-
glement, yielding word2ket-style embeddings that
compress parameters by 102× or more with negli-
gible accuracy loss on standard NLP tasks (Panahi
et al., 2019). These embeddings can be used purely
classically or as quantum-ready parametrizations
(tensor factors ⇒ shallow preparation circuits).
This offers a principled bridge between tensor-
network structure and learnable word representa-
tions.

4.6 Trainable quantum embedding circuits.

A 2024 study proposes a recurrent quantum em-
bedding neural network (RQENN) with a trainable
encoding based on parameterized binary indices
that learns token embeddings within a small quan-
tum circuit cell; the cell is reused across sequence
positions to capture context with fewer qubits and
measurements than prior QNLP approaches (Var-
mantchaonala et al., 2025). Reported results show
reduced parameter count and bits used, and accu-
racy gains over earlier QNLP baselines on a text-
like vulnerability detection task, highlighting the
value of learned encoders (vs. fixed maps) under
NISQ constraints (Kea et al., 2024).

4.7 Resource Cost Modeling

We characterize encodings by qubits q, depth L,
state-prep cost Tprep, and shot complexity m. For
amplitude encoding,

e ∈ Rd 7→ |ϕ(e)⟩ = 1

∥e∥
d∑

j=1

ej |j⟩ , (1)

q = ⌈log2 d⌉, Tprep = Θ(d). (2)

with low depth but prep-bound runtime. An-
gle/rotation encoding yields q = Θ(d), Tprep =
Θ(d) and often better robustness on NISQ.
Entanglement-based composition adds syntax or
graph-induced two qubit layers; we report L =
L0+E where E is the number of entangling edges
(Susulovska, 2024). For hybrid embeddings, q is
constant (few qubit head) with classical compute
absorbing semantics; we report wall clock and de-
vice usage alongside accuracy.
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5 Evaluation Frameworks

Evaluation in QNLP spans both empirical per-
formance and theoretical efficiency. At the task
level, models are assessed on standard NLP ob-
jectives such as sentiment classification, seman-
tic similarity, and sequence labeling, with accu-
racy, F1, or correlation metrics compared against
compute-matched classical baselines (Tomal et al.,
2025). Because quantum circuits produce proba-
bilistic outputs, metrics are accompanied by con-
fidence intervals derived from measurement shots,
and evaluations must also report resource costs
including qubit counts q, circuit depth L, gate com-
plexity, state-preparation cost Tprep, and shot bud-
gets m, ensuring fairness under NISQ constraints
(Ma and Li, 2024). To validate results beyond
simulation, a hardware-in-the-loop protocol is fol-
lowed: device backend, transpilation strategy, cal-
ibration snapshot, and shot counts are disclosed,
with paired simulator–device runs performed using
identical seeds (Nguyen et al., 2017). Robustness
is further probed through noise modeling, barren-
plateau stress tests, and lightweight error mitigation
(readout calibration, zero-noise extrapolation, and
gradient-preserving initialization).

Beyond raw task performance, evaluation em-
phasizes comparability and reproducibility. Canon-
ical ablations such as removing entanglers, swap-
ping amplitude versus angle encodings, reducing
data re-uploading depth, or replacing quantum
heads with classical ones are standardized to at-
tribute improvements to specific design choices
(Aktar et al., 2025). Benchmarking remains
challenging due to the lack of large standard-
ized QNLP corpora, so we propose compact,
structure-sensitive tasks (compositional classifica-
tion, semantic similarity, and sequence labeling
with nested constituents) with fixed splits and op-
tional precomputed embeddings for hybrid mod-
els. Together with artifact release (QASM cir-
cuits, seeds, calibration snapshots, and ablation
configs) (Li et al., 2022), these practices enable
like for like comparisons across models and clar-
ify where QNLP shows unique strengths captur-
ing compositionality, contextual dependencies, and
high-dimensional correlations while highlighting
the tradeoffs in scalability, noise resilience, and
hardware feasibility relative to classical NLP sys-
tems (Lhoest et al., 2021).

6 Challenges and Future Directions
Despite encouraging theoretical advances and early
experiments, QNLP still faces significant chal-
lenges. Current NISQ hardware limits circuit depth,
qubit counts, and gate fidelity, restricting scala-
bility and necessitating noise-resilient encodings
and carefully designed variational ansätze (Preskill,
2018; McClean et al., 2018). Encoding strategies
such as amplitude or entanglement-based mappings
offer expressive representational power but suffer
from costly state preparation and noise sensitiv-
ity, motivating the exploration of adaptive encod-
ings and resource efficient parameterization meth-
ods that balance expressivity with hardware fea-
sibility (Chen et al., 2025). At the evaluation
level, the absence of standardized QNLP bench-
marks makes comparisons across models difficult;
task-specific corpora and quantum-compatible eval-
uation suites are needed to validate theoretical
speedups and measure robustness under realistic
conditions (Lorenz et al., 2021a).

Looking ahead, hybrid quantum classical
pipelines remain the most practical path, though
their advantage over strong classical baselines such
as transformers is not yet conclusive. Further re-
search into quantum inspired embeddings and hy-
brid variational architectures may clarify where
QNLP offers unique value (Huang et al., 2021;
Kartsaklis et al., 2021). Achieving scalability will
require moving beyond toy corpora to industrial-
scale applications such as semantic search, ques-
tion answering, and multimodal reasoning. Meet-
ing these goals will demand not only algorithmic
innovation but also advances in quantum hard-
ware and close collaboration between NLP re-
searchers and quantum computing specialists, en-
suring QNLP matures into a robust framework for
structure-sensitive language tasks.

7 Conclusion
QNLP lies at the intersection of quantum comput-
ing and natural language processing, introducing
new paradigms for compositional semantics, effi-
cient representation, and contextual modeling. This
survey reviews foundational models DisCoCat, cir-
cuit based, variational, and hybrid architectures
alongside encoding strategies, evaluation frame-
works, and open challenges. Although still nascent,
advances in hybrid embeddings, quantum feature
maps, and noise mitigation indicate near-term feasi-
bility. Future progress will hinge on scalable bench-
marks, tighter integration with classical NLP, and
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improved quantum hardware. QNLP thus holds
promise to advance beyond proof-of-concept stud-
ies and deliver tangible computational gains for
structure sensitive language tasks.
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Task Method Design Highlights Input Data Type Label Type Loss

Sentence
Classification

DisCoCat (Coecke
et al., 2010)

Maps grammatical reductions to tensor
contractions in Hilbert space (compact-closed
categories); sentence meaning via categorical
compositionality with quantum-ready tensors.

Tokenized
sentences

Sentiment /
Topic

Cross-entropy

VQC-QNLP (Gujju
et al., 2025)

Parameterized quantum circuit U(θ) on encoded
tokens; hybrid loop minimizes expectation;

entanglement captures long-range dependencies
under NISQ.

Token
embeddings

Binary /
Multi-class

Weighted
cross-entropy

Semantic
Similarity

QBW (Lorenz et al.,
2021a)

Quantum Bag-of-Words; embeds words as
quantum states; measures similarity via state
fidelity/overlaps instead of cosine distance.

Sentence pairs Similarity /
Paraphrase

Fidelity or MSE

Quantum Kernel
(QK-NLP) (Schuld
and Killoran, 2019;
Wang et al., 2025)

Quantum feature map |ϕ(x)⟩ induces kernel
k(x, x′) = |⟨ϕ(x)|ϕ(x′)⟩|2; classical SVM/GP

on quantum kernel matrix.

Sentences /
embeddings

STS /
Entailment

Hinge loss / GP
NLL

Sequence
Labeling

DisCoCirc (Chang
et al., 2023)

Discourse-aware extension of DisCoCat; circuit
evolution updates word states across context;

syntax–semantics via variational updates.

Token sequences POS / NER /
chunks

Token-level
cross-entropy

QCSE (Liu et al.,
2025b)

Quantum Context-Sensitive Embeddings: context
unitary U(C) |w⟩ entangles tokens; contextual

vectors in Hilbert space for tagging.

Token sequences Sequence tags MSE /
cross-entropy

Hybrid
Embedding

Learning

Hybrid-QNN (Chen
et al., 2025)

Classical encoder (e.g., BERT) →
amplitude/angle map → shallow PQC refinement;

few-qubit head for NISQ robustness.

Pretrained text
embeddings

Sentiment /
Intent

Cross-entropy
(hybrid)

Low-
Resource /

Multi-Modal

MultiQ-NLP (Wang
et al., 2024)

Entangles text–image qubits; cross-modal
attention via controlled rotations; improves

transfer in few-shot regimes.

Text–image pairs Match / Tags Contrastive
(InfoNCE)

Sense
Modeling /
Pretraining

QTP-Net (Zhang
et al., 2025)

Encodes word senses as quantum superpositions
|w⟩ = ∑

i αi |si⟩; learns sense mixture via
measurement-driven objectives.

Large text
corpora

Sense /
Masked
tokens

NLL;
superposition
reconstruction

Encoding
Learning

Trainable Basic
Encoding

(Munikote, 2024)

Learnable encoder E(ϕ) on basis states prior to
PQC; low-depth, NISQ-friendly alternative to

fixed angle/amplitude maps.

Token indices Task-specific Task loss +
encoder reg.

Resource-
Efficient

Embeddings

word2ket /
Tensorized (Panahi

et al., 2019)

Factorizes embedding matrix into low-order
tensor products; quantum-ready prep with

shallow circuits; large parameter compression.

Vocabulary
embeddings

Task-specific Task loss;
tensor-factor regs

Table 1: Summary of representative Quantum Natural Language Processing (QNLP) models across core
linguistic tasks. The table aligns prior work by task, model type, and architectural design to illustrate how
quantum principles are applied to language understanding. Task denotes the linguistic objective (e.g., classification,
similarity, or tagging); Method names the quantum or hybrid framework; Design Highlights summarize each
model’s encoding scheme (amplitude, angle, entanglement, or hybrid), circuit structure, and optimization strategy.
Input and Label Type describe the data and prediction targets, while Loss / Objective lists the corresponding
training criterion. Together, these entries show how QNLP architectures integrate formal semantics with quantum
computation, balancing expressivity, resource efficiency, and NISQ-era feasibility.

Encoding Paradigm Core Idea / Map Qubits q State-Prep Cost Tprep Strengths Limitations

Basic / Learnable
Encoding

Token index i 7→|i⟩ with shallow
trainable unitary E(ϕ) |i⟩

Θ(log V ) (index
map)

Low (shallow E(ϕ)) Very low depth; parameter-efficient;
preserves discrete identity; NISQ-friendly

Needs downstream entanglers/PQC for
expressivity; tuning still task-dependent

Angle / Rotation
Encoding

Map features to single-qubit rotations
(e.g., Ry(·)/Rz(·)) per dimension;

supports data re-uploading

Θ(d) Θ(d) Simple, robust, transparent geometry; pairs
well with re-uploading in VQCs

Linear qubit growth with d; underuses
Hilbert space unless combined with

entanglement

Amplitude Encoding e∈Rd 7→ |ϕ(e)⟩ = 1
∥e∥

∑
j ej |j⟩

(inner-products preserved)
⌈log2 d⌉ Θ(d) (state loading) Exponential compression of d; strong for

kernel/similarity tasks; unitary-friendly
Expensive loaders; noise-sensitive; benefits

from high-fidelity prep

Entanglement-based
Composition

Apply Uent (CNOT/CZ) to correlate token
subsystems; syntax/relations via

entanglers

Task-dependent Entanglers dominate Directly captures compositional/relational
structure; aligns with categorical semantics

Increases depth and error on NISQ; careful
compilation needed

Hybrid Embedding
Strategies

Classical embedding e (e.g.,
BERT/Word2Vec) → quantum feature

map |ϕ(e)⟩ → PQC U(θ)

Few-qubit heads
common

Modest; depends on
chosen feature map

Best near-term trade-off; leverages
pretrained semantics; smaller q / shots

Classical front-end may dominate compute;
quantum benefit is task- and map-dependent

Space-efficient
Tensorized
(word2ket)

Factorize embedding matrix into
low-order tensor products; shallow

quantum prep from factors

By factorization
design

Low (from tensor
factors)

102× compression reported; principled
bridge to tensor networks; shallow circuits

Quality depends on factorization
rank/structure; extra design choices required

Trainable Quantum
Embedding Circuits

Small reusable quantum cell learns
token/context encoding in-circuit; reused

across positions

Few (cell reused) Low–moderate
(per-cell)

Parameter-efficient; context-aware; fewer
qubits/shots than naïve per-token circuits

Requires careful training/stability on NISQ;
generalization may be dataset-dependent

Table 2: Encoding paradigms discussed in this survey. V : vocabulary size; d: feature dimension. For fair NISQ
comparisons, report q, circuit depth L, state-prep cost Tprep, and shot budgets m alongside task metrics.
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