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Abstract

Fake news on social media platforms poses sig-
nificant threats to public trust and information
integrity. This research explores the applica-
tion of quantum machine learning (QML) tech-
niques for detecting fake news by leveraging
quantum computing’s unique capabilities. Our
work introduces a hybrid quantum-classical
framework that utilizes quantum convolutional
neural networks (QCNNs) with angle and am-
plitude encoding schemes for processing multi-
modal features from text and images. Experi-
ments conducted on benchmark datasets - Gos-
sipCop and Politifact - demonstrate that our
quantum-enhanced model achieves superior
performance compared to classical approaches,
with accuracy rates of 88.52% and 85.58%, and
F1 scores of 93.19% and 90.20% respectively.
Our findings establish QML as a viable ap-
proach for addressing the challenges of fake
news detection in the digital era.

1 Introduction

The proliferation of misinformation on social me-
dia threatens information integrity and societal wel-
fare. Current machine learning and deep learning
models struggle with accurate fake news identifi-
cation due to insufficient feature extraction. Ef-
fective FND models must integrate textual and
visual cues to distinguish between real and fake
news, but conventional algorithms struggle to cap-
ture the subtle complexities of multi-modal data.
We explore quantum machine learning as a promis-
ing alternative, focusing on quantum convolutional
neural networks (QCNNs). Our research aims to
develop a novel FND system that leverages QML
techniques to enhance precision and robustness in
fake news detection while maintaining computa-
tional efficiency.

2 Related Work

2.1 Unimodal FND Methods

Unimodal techniques focus either on textual or vi-
sual elements to categorize the news into fake or
real.

2.1.1 ML-based FND Methods
Various studies have employed machine learn-
ing (ML) techniques for FND (Mishra and Sadia,
2023). Verma et al. (2021) utilized Support Vec-
tor Machine (SVM) for feature extraction from
news articles but lacked deep learning (DL) mod-
els. Ozbay and Alatas (2020) adopted Decision
Trees but faced accuracy challenges due to reliance
on word count-based features. Esteban-Bravo et al.
(2024) investigated early prediction of fake news
virality using non-parametric models like Random
Forest and Support Vector Classifier (SVC).

2.1.2 DL-based FND Methods
Rai et al. (2022) integrated BERT with LSTM, im-
proving FND but suffered from low accuracy at-
tributed to inadequate contextual features. Chen
et al. (2024) tackled linguistic differences between
Cantonese and Mandarin with a Deep semantic-
aware graph convolutional network (SA-GCN) and
CantoneseBERT on the Cantonese rumour dataset.
Bazmi et al. (2023) emphasized the role of users’
socio-cognitive biases and partisan bias with the
Multi-View Co-Attention Network (MVCAN) but
overlooked the influence of political viewpoints
and credibility assessments of users.

2.1.3 QML-based FND Methods
Quantum machine learning (QML) techniques have
shown promise in FND. Aishwarya et al. (2023)
conducted a comprehensive review of Quantum
Machine Learning techniques for FND. Their study
revealed that QKNN, when integrated with Ge-
netic and Evolutionary Feature Selection (GEFeS),
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achieved an impressive accuracy of 83.8%, surpass-
ing the performance of conventional KNN algo-
rithms. Tian and Baskiyar (2021) showcased the
effectiveness of QKNN combined with Genetic and
Evolutionary Feature Selection.

2.2 Multimodal FND Methods
Multimodal FND methods integrate both textual
and visual features for detection.

2.2.1 DL-based FND Methods
Raja et al. (2024) proposed Dilated Temporal
CNNs (DTCN), BiLSTM, and Contextualized
Attention Mechanism (CAM), achieving impres-
sive accuracy of 93.97% on the Dravidian_Fake
dataset. Singhal et al. (2020) employed Spot-
Fake+ but faced issues with prolonged training
time and information loss from VGG-19’s pooling
layer. Kaliyar et al. (2021) employed Feed For-
ward Neural Networks with multiple CNN chan-
nels for local sequential feature extraction, yet
generalization ability remains unexplored. Singh
et al. (2023) employed multimodal learning tech-
niques with NasNet Mobile for image analysis and
BERT+ELECTRA for text processing, achieving
85% accuracy on the Twitter MediaEval Dataset
and Weibo Corpus.

2.2.2 QML-based FND Methods
Qu et al. (2024) proposed QMFND, a quantum mul-
timodal fusion-based model designed specifically
for FND on social media platforms. By employing
quantum encoding and quantum convolutional neu-
ral networks (QCNNs), QMFND achieved notable
accuracies of 87.9% and 84.6% on the Gossipcop
and Politifact datasets, respectively. However, the
performance of QMFND is subject to limitations
imposed by current hardware constraints and sig-
nificant background noise in the operating environ-
ment of quantum computers.

3 Preliminaries

3.1 Pre-trained Language Models
Pre-trained language models form the basis for
extracting representations from news text, using
transformer architectures to capture contextual re-
lationships. BERT processes text bidirectionally
through masked language modeling, predicting ran-
domly masked tokens from surrounding context.
XLNet employs permutation-based autoregressive
pre-training, capturing bidirectional context with-
out relying on [MASK] tokens by considering all se-

quence permutations. DistilBERT is a compressed
version of BERT that retains 97% of its language
understanding while running 60% faster through
knowledge distillation from a larger teacher model.

3.2 Pre-trained Image Models

Pre-trained convolutional neural networks extract
visual features from images. These models learn hi-
erarchical representations through successive con-
volutional layers.

VGG architectures (VGG16 and VGG19) uti-
lize small 3×3 convolutional filters throughout the
network. They stack multiple convolutional lay-
ers before pooling operations. This design enables
learning complex features while maintaining com-
putational efficiency.

ResNet50 introduces residual connections to ad-
dress vanishing gradient problems. Skip connec-
tions allow gradients to flow directly through short-
cuts. The architecture consists of 50 layers orga-
nized into residual blocks. Each block contains
convolutional layers with identity mappings.

EfficientNet applies compound scaling to bal-
ance network depth, width, and resolution. It
uses mobile inverted bottleneck blocks (MBConv)
as building components. Squeeze-and-excitation
optimization improves channel interdependencies.
This architecture achieves superior accuracy with
fewer parameters.

3.3 Understanding Quantum Mechanisms

Quantum computing transcends classical comput-
ing principles, offering the potential for unprece-
dented computational power and efficiency. One
fundamental aspect of quantum computing is quan-
tum encoding, a technique that transforms classical
information into quantum states, enabling it to be
processed and manipulated by quantum algorithms.

Quantum encoding transforms classical data into
quantum states, exploiting superposition and en-
tanglement to exponentially increase information
density and computational capabilities beyond clas-
sical methods.

Several encoding approaches exist, each with
distinct advantages LaRose and Coyle (2020):

Angle Encoding represents data through rota-
tional angles of quantum gates. Parameterized ro-
tation operations encode information directly into
angular parameters. This method offers simplic-
ity and hardware efficiency for near-term quantum
devices.
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|ψ⟩ =
n⊗

i=1

RY (xi)|0⟩ =
n⊗

i=1

(
cos(xi/2)
sin(xi/2)

)
(1)

where RY (xi) represents a Y-axis rotation gate pa-
rameterized by the data value xi.

Amplitude Encoding represents data through
relative amplitudes of quantum states. This scheme
leverages superposition, enabling multiple infor-
mation pieces to coexist simultaneously within a
quantum system. For a normalized classical data
vector x, amplitude encoding creates:

|ψ⟩ = 1

∥x∥
2n−1∑

i=0

xi|i⟩ (2)

where ∥x∥ is the normalization factor ensuring
⟨ψ|ψ⟩ = 1, and |i⟩ represents the computational
basis states.

4 Proposed Methodology

4.1 Training and Evaluation Framework for
Hybrid Model

Our fake news detection system, described in figure
1 combines classical deep learning with quantum
computing. The hybrid architecture processes text
and visual content through separate pathways be-
fore quantum integration.

In data preparation, news articles pass through a
text transformer for contextual embeddings, while
images are processed via CNN for visual feature ex-
traction. A MultiHeadCrossAttention mechanism
creates connections between text and image modal-
ities, helping identify mismatches that often signal
deception.

Training follows an epoch-based approach with
early stopping to prevent overfitting. Data batches
move through classical pathways, get fused, and
pass to the QCNN (Cong et al., 2019) component,
which leverages quantum principles like superpo-
sition and entanglement. We selected QCNN over
Q-RNN or Q-LSTM because CNNs naturally pre-
serve spatial locality in quantum circuits, essential
for capturing hierarchical patterns in multimodal
data. The convolutional structure aligns with quan-
tum gate locality constraints on NISQ devices. We
initially used cross-entropy loss before switching
to focal loss due to dataset imbalance, and imple-
mented gradient clipping for stability.

The validation process runs after each epoch,
computing accuracy, precision, and recall. An

early stopping mechanism halts training after three
epochs without improvement in validation loss.

Final evaluation includes standard classification
metrics and threshold optimization to identify the
optimal decision boundary between real and fake
news, producing metrics using both default (0.5)
and optimized thresholds.

This pipeline balances classical deep learning’s
strength in feature extraction with quantum com-
puting’s advantages in modeling complex relation-
ships.

5 Experimental Settings

5.1 Setup

All experiments were conducted on the Kaggle plat-
form using an NVIDIA Tesla P100 GPU (16 GB
VRAM) with 13GB RAM. The models were imple-
mented using PyTorch 2.0 and trained with CUDA
12 acceleration. For transformer-based language
models, we utilized the Hugging Face Transform-
ers library. Image processing was handled with
torchvision and quantum circuit simulations were
executed using Pennylane with PyTorch interface.

The datasets were preprocessed using standard
NLP techniques for textual data, including tok-
enization, normalization, and sequence padding.
For image data, we employed standard preprocess-
ing pipelines with resizing to 224×224 pixels, nor-
malization using ImageNet statistics (mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]), and aug-
mentation techniques including random horizontal
flips and color jitter during training.

5.2 Dataset Analysis

The experiments were conducted on two bench-
mark fake news datasets: Gossipcop and Politifact.
As described in Table 1, the dataset statistics reveal
several notable characteristics. A significant class
imbalance exists in both GossipCop and Politifact
datasets, with real news consistently outnumbering
fake news. The GossipCop (GC) dataset maintains
approximately an 80-20 split between real and fake
news in both train and test sets. The Politifact (PF)
dataset shows a different ratio, with approximately
65-35 split in the training set shifting to 72-28 in
the test set.

Text length analysis exposes distinct patterns
between the two sources: Politifact articles are gen-
erally longer, with mean lengths of 8,919 and 9,494
characters for train and test sets respectively, com-
pared to GossipCop’s shorter average of around
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Figure 1: Overview of Training Process of QCNN-MFND

Table 1: Dataset Statistics Comparison

Metric GC Train GC Test PF Train PF Test
Total samples 10,010 2,830 381 104
Real 7,974 (79.7%) 2,285 (80.7%) 246 (64.6%) 75 (72.1%)
Fake 2,036 (20.3%) 545 (19.3%) 135 (35.4%) 29 (27.9%)
Mean text length 3,427.5 3,460.8 8,919.2 9,494.2
Std dev 5,872.6 6,433.2 17,501.6 18,349.9
Min 34.0 57.0 42.0 45.0
Median 2,072.0 2,046.5 2,511.0 2,966.5
Max 100,096.0 100,055.0 100,155.0 100,077.0

3,400 characters.

5.3 Evaluation Metrics

Due to class imbalance, we employed multiple stan-
dard metrics for binary classification problems:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 Score = 2 · Precision · Recall
Precision + Recall

(6)

where TP, TN, FP, FN represent true positives,
true negatives, false positives, and false negatives
respectively.

6 Results and Analysis

6.1 Textual Feature Analysis

We evaluated multiple transformer-based language
models for textual feature extraction. Tables 2
and 3 present the performance metrics across both
datasets.

XLNet achieved the highest accuracy (0.876)
on the GossipCop dataset, while DistilBERT
demonstrated superior performance on Politifact
with the highest accuracy (0.9135) and F1 score
(0.9379). These results highlight the effectiveness
of transformer-based models for fake news detec-
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(a) GossipCop dataset (b) Politifact dataset

Figure 2: Confusion matrices for XLNet on both
datasets.

(a) GossipCop dataset (b) Politifact dataset

Figure 3: Precision-Recall curves for XLNet on both
datasets.

tion, with different architectures exhibiting distinct
strengths across different news domains.

Fig. 2 shows the confusion matrices for XL-
Net performance on both datasets, demonstrating
strong classification performance with minimal
false negatives. Fig. 3 presents the precision-recall
curves, indicating robust performance across differ-
ent threshold values.

6.2 Visual Feature Analysis

We evaluated six prominent CNN architectures for
visual feature extraction. Table 4 shows the perfor-
mance comparison on the GossipCop dataset.

ResNet50 achieved the highest performance
(79.93% accuracy, 0.7802 F1 score) among all
CNN models. Modern architectures generally
demonstrated better optimization with lower loss
values compared to traditional VGG models.

Table 2: Performance of Transformer Models on Gos-
sipCop

Model Acc. Prec. Rec. F1 Loss

BERT 0.871 0.920 0.920 0.920 0.747
RoBERTa 0.874 0.913 0.933 0.923 0.643
MPNet 0.872 0.926 0.915 0.920 0.605
DistilBERT 0.869 0.913 0.926 0.919 0.691
XLNet 0.876 0.908 0.941 0.925 0.707

Table 3: Performance of Transformer Models on Politi-
fact

Model Acc. Prec. Rec. F1 Loss

BERT 0.846 0.873 0.920 0.896 0.388
RoBERTa 0.875 0.888 0.947 0.916 0.857
MPNet 0.837 0.914 0.853 0.883 0.456
DistilBERT 0.914 0.971 0.907 0.938 0.584
XLNet 0.846 0.873 0.920 0.896 0.585

Table 4: Performance of CNN Models on GossipCop

Model Acc. Prec. Rec. F1 Loss

VGG16 0.765 0.745 0.765 0.753 0.992
VGG19 0.786 0.759 0.786 0.769 0.658
ResNet50 0.799 0.772 0.799 0.780 0.974
EfficientNet 0.763 0.765 0.763 0.764 0.999
ViT 0.728 0.742 0.728 0.735 1.018
ConvNeXt 0.783 0.761 0.783 0.769 1.110

(a) GossipCop dataset (b) Politifact dataset

Figure 4: Confusion matrices for ResNet50 on both
datasets.

Fig. 4 shows the confusion matrices for
ResNet50 on both datasets, while Fig. 5 displays
the corresponding precision-recall curves, demon-
strating consistent performance across different
news domains.

Table 5: Performance of CNN Models on Politifact

Model Acc. Prec. Rec. F1 Loss

VGG16 0.721 0.724 0.721 0.723 1.719
VGG19 0.721 0.730 0.721 0.725 1.623
ResNet50 0.731 0.715 0.731 0.720 0.923
EfficientNet 0.731 0.720 0.731 0.724 0.744
ViT 0.731 0.720 0.731 0.724 1.170
ConvNeXt 0.721 0.744 0.721 0.729 0.791
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(a) GossipCop dataset (b) Politifact dataset

Figure 5: Precision-Recall curves for ResNet50 on both
datasets.

Figure 6: Architecture of the implemented QCNN show-
ing the hierarchical quantum processing structure.

6.3 Quantum Convolutional Neural Network
Implementation

The implemented QCNN architecture consists of
three primary components: quantum convolution
layers, quantum pooling layers, and a measure-
ment layer. The network operates on 8 qubits and
implements a hierarchical structure with multiple
conv-pool operations at different scales. We se-
lected 8 qubits as a balance between expressivity
and current NISQ device limitations, aligning with
typical quantum hardware availability.

Fig. 6 illustrates our QCNN architecture, while
Fig. 7 details the convolution and pooling layer
operations, demonstrating the quantum gate opera-
tions used for feature extraction and compression.

Each convolution operation implements initial
RY rotations, CNOT entanglement, controlled-RX
rotation, and final RZ rotations. Each pooling oper-
ation uses parameterized rotations and CNOT gates

Figure 7: Detailed view of convolution and pooling lay-
ers in the QCNN, illustrating quantum gate operations.

to compress quantum information while preserving
relevant features.

6.4 Experimental Setup

6.4.1 Model Architecture
A hybrid quantum-classical model was imple-
mented with five key components. The image
pathway uses pretrained CNNs (VGG16, Efficient-
Net, ResNet50) to extract features, projecting them
to lower dimensions (qbits/2) for fusion. The
text pathway processes input through XLNet, with
mean-pooled features projected to qbits/2 dimen-
sions. MultiHeadCrossAttention aligns image fea-
tures with text context. The fusion component con-
catenates features and compresses them via a lin-
ear layer to qbits dimensions. Finally, the QCNN
processes the fused features to produce class prob-
abilities.

6.4.2 Training Protocol
Loss Functions: Two loss functions addressed
class imbalance:

Cross-Entropy Loss (CE) with class weighting
and label smoothing:

LCE =− 1

N

N∑

i=1

wyi

[
yi log(pi)

+ (1− yi) log(1− pi)
]
+ λ∥θ∥22

(7)

where wyi is class weight (inverse frequency), pi is
predicted probability, and λ = 0.1.
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Focal Loss (FL) down-weights easy examples:

LFL =− 1

N

N∑

i=1

αyi(1− pi)
γ
[
yi log(pi)

+ (1− yi) log(1− pi)
] (8)

where αyi =
# minority class
# total samples and γ = 2.0.

Training Setup: AdamW optimizer (lr=2× 10−4),
OneCycleLR scheduler, batch size 32, 25 epochs
with early stopping (patience=3).

6.5 Performance Across Model
Configurations

We evaluated multiple combinations of text fea-
ture extractors (XLNet), image feature extractors
(VGG16, EfficientNet, ResNet50), and quantum
encoding methods (Angle, Amplitude) on both
datasets. Table 6 summarizes the performance met-
rics for each configuration.

On the GossipCop dataset, ResNet50 + XL-
Net with angle encoding trained with focal loss
achieved the highest performance (88.52% accu-
racy, 93.19% F1 score). Angle encoding con-
sistently outperformed amplitude encoding when
paired with the same image feature extractor.

On the Politifact dataset, EfficientNet+XLNet
with angle encoding and focal loss achieved the
best results (88.46% accuracy, 92.31% F1 score).
Focal loss significantly improved performance
across both datasets, particularly evident in recall
performance.

6.6 Classical versus Quantum Models
Table 7 presents the comparison between tradi-
tional classical approach (XLNet+ResNet50) and
our proposed quantum model (QCNN-MFND).

The comparative analysis reveals our hybrid
model outperforms classical approaches on the
GossipCop dataset, with a remarkable 65% re-
duction in false negatives, critical for minimizing
missed fake news instances. While the classical
approach performs marginally better on Politifact’s
smaller dataset, this suggests our quantum model
requires larger datasets to fully optimize its param-
eters.

7 Conclusion

We successfully developed QCNN-MFND, a novel
framework leveraging quantum computing princi-
ples for fake news detection on social media. By

combining QML with deep learning approaches,
our architecture integrates XLNet for text analysis,
ResNet50 for visual features, and quantum convolu-
tional neural networks for multimodal fusion. The
framework achieves impressive results—88.52%
accuracy and 93.19% F1 score on GossipCop,
and 85.58% accuracy with 90.20% F1 score on
Politifact - demonstrating significant advantages
in minimizing missed fake news instances. Our
experiments reveal that quantum computing offers
particular benefits for larger datasets, providing a
balanced precision-recall trade-off that prioritizes
false negative reduction. This advancement repre-
sents an important step toward creating more trust-
worthy information ecosystems, with potential for
greater improvements as quantum computing tech-
nology continues to mature.

Future directions include building a web appli-
cation to enable real-time detection, further QCNN
architectural exploration, and explainable quantum
models for fake news detection.

Limitations

Several limitations merit consideration. We simu-
lated quantum circuits on classical hardware; real
quantum devices introduce noise and hardware con-
straints not captured in our experiments. Our 8-
qubit architecture faces deployment challenges on
current NISQ devices.

The datasets present additional constraints. The
Politifact dataset’s small size (381 training sam-
ples) limits model learning capacity. Both datasets
focus exclusively on English-language social me-
dia news, leaving cross-domain and multilingual
generalization untested. The significant class im-
balance (80-20 and 65-35 splits) affects detection
performance despite focal loss mitigation.

Our evaluation scope remains limited to two so-
cial media datasets. Temporal robustness, adver-
sarial testing, and real-time inference performance
remain unexplored. Training requires high-end
GPU resources, and deployment costs on actual
quantum hardware are quite high.
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