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Abstract

While having enhanced NLP, deep learning and
pre-trained language models requires a lot of
processing power. The work showcases the po-
tential of quantum computing by mapping lin-
guistic data into vast, high-dimensional Hilbert
spaces through entanglement and superposi-
tion. It focuses on mathematical concepts that
set quantum approaches apart from classical
ones, among them being the fidelity-based sim-
ilarity and quantum probability. Various quan-
tum machine learning models are considered
in this article, including Quantum Neural Net-
works and Quantum Support Vector Machines,
each discussing the computational advantages
in pattern recognition. In addition, it consid-
ers retrieval techniques like Grover’s algorithm,
showing how quantum similarity functions give
better semantic search. Indeed, the comparison
does show that quantum techniques might yield
advantages regarding expressiveness and scala-
bility, despite obstacles such as hardware noise
and data encoding. Notwithstanding that quan-
tum technology is still in its infancy, future
improvements might advance language under-
standing.
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1 Introduction

The explosive evolution of natural language pro-
cessing (NLP) has mostly been triggered by tra-
ditional machine learning and deep learning mod-
els, which have reported impressive performance
in applications like text classification, sentiment
analysis, and semantic search (Devlin et al., 2019).
Notwithstanding these breakthroughs, the ever-
growing dimensionality of text data and the com-
putational expense of large models have made it
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imperative to look for other approaches that can of-
fer efficiency without sacrificing semantic richness.
Quantum computing has, in recent years, been ex-
plored as a possible paradigm to overcome such
limitations because it can perform computations in
exponentially big Hilbert spaces and leverage prin-
ciples like superposition and entanglement (Schuld
and Petruccione, 2019).

Quantum models, such as QSVMs and QNNss,
embed texts into high-dimensional quantum fea-
ture spaces, hence being more effective for text
categorization than classical techniques. Quantum-
inspired information retrieval techniques rely on
Hilbert space formalism and fidelity measurements
while offering advantages over classical methods
by virtue of Grover’s search algorithm. The analyt-
ical framework includes quantum kernels and prob-
ability distributions that extend conventional com-
parison metrics such as cosine similarity. However,
despite theoretical advantages, noisy and resource-
limited NISQ devices make practical implementa-
tion very challenging. Therefore, hybrid quantum-
classical approaches are considered a viable ap-
proach. The current study will review the mathe-
matical underpinnings of quantum NLP research,
complexity assessments, and comparative insights
between quantum and classical approaches to high-
light the potential benefits and current challenges
in quantum NLP research.

It starts with theoretical notions (described in
Figure 1), such as Hilbert spaces and Grover’s algo-
rithm, and the review structure progresses from a
purely mathematical underpinning to a real-world
application. It falls into two main areas: one regard-
ing quantum semantic search by fidelity measures
and quantum walks, and another on quantum text
classification by means of QSVM and QNN/VQC
models. In order to identify complementarities and
trade-offs, these branches merge under a compar-
ative study that analyzes mathematical methods
and empirical behaviors. Furthermore, this frame-
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Figure 1: Overview of the analytical review

work indicates problems like noise and encoding
and suggests future avenues of research, such as
uniform benchmarks and effective encodings.

2 Scope and Review Methodology

With a focus on text classification and semantic
search, this article reviews the integration of quan-
tum computing into NLP. It outlines the develop-
ment from early quantum-inspired frameworks to
advanced quantum kernel methods and hybrid mod-
els, surveying literature from 2010 to 2025. Among
others, IEEE Xplore, ACM Digital Library, and
arXiv can be consulted using keywords and phrases
such as "quantum NLP" and "quantum semantic
search." Only those studies that introduce quan-
tum models for natural language processing (NLP)
problems, develop theoretical insights into either
text classification or semantic search, and offer
analytical contrasts between classical and quan-
tum approaches are reviewed. Works which are
purely classical or with no direct relevance to NLP
will not be considered. To ensure a systematic
progress review in quantum NLP, contributions are
grouped into three categories: quantum models for
text categorization, quantum approaches for seman-
tic search, and supporting mathematical analyses.

3 Mathematical Foundations

The use of quantum computing in natural language
processing (NLP) is mathematically intense. The
following section presents the mathematical basics
that make up the analytical framework of quan-
tum methods in text classification and semantic
search. These are Hilbert spaces, quantum prob-
ability, measures of fidelity, kernel methods, and
computational complexity.
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3.1 Hilbert Spaces and Quantum Text
Representation

In quantum mechanics, physical systems are en-
coded in a complex Hilbert space H, and the sys-
tem’s state is specified as a normalized vector in
that space. A pure state is normally written as:

doaliy,  Dlal=1 O
1 1

where ¢; are complex probability amplitudes. {|i)}

denotes an orthonormal basis of the Hilbert space

H.

In NLP, the |i) are linked with a token, word
embedding, or latent semantic component. Super-
position is built into quantum representations to
enable more expressive encoding of semantic rela-
tions over classical embeddings.

[¥)

3.2 Quantum Probability and Density
Matrices

Quantum probability is derived from the Born rule.
For a state |1)), the probability of observing basis
state |7) is:

P(i) = |{i[y)[>. ©)

For mixed states, a density matrix p is defined as:

p=> prlve)(l, with Tr(p)=1. (3)
k

This allows ambiguous words to be modeled as
probabilistic mixtures of multiple semantic states
(Piwowarski et al., 2010). The information content
of a state is quantified using the von Neumann
entropy:

S(p) = —Tr(plogp), “4)

which generalizes Shannon entropy into quantum
systems.

3.3 Similarity and Distance Metrics

Semantic similarity in quantum models is ex-
pressed via fidelity:

Fip.0) = (Try/ Vo i) B

where p and o represent query and document states.
Fidelity generalizes cosine similarity by embedding
comparisons in Hilbert space (van der Meer et al.,
2021). Another important measure is the trace
distance:

®)

D(p,0) = 3Tr|p— o], (6)

which captures dissimilarity between semantic
states.



3.4 Illustrative Comparison: Cosine
Similarity vs. Fidelity

To better understand how quantum similarity mea-
sures differ from classical ones, consider two sim-
ple normalized 2-dimensional vectors representing
a query ¢ and document d:

V2 V2
q= (170)7 d= (2a 2) . (7

Cosine Similarity:

q-d
cos(q,d) =
(@4 = T
——1'§+0'§—@~0m7
- 1-1 T2 T '(8)

Fidelity Measure: When the same vectors are
treated as pure quantum states |¢) and |d), fidelity

is defined as:
2
) =05 9

* Cosine similarity measures geometric angle
between classical vectors.

V2

Fla,d) = {ald)* = ( 5

Interpretation:

* Fidelity measures quantum probability over-
lap between states.

Although fidelity reduces to the square of cosine
similarity for pure normalized states, the probabilis-
tic meaning of fidelity is more aligned with quan-
tum measurements. In more complex mixed-state
scenarios (e.g., density matrices), fidelity captures
richer semantic uncertainty beyond what cosine
similarity provides.

3.5 Quantum Kernels and Feature Maps

In classification tasks, quantum kernels extend the
classical kernel trick. A quantum feature map ¢(z)
encodes data into quantum states, and the kernel
function is defined as:

k(z,y) = [6@Is)P.  (10)
This helps the model to handle the large fea-

ture spaces where fewer resources can be used
(Havlicek et al., 2019).
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3.6 Complexity Considerations

In theory, quantum algorithms provide great ad-
vantages in terms of computational efficiency.
Grover’s technique reduces unstructured database
searches from O (V) to O(

sqrtN) for large document collections (Grover,
1996). The HHL algorithm can solve linear equa-
tions exponentially faster under some conditions.
These advances are certainly relevant for NLP tasks
involving high-dimensional embeddings and large
text corpora; hence, there is the prospect of quan-
tum methods outperforming classical systems for
semantic search and classification (Harrow et al.,
2009).

3.7 Implications for NLP

This paper emphasizes analytical comparisons to
classical models using Hilbert space formalism,
quantum probability, and kernel-based feature map-
ping to realize NLP tasks. In doing so, it is
shown that quantum models may decrease pro-
cessing costs while retaining the semantic infor-
mation undisturbed. These mathematical frame-
works, in essence, serve as the foundation for ap-
proaches using quantum machine learning on lin-
guistic data in practical quantum models for text
classification, such as QSVMs, QNNs, and hybrid
quantum-classical architectures.

4 Quantum Computing for Text
Classification

One of the main applications of NLP is text cate-
gorization. It is useful for various purposes, like
spam filtering and sentiment analysis etc.. While
they deliver accurate results, conventional mod-
els, including transformer-based models such as
BERT and support vector machines, are compu-
tationally expensive, particularly in the scenario
of high-dimensional feature spaces. A suitable re-
placement is quantum computing, which enhances
classification efficiency through the application of
large Hilbert spaces and ideas of superposition and
entanglement. The primary focus of this section’s
coverage of quantum models for text classification
is quantum support vector machines, quantum neu-
ral networks, and hybrid architectures.

As shown in Table 1, recent developments in
quantum computing for text classification are sum-
marized chronologically, covering the period from
2019 to 2025. The table highlights the main ap-
proaches, encoding strategies, model types, as well



Table 1: Chronological comparison of quantum (and quantum-like) approaches for text classification.

Year Approach (citation) Encoding Model Type Advantages Limitations

2019 QSVM with quantum kernels ~ Angle / amplitude QSVM kernel classi- ~ Exponential feature map-  Sensitive to noise; evaluated
(Havlicek et al., 2019) fier ping; effective separation in ~ only on small datasets

high-dim spaces

2019 Quantum Convolutional Neu-  Structured encoding Convolutional-like Parameter efficient; locality ~ Task-specific design; deeper
ral Networks (QCNN) (Cong QNN aware; some robustness to circuits required
etal., 2019) noise

2021 Quantum Neural Networks  Angle / amplitude Variational quantum  High expressivity; end-to-  Barren plateaus (gradient
(QNN) (Abbas et al., 2021) circuits (VQC) end trainable vanishing); noisy hardware

limits

2022 Quantum SVM for Text Clas- ~ Amplitude / angle QSVM +hybridem-  Uses word2vec/BERT em-  Inherits embedding costs;

sification (Li et al., 2022) from embeddings bedding beddings; competitive accu-  limited to small corpora
racy

2024 Quantum Support Vector Clas-  Angle / amplitude QSVConIBM/IonQ  First hardware validation;  Strongly affected by noise;
sifier on NISQ hardware devices real device results dataset scaling issues
(Suzuki, 2024)

2024 Quantum Self-Attention Neu-  Classical embeddings ~ Hybrid  quantum-  Captures contextual depen- ~ Only small simulator tests;
ral Networks (QSANN) (Li, — quantum attention classical attention dencies; integrates attention hardware results pending
2024) with QNN

2024 Hybrid transfer learning  Pretrained embed-  Hybrid pipeline Combines classical embed-  Dependent on pretrained
(BERT + QSVM/QNN) dings — quantum dings with quantum classi- models; added quantum
(Anonymous, 2024) classifier fiers; practical for NISQ overhead

2025 Quantum-like wave model Semantic units — Quantum-like wave Captures interference in se-  Semi-heuristic; not
for semantic classification  wave embeddings model mantics; accuracy gains  hardware-based; small
(Gruzdeva et al., 2025) over baselines datasets only

2025 Hybrid QTL with kernel self-  Classical embeddings ~ Hybrid transfer-  Improves feature separabil- ~ Complex architecture; hard-
attention (Chen and Lou, + quantum kernel learning ity; tested on real datasets ware scaling challenges
2025)

2025 Single-Qudit QNN (SQ-  Angle encoding into Qudit-based QNN Reduces qubit needs by us-  Still theoretical/simulator-

QNN) (Souza and Portugal,  qudits ing qudits; supports multi-  level;  qudit hardware
2025) class tasks needed
as their analytical advantages and limitations, pro-  tum state is expressed as:
viding a structured comparison of progress in this
[¥(0,z)) = U(8,2)|0), (11)

domain.

4.1 Quantum Support Vector Machines
(QSYM)

An optimal separating hyperplane within a feature
space is defined by the Support Vector Machine,
which is basically a supervised learning algorithm.
It is used to classify the data. The Quantum Support
Vector Machine maps data into high-dimensional
Hilbert spaces. Unitary operations are used to map
data points into quantum states in QSVM. A quan-
tum kernel defines the similarity of these states.
Basically, the architecture allows QSVMs to uti-
lize polynomial resources (Havlicek et al., 2019;
Schuld and Petruccione, 2019) on quantum hard-
ware and operate within an exponentially dimen-
sional feature space. With weighted kernel eval-
uations on training sets, a decision function in a
QSVM is analogous to traditional SVMs. QSVMs
are an interesting method because quantum kernels
are capable of separating classes that polynomial-
time classical kernels are not.

4.2 Quantum Neural Networks (QNNs)

Quantum Neural Networks (QNNSs) are constructed
using Variational Quantum Circuits (VQCs), which
consist of parameterized unitary gates optimized
with a classical optimizer. For an input x, the quan-
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where 6 represents trainable parameters. The prob-
ability of assigning class y is given by:

P(ylz) = [(yl (8, 2)) .

QNNs have been shown to achieve expressive
power that surpasses shallow classical neural net-
works, particularly in handling non-linear and high-
dimensional relationships (Abbas et al., 2021).
However, they face challenges such as barren
plateaus, where gradients vanish exponentially with
circuit depth. Recent studies have also demon-
strated the practical use of QNN-based classifiers
specifically for NLP tasks (Pandey et al., 2024).

(12)

4.3 Data Encoding Strategies

Encoding is an essential link between textual data
and quantum computation, which requires convert-
ing units of language into quantum states with se-
mantic integrity preserved. Effective encoding tech-
niques have impact on representational expressivity
and hardware viability in NISQ devices and are cru-
cial, not only for text categorization but also for
quantum semantic search and information retrieval.

Different encoding strategies have been dis-
cussed here:

» Basis encoding: Each token or feature is
placed directly into a basic quantum state.



Here,it gives a clear but sparse form in the
qubit form.

* Amplitude encoding: dense embeddings
such as word2vec or BERT are normalized
and encoded into the amplitudes of a quantum

state: 1
@) = = 3 aili)
ol 241

providing an exponentially compact form of
feature representation.

(13)

* Angle encoding: numerical features are con-
verted into rotation angles of single-qubit
gates, offering low circuit depth at the cost
of reduced representational capacity.

Amplitude encoding is particularly appealing for
NLP tasks, as it enables dense semantic embed-
dings to be represented efficiently in Hilbert space
while still benefiting from quantum parallelism
(Schuld and Petruccione, 2019). As quantum NLP
advances, developing encoding techniques that bal-
ance compactness, expressiveness, and noise re-
silience will remain a key challenge.

4.4 Hybrid Quantum-Classical Models

The NISQ era of existing quantum devices faces
challenges in quantum model development in NLP
due to the low number of qubits and pervasive noise
(Suzuki, 2024). Hybrid quantum-classical mod-
els leverage classical embeddings generated using
word2vec and BERT, which can then be fed into
a quantum classifier such as the QNN or QSVM
(Devlin et al., 2019; Abbas et al., 2021; Li et al.,
2022). The combination leverages quantum ca-
pabilities for improved feature separation and the
quality of the classification of particularly complex
text distributions but draws on classical strengths
for embeddings (Havlicek et al., 2019). Somewhat
limited in accuracy due to the hardware, QSVMs
and quantum kernel classifiers have produced suc-
cessful results on IBM and IonQ devices (Suzuki,
2024). A completely quantum solution, hybrid
models represent an exciting way to incorporate
quantum computing into NLP applications (Anony-
mous, 2024).

4.5 Complexity Analysis

Quantum Support Vector Machines employ poly-
nomial circuit resources to evaluate similarities in
exponentially vast spaces. This is done through
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the use of the quantum kernel trick. Analytical
comparisons shows that:

* For the d-dimensional embedding, the clas-
sical SVM kernel evaluation mainly requires
O(d) operations.

* Quantum kernel evaluation scales as
O(poly(n)). Here n is used as the number of
qubits, which represents the feature space.

This advantage is significant when processing high-
dimensional language embeddings is done. This is
frequently used in NLP applications. However, the
reliability of kernel estimate on NISQ hardware. It
restricted connection, and qubit noise limit realistic
speedup.

Complexity of QNN-based Models: Variational
Quantum Circuits are a novel computational regime
in QNNs, with complexities dependent on the num-
ber of qubits n, the circuit depth L and trainable
parameters |f|. At each iteration of the gradient-
based training, it is necessary to run the quantum
circuit multiple times, incurring a certain cost.

O (L - poly(n) - [0]) . (14)

For large n or L, QNNs suffer from problems
like barren plateaus due to vanishing gradients,
which make optimization costly. In contrast with
QSVMs, that rely on quantum kernel evaluation
for computation, QNNs are plagued by scalability
issues due to optimization overhead and hardware
noise. Because of optimization complexity and
coherence restrictions in NISQ devices, increased
expressiveness of QNNs can hardly be exploited in
practice.

4.6 Applications in NLP

Quantum models, like QSVMs and QNNs, have
competed with conventional models in various NLP
tasks, including sentiment analysis, spam filter-
ing, and fake news detection (Pandey et al., 2024).
Specifically, QSVMs are good at categorizing re-
views, while QNNs have high performance in iden-
tifying trustworthy news sources and filtering spam
using hybrid architectures. Moreover, applying
quantum feature spaces to enable data-efficient so-
lutions holds promising advances for multilingual
and low-resource languages. This work points to-
ward a path for future research in scalable quan-
tum hardware development, as it emphasizes not



only what has been achieved with supervised quan-
tum models in text classification but also the poten-
tial for quantum-inspired methods in information
retrieval and semantic search (discussed in Sec-
tion 5).

5 Quantum Computing for Semantic
Search and Information Retrieval

Quantum semantic search, by exploiting Hilbert
space representations and quantum similarity mea-
sures, improves the ranking of documents, thereby
outperforming conventional models based on lex-
ical matching, such as TF-IDF and BM25 (Pi-
wowarski et al., 2010; van der Meer et al., 2021).
Quantum-inspired information retrieval models
leveraged amplitude-encoded quantum states to
model documents and queries with the aim of
incorporating semantic aspects and uncertainties
(Schuld and Petruccione, 2019). While quantum
distance measures, such as trace distance, quan-
tify semantic dissimilarity (van der Meer et al.,
2021), quantum similarity measures, such as fi-
delity, augment classical cosine similarity by re-
flecting probabilistic overlaps (Piwowarski et al.,
2010). Hybrid quantum-classical methods combine
classical embeddings with quantum techniques to
make the most of existing NISQ hardware (Yamada
et al., 2024; Devlin et al., 2019), while some quan-
tum algorithms, such as Grover’s search, obtain
significant savings in search time (Grover, 1996).
In this changing approach to IR, with quantum
technologies still evolving, the representation of
deeper semantic relevance and uncertainty points
to a more expressive future for search algorithms
(Zhang et al., 2023; Gupta et al., 2025).

5.1 Hilbert Space Representations of
Documents

The documents and queries are mainly represented
as vectors in a Hilbert space H at the time of the
quantum-inspired retrieval process. This is denoted
as:

|d) = Z@i!ti%

Here |t;) represents the basis vectors, and o, 3;
represents the normalized weights.

By using the fidelity, the similarity between a
query ¢ and a document d has measured:

Flg,d) = |(dlq)

) = > Bilts), (15

2. (16)
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Compared to traditional cosine similarity, this gives
the squared inner product of the two states, which
provides a more descriptive similarity metric (Pi-
wowarski et al., 2010; van der Meer et al., 2021).

5.2 Quantum Probability and Entropy
Measures

Quantum IR can also use density matrices to en-
code uncertainty in semantic states. For a document
mixture, the density operator is given as:

pa =Y pildi){dil, (17)

where p; are probability weights. The similarity
between documents can then be computed using
trace distance or von Neumann entropy:

S(p)

Entropy-based ranking allows capturing semantic
diversity and ambiguity, beyond what is possible
in classical IR frameworks (Zhang et al., 2023).

—Tr(plog p). (18)

5.3 Grover’s Algorithm for Document
Retrieval

Grover’s quantum.search algorithm achieves a
quadratic speedup for unstructured search problems
(Grover, 1996). For a collection of N documents,
Grover’s algorithm will locate a matching docu-
ment in O(v/N) time, as opposed to O(N) classi-
cally. Mathematically, successive applications of
the Grover operator GG increase the likelihood of
the target state |d*):

G = Qls)(s| = 1) - (I =2d")(d"[), (19
where |s) is the uniform superposition of all states.
This gives theoretical speedups for large-scale IR.

5.4 Hybrid Quantum-Classical IR Models

Recent efforts integrate classical embeddings (e.g.,
BERT, word2vec) with quantum fidelity-based re-
trieval. Queries and documents are first embedded
in dense vector spaces, then encoded into quantum
states for matching. Such hybrid approaches pro-
vide practical pathways for deploying quantum IR
on NISQ-era hardware (Yamada et al., 2024).

5.5 Chronological Comparison of Approaches

Table 2 summarizes the basic developments in
quantum IR approaches from 2010 to 2025. It
highlights the encodings, models, advantages, and
limitations.



Table 2: Chronological comparison of quantum computing approaches for semantic search and information retrieval.

Year Approach (citation) Encoding Model Type Advantages Limitations
2010 Quantum-inspired IR framework (Piwowarski ~ Term basis states Hilbert space retrieval Introduced Conceptual frame-
etal., 2010) fidelity-based work; no hardware
query-document implementation
similarity; linked
IR to quantum
probability
2019 Quantum probability ranking model (Zuccon ~ Amplitude encoding  Quantum-inspired Probabilistic inter-  Early-stage model;
and Azzopardi, 2019) of terms ranking model pretation of rank-  tested on small cor-
ing; novel use of  pora
quantum probabil-
ity
2021 Quantum algorithms for IR (van der Meer  Amplitude encoding Hybrid algorithms for ~ Theoretical Lacks large-scale
etal., 2021) retrieval speedups  using  hardware bench-
Grover’s search  marks
and quantum
walks
2023 Entropy-based quantum IR (Zhang et al., 2023)  Density matrices Entropy ranking  Incorporates se-  Simulator-based;
framework mantic  diversity  hardware scaling
and  ambiguity;  not addressed
entropy-based
document ranking
2024 Hybrid embedding + quantum fidelity search ~ BERT embeddings — Hybrid quantum-  Integrates deep  Dependent on
(Yamada et al., 2024) quantum states classical IR embeddings with  pretrained em-
quantum fidelity =~ beddings; limited
search; suitable for  qubits
NISQ devices
2025 Quantum walk-based semantic retrieval (Gupta ~ Amplitude encoding  Quantum walk re-  Explores semantic =~ Experimental
et al., 2025) of graph embeddings trieval search using quan-  stage; scalability
tum walks over to large corpora
document graphs;  unproven

potential retrieval
efficiency gains

As shown in Table 2, approaches span from foun-
dational quantum-inspired frameworks in 2010 to
recent hybrid and quantum walk-based retrieval
models in 2025, demonstrating the evolution from
conceptual theory to practical hybrid implementa-
tions.

6 Comparative Analytical Insights

In this section, two core NLP tasks are de-
scribed text categorization in Table 1 and semantic
search/information retrieval in Table 2. These are
compared using quantum techniques. It mainly
highlights each domain’s unique issues, their math-
ematical formulations, and development paths
while also pointing out their trade-offs and comple-
mentarities.

6.1 Mathematical Underpinnings

Quantum text classification methods are predomi-
nantly kernel-based or variational, relying on map-
pings into exponentially large Hilbert spaces and
parameterized quantum circuits. Quantum Kernel’s
analytical construction is as follows:

k(z,y) = [(o(2)]o(y)) ],

QSVMs and hybrid kernel models are supported by
the idea like, (HavliCek et al., 2019; Li et al., 2022).
To check the similarity between a particular query
and the document, quantum probability, density

(20)
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matrices, and fidelity is used for semantic search
methods.

F(g.d) = ()%, S(p) = —Tr(plog p).
2D
Quantum kernels for text classification define
unique decision limits, making the distinction
among categories of data easier. On the other hand,
semantic search and information retrieval focus on
the relevance of the materials to the queries. They
aim to emphasize relevant pages and provide effec-
tive representation of semantic meaning through
the use of probability-based similarity and entropy

measurements.

6.2 Computational Complexity

Whereas QNNs suffer from optimization problems,
QSVMs offer implicit embeddings in O(2") di-
mensions using polynomial resources for classi-
fication (Abbas et al., 2021). Grover’s search re-
duces the query complexity in information retrieval
from O(N) to O(v/N); quantum walk-based ap-
proaches provide better document graph explo-
ration (Gupta et al., 2025). While retrieval puts an
emphasis on query scaling and ranking efficiency,
classification emphasizes decision boundary com-
plexity.



6.3 Evolution of Approaches (2010-2025)

From 2010 to 2025, research changed from con-
ceptual formulations to hybrid implementations.
For example, some classification advances that
show progress towards NISQ practicality are the
quantum-inspired classifiers of 2019, the hybrid
pipelines with BERT embeddings and QSVMs of
2024, and the single-qudit QNNs of 2025. Some
recent examples of retrieval advances include the
Hilbert space-based IR models of 2010, entropy-
driven ranking in 2023, hybrid embedding-fidelity
models in 2024, and quantum walk retrieval in doc-
ument graphs from 2025. This trajectory shows a
convergence towards hybrid paradigms, combining
quantum-enhanced classifiers and retrieval systems
with classical embeddings.

6.4 Analytical Trade-offs

The comparison analysis shows different types of
significant trade-offs:

» Expressivity vs. Stability: Entropy-based IR
techniques provide stability, but they are less
expressive in terms of model power. QNNs
have large capacity but tey are difficult to op-
timize.

* Scalability: Classification complexity scales
with embedding dimensionality, while re-
trieval scales with corpus size. Both benefit
from quantum asymptotic advantages in dis-
tinct regimes.

¢ Hardware Realization: Classification meth-
ods (e.g., QSVMs) have been experimen-
tally tested on NISQ devices (Suzuki, 2024),
whereas IR models remain mostly simulator-
bound, with limited demonstrations on hard-
ware.

6.5 Outlook

The two main approaches in quantum NLP, quan-
tum text categorization and quantum semantic
search, are complementary rather than competing.
Quantum text classification excels in supervised
tasks that involve clear-cut decision boundaries,
whereas quantum semantic search adopts probabil-
ityand entropy-based measures to capture the mean-
ing of texts and rank documents. In both areas,
researchers are moving toward hybrid quantum-
classical architectures, and thus classification and
retrieval will eventually be part of NLP systems

that have traditional components for preprocess-
ing and quantum circuits for semantic reasoning.
As quantum devices improve, various applications
and practical quantum advantages for NLP might
become possible.

7 Experimental Landscape and
Benchmarking Status

Theoretically, quantum NLP demonstrates great
possibilities, but empirical verification is not pos-
sible due to the constraints of existing NISQ hard-
ware. The majority of research uses quantum simu-
lators and short datasets, focusing on practicality
before completeness of performance. Benchmark-
ing trends are presented in this section for semantic
search and quantum text classification.

7.1 Datasets Used in Current Studies

In some instances, compact datasets have been em-
ployed to benchmark quantum-enhanced classifiers:
for instance, the SMS Spam Dataset for binary
spam filtering with QSVMs (Li et al., 2022), por-
tions of Amazon or IMDDb reviews for sentiment
analysis based on QNN-based models (Pandey
et al., 2024), and TREC-style toy retrieval sets for
query relevance assessment (van der Meer et al.,
2021). Due to qubit availability constraints, the
IR experiments often employ simulated semantic
vectors rather than complete corpus representations
(Piwowarski et al., 2010). Hybrid BERT-embedded
document matching has seen a bit more develop-
ment, although its application remains limited to
very small corpora (Yamada et al., 2024).

7.2 Evaluation Metrics

Performance evaluation typically combines estab-
lished classical metrics with quantum-specific sim-
ilarity measures:

* Accuracy, Precision, Recall, F1-score for
classification (Suzuki, 2024).

* Entropy-based ranking to measure semantic
diversity (Zhang et al., 2023).

* Fidelity as a probabilistic similarity score
between query and documents (Piwowarski
et al., 2010).

These mixed metrics reflect an ongoing effort to
account for both prediction quality and quantum
semantic overlap.



7.3 Simulators vs. Hardware Deployments

The lack of standard benchmarks due to differences
in dataset size, encoding methodologies, simulator
precision, error models, hardware platforms, and
circuit depth limits hinders precise performance
comparisons among research (van der Meer et al.,
2021). Thus, the assertions on quantum advan-
tage in NLP are prima facie tentative and bound by
experimental design (Abbas et al., 2021). Medium-
scale data sets may be manageable for future in-
formation retrieval as qubit counts and noise ro-
bustness will likely continue to improve (Suzuki,
2024). Effective data embeddings may allow multi-
lingual and low-resource tasks to benefit, and stan-
dard evaluation metrics accounting for accuracy,
fidelity, and complexity analysis will be important
moving forward (Yamada et al., 2024). Hardware-
aware model design and standard benchmarking
are necessary before large-scale demonstrations of
quantum NLP performance can be realized (Anony-
mous, 2024).

7.4 Current Limitations in Benchmarking

Current implementations mainly rely on quantum
simulators, such as Qiskit and Cirq, because of is-
sues with noise and coherence in real quantum hard-
ware (van der Meer et al., 2021). While hardware-
based evaluation is at an early stage of develop-
ment, problems such as significant losses in the
accuracy of QSVMs on IBM and IonQ systems due
to qubit decoherence and gate noise persist (Suzuki,
2024). Additionally, variational circuits suffer from
empty plateaus, demanding deeper topologies (Ab-
bas et al., 2021). Therefore, most of the studies of
QNNs are simulation-limited. Hybrid approaches,
offering a good compromise between expressive-
ness and feasibility, become the most viable ap-
proach for current experimentation (Anonymous,
2024).

8 Challenges and Open Problems

Quantum techniques for text classification and se-
mantic search face numerous obstacles regarding
mathematical, hardware, algorithmic, and bench-
marking factors. This section outlines these restric-
tions and identifies unresolved issues for further
research.

8.1 Encoding Bottlenecks in NLP Data

Encoding high-dimensional textual data into quan-
tum states remains one of the most significant bot-
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tlenecks. Given a document embedding = € RY,
amplitude encoding maps it into a normalized quan-
tum state:

1 d
|z) = mzxm}. (22)
=1

This requires O(d) operations classically, but
preparing an arbitrary d-dimensional state on a
quantum computer may require O(d) gates, offset-
ting quantum speedups. Angle encoding reduces
cost by mapping each feature into a rotation, but
sacrifices representational richness. Open problems
include:

* Developing encoding schemes that balance
expressivity with circuit depth.

* Exploring qudit-based encodings that re-
duce qubit requirements (Souza and Portugal,
2025).

* Designing noise-resilient encodings suitable
for NISQ hardware.

8.2 Hardware Constraints and Noise
Sensitivity

Most reported quantum NLP experiments have
been conducted on simulators. Real NISQ devices
introduce gate noise, decoherence, and readout er-
rors. For example, QSVM implementations on
IBM and IonQ hardware show a drastic drop in
accuracy due to noise (Suzuki, 2024). Moreover,
current devices limit circuit depth to < 100 gates
for reliable execution, restricting model complex-
ity. The open problems in NLP involve developing
specific error mitigation techniques, identifying
which NLP workloads are inherently noise-tolerant,
such as low-rank embeddings, and exploring qudit-
based systems which provide higher information
density per physical unit.

8.3 Training Challenges in Quantum Neural
Networks

Though the Quantum Neural Networks are a
promising model, they still suffer from different
serious optimization problems. The barren plateau
phenomenon leads to gradients vanishing exponen-
tially with the number of qubits or circuit depth:

).

1

E[VyL] ~ O (2n (23)



where 7 is the number of qubits. This severely
limits scalability (Abbas et al., 2021). Hybrid train-
ing with classical optimizers introduces additional
cost and convergence instability. Open problems
include:

* Gradient-free optimization methods for varia-
tional circuits.

* Cost functions that mitigate barren plateaus.

* Scalable architectures such as QCNNs or SQ-
QNNs (Cong et al., 2019; Souza and Portugal,
2025).

8.4 Scalability of Quantum IR Models

Semantic search requires efficient ranking over
massive document collections. Grover’s algorithm
provides O(v/N) query complexity, but practical
retrieval requires top-k ranking and probabilistic
scoring. Quantum walk retrieval models (Gupta
et al., 2025) explore graph-based semantics, but
remain untested at scale. Open problems include:

» Extending Grover-based search to ranked re-
trieval.

* Integrating density matrix entropy-based rank-
ing (Zhang et al., 2023) with large document
collections.

* Designing quantum IR systems that scale to
billions of documents, analogous to web-scale
search engines.

8.5 Hybrid Integration and Efficiency

Boundaries

Most NISQ-era implementations are hybrid, com-
bining classical embeddings (e.g., BERT, GloVe)
with quantum classifiers or retrieval engines (Li
et al., 2022; Anonymous, 2024). While effective,
this raises fundamental questions:

* What portion of the pipeline truly benefits
from quantum speedup?

* How can hybrid systems avoid classical bot-
tlenecks dominating end-to-end runtime?

* What is the theoretical boundary between clas-
sical preprocessing and quantum advantage?

Establishing efficiency thresholds for hybrid quan-
tum NLP architectures remains a critical open prob-
lem.
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8.6 Evaluation and Benchmarking Gaps

There is currently no standardized framework to
evaluate quantum NLP models. Classical bench-
marks (e.g., GLUE, TREC) are ill-suited for quan-
tum setups due to small dataset constraints. Open
problems include:

* Designing quantum-specific NLP benchmarks
with fidelity, entropy, and robustness metrics.

* Establishing evaluation protocols that com-
bine accuracy with complexity analysis.

* Developing open-source datasets small
enough for NISQ devices yet representative
of real tasks.

8.7 Theoretical Uncertainty of Quantum
Advantage

Finally, the biggest open problem is the lack of rig-
orous proof of quantum advantage in NLP. While
complexity-theoretic results such as Grover’s
speedup are well-established, their direct appli-
cability to semantic search and classification re-
mains uncertain. For classification, empirical stud-
ies suggest quantum kernels offer improved separa-
bility, but no formal guarantee exists. For retrieval,
entropy-based models are theoretically elegant but
lack evidence of practical superiority. Future direc-
tions include:

* Proving formal conditions under which quan-
tum models outperform classical ones.

* Linking quantum kernel theory with general-
ization bounds in NLP tasks.

* Exploring quantum information-theoretic lim-
its of semantic search.

9 Conclusion and Future Directions

This work reviews quantum computing methods for
natural language processing-related tasks, namely,
semantic search and text classification (Havlicek
et al., 2019; Li et al., 2022). Focusing on tech-
niques such as quantum kernels, variational quan-
tum neural networks (Abbas et al., 2021; Anony-
mous, 2024), and entropy-driven ranking, the study
explores the trajectory from quantum-inspired mod-
els to hybrid quantum-classical systems. A com-
parison is drawn (in Section 6) in which retrieval
performs well in both probabilistic and entropy-
based models, which currently are both trending



toward hybrid paradigms due to NISQ hardware
limitations, whereas classification makes good use
of quantum kernels. Some other promising fu-
ture avenues of research involve effective encoding
techniques, hardware-aware models, standardized
quantum benchmarking, understanding quantum
advantage, and integrated quantum NLP pipelines.
Quantum computing indeed offers a great future for
NLP applications, despite the challenges at present.
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