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Abstract

Deep learning models for Natural Language
Processing (NLP) tasks, such as Part-of-Speech
(POS) tagging, usually have significant param-
eter counts that make them costly to train and
deploy. Quantum Machine Learning (QML)
offers a potential approach for building more
parameter-efficient models. This paper pro-
poses a hybrid quantum-classical gated recur-
rent unit model for POS tagging in code-mixed
social media text. By integrating a quantum
layer into the recurrent framework, our model
achieved an accuracy comparable to the base-
line classical model, while needing fewer pa-
rameters. Although the cut-off point in the pa-
rameters is modest in our setup, the approach is
promising when scaled to deeper architectures.
These results suggest that hybrid models can
offer a resource-efficient alternative for NLP
tasks.

1 Introduction

Understanding natural human language, which is
a central basis of communication, has been a long-
standing goal of artificial intelligence (Russell and
Norvig, 2010). Natural language processing (NLP)
successfully tackles this problem by developing
methods for machines to read, examine, and pro-
duce natural language in ways that support tangible
real-world applications (Jurafsky, 2000). Today,
NLP supports applications such as conversational
assistants, automatic translation systems, and opin-
ion mining tools, making it an important part of
our daily engagement with digital technology.

The recent success of NLP is mainly attributed to
improvements in machine learning (Janiesch et al.,
2021). Training models on large amounts of data
makes them capable of learning and recognizing
patterns in text and making accurate predictions
for tasks like translation, sentiment analysis, and
sequence labeling. Neural networks, specifically,
have brought about significant developments by
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modeling complex relationships within language
data (Sharkawy, 2020). However, as data sets grow
larger and architectures deeper, these models be-
come resource intensive, requiring large amounts
of memory and computation for both training and
inference (Janiesch et al., 2021).

Quantum computing is one avenue that offers a
possible way forward by providing a different and
more efficient method of computation (Gyongyosi
and Imre, 2019). Quantum characteristics such
as superposition and entanglement are essential to
how information can be represented and operated
on with much greater expressive power than clas-
sical bits allow. Based on these principles, quan-
tum machine learning (QML) has emerged as a
research field that seeks to merge quantum com-
putation with machine learning methods (Schuld
and Petruccione, 2021). Although a nascent field,
QML has been explored as an alternative to design-
ing more compact models that can capture patterns
differently from their classical counterparts.

Putting these principles into practice, this work
solves an important NLP task: part-of-speech
(POS) tagging in code-mixed text data from social
networks (Pandey et al., 2023). POS tagging works
by assigning grammatical roles to each word in a
sentence and is a crucial step in syntactic and se-
mantic analysis (Basisth et al., 2023). We present
a hybrid quantum gated recurrent units (QGRU)
model that integrates a quantum layer with classi-
cal recurrent layers. To evaluate the performance
of the proposed model, we perform POS tagging on
a code-mixed dataset. Based on our findings, this
approach competes with classical baselines in accu-
racy but achieves similar performance with fewer
trainable parameters, making it parameter efficient.
Still, the approach suggests that greater savings
could be realized when scaling to larger architec-
tures, where substituting intermediate layers with
quantum circuits may yield noticeable efficiency
gains.

Proceedings of the QuantumNLP: Integrating Quantum Cl)mputing with Natural Language Processing, pages 26-32
November 24, 2025 ©2025 Association for Computational Linguistics



The structure of this paper is as follows. Sec-
tion 2 introduces background on quantum comput-
ing and QML, Section 3 reviews related research,
Section 4 details the proposed model, Section 5
describes the dataset, Section 6 reports results and
analysis, and Section 7 concludes with future direc-
tions.

2 Background

2.1 Quantum Computing

Quantum computing is a paradigm of computation
that uses the principles of quantum mechanics to
process information in ways that are not possible
with classical systems (Gyongyosi and Imre, 2019).
In a classical computer, the basic unit of informa-
tion is the bit, which can take one of two values,
0 or 1. In quantum computing, the basic unit is
the quantum bit, or qubit. A qubit has two basic
states, |0) and |1), which are called computational
basis states. These basis states are commonly rep-
resented in vector form as

)

Unlike a classical bit, which can only be O or 1 at
a time, a qubit can exist in a superposition of both
states. The state of a single qubit can be expressed
as

[¥) = alo) + BI1),  with [a* +[8]* =1 (2)

where « and 3 are complex amplitudes. The
normalization condition ensures that the total prob-
ability of measuring the qubit in either state is one.
When multiple qubits are combined, they form a
joint system described by the tensor product of in-
dividual qubit states. For example, the state of two
qubits |¢)) ® |¢p) can be written as

|¢(;5> = a00]00> + 0501‘01> + Oé10|10> + 0411|11>

3)

This shows that a two-qubit system can represent
all four possible basis states at the same time. In
general, a n-qubit system can represent 2" states
in parallel, which provides exponential represen-
tational power compared to classical bits (Pandey
and Pakray, 2023). Another important property is
entanglement. Entangled qubits are correlated in
such a way that the state of one qubit cannot be
described independently of the other. For instance,
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an entangled two-qubit system may be described
as

1
V2

In this state, measuring the first qubit imme-
diately determines the outcome of the second.
Entanglement enables forms of information

processing that are not possible with classical
systems.

[@7) = —= (/00) + [11)) 4)

Quantum operations are carried out using quan-
tum gates, which are unitary matrices that trans-
form qubit states while preserving normalization.
For example, the Hadamard gate H creates a super-
position state:

1 1
7 E(I@ - 1)
®)

By combining such gates into circuits, quantum
computers can implement a wide variety of
computations. At the end of a computation, qubits
are measured, and the superposition collapses
into one of the basis states, with probabilities
determined by the amplitudes.

HI0) =

(10) +[1)), H[1) =

Together, these basic elements, qubits, superpo-
sition, entanglement, quantum gates, and measure-
ment, form the foundation of quantum computing.
They allow quantum systems to process and repre-
sent information in fundamentally different ways
than classical systems, opening possibilities for
speed-ups in certain computational tasks.

2.2  Quantum Machine Learning

Quantum machine learning (QML) is an emerg-
ing area of research that combines the principles of
quantum computing with machine learning (Schuld
and Petruccione, 2021). The goal is to take advan-
tage of the unique properties of quantum computa-
tion to help improve the process of learning from
data. While classical machine learning relies on al-
gorithms that run on conventional hardware, QML
explores how quantum states and operations can be
used to represent and process information.

In general, a QML model makes use of quantum
circuits whose parameters can be adjusted during
training, similar to how weights are updated in a
neural network. After a computation, quantum sys-
tems are measured, and the results are expressed as
expectation values of observables. The outcome of



a quantum measurement is typically expressed as
the expectation value of an observable. For a quan-
tum state 1)) and an observable Z, the expectation
value is defined as

(2) = (W12]y)

The output expectation values can now be used
in the same way that the output of a classical model
would be used, for instance, in calculating a loss
function during training.

The major advantages of QML include fewer
parameters, high-dimensional solution spaces, and
the possibility of forming correlations through en-
tanglement that is not possible while using classical
models. Quantum methods can also provide perfor-
mance gains for specific computation-related tasks.
However, these gains are highly dependent on the
application at hand and the current constraints of
quantum hardware. Currently, most QML meth-
ods are implemented in a hybrid manner, where
quantum circuits are merged with classical machine
learning components and trained using standard op-
timization methods (Sweke et al., 2020).

Recent work shows that there is growing interest
in applying QML to domains such as optimization,
quantum chemistry, and NLP (Pandey et al., 2023).
NLP tasks, in particular, are challenging due to
their heavy dependence on large datasets and com-
plex models with deep architectures, making them
a viable area of exploration for possible benefits of
QML. This motivates exploring QML in problems
such as POS tagging, where both efficiency and
performance are important considerations.

(6)

3 Related Work

POS tagging is a fundamental task in NLP, serving
as a foundational step for many downstream appli-
cations. The classical state-of-the-art for sequence
labeling tasks such as POS tagging has been dom-
inated by recurrent neural networks, particularly
Bidirectional Long Short-Term Memory (BiLSTM)
and Gated Recurrent Unit (GRU) architectures, of-
ten paired with a Conditional Random Field (CRF)
layer (Lample et al., 2016). However, such models
are typically parameter heavy and their applica-
tion to noisy code-mixed social media text presents
many challenges (Jamatia et al., 2015).

Coecke et al. (Coecke et al., 2020) introduced
a grammar-aware compositional DisCoCat frame-
work that maps the sentence structure to quantum
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circuits. This addresses directly the growing com-
putational demands of traditional machine learning
and deep learning models by leveraging quantum
circuits for language tasks. Our work, in contrast,
integrates a variational quantum algorithm in the
form of a parameterized circuit directly into a deep
learning model.

Many studies have shown that such a hybrid ap-
proach is valid for NLP tasks Pandey et al. (2024).
Another work by Shi et al. Shi et al. (2023) de-
tails a quantum-inspired neural network that uses
complex-valued embeddings to capture better se-
mantic information.These works showcase the po-
tential of using quantum principles to enhance clas-
sical NLP architectures.

A more recent development with a direct rela-
tion to our task, the application of quantum cir-
cuits to POS tagging, is demonstrated by Di Sipio
et al. Di Sipio et al. (2022). The authors intro-
duced a Quantum Long-Short-Term Memory (QL-
STM) model applied to a sequence tagging task.
This foundational work was extended by Pandey
et al. Pandey et al. (2022) in a low-resource lan-
guage. The same group later modified the QLSTM
model specifically for code-mixed social media
data (Pandey et al., 2023) and advanced it by mak-
ing a bidirectional variant (BiQLSTM) (Pandey
and Pakray, 2023)).

4 Architecture

This section discusses the architectures of the two
models that are compared in our study, a fully clas-
sical model, which serves as our baseline, and the
proposed hybrid quantum-classical model.

4.1 Classical Model

We chose to use a standard architecture for our base-
line model. It is built using Gated Recurrent Units
(GRU) (Cho et al., 2014). The model takes as input
sequences 100-dimensional word embeddings and
processes them via two bidirectional GRU layers
with a hidden state dimension of 16. Bidirectional-
ity allows the GRU layers to capture context-aware
representations by processing the information from
both preceding and succeeding tokens in the se-
quence. The output obtained from the GRU layers
is passed through a fully connected classification
head, which helps map the hidden states to a di-
mension corresponding to the number of POS tags.

The output of the fully connected layer is passed
to a Conditional Random Field (CRF) layer which



produces the final tag sequence (Lample et al.,
2016). CRF is a statistical modeling method that
learns transition probabilities between adjacent tags
to support sequence tagging tasks. This helps the
model to consider the context of neighboring pre-
dictions based on which the model can penalize
grammatically unlikely tag sequences, thereby im-
proving the accuracy and coherence of the output.

4.2 Hybrid Model

Our proposed hybrid model uses the same core
layers as the baseline models. Embedding, Bidi-
rectional GRU and the CRF layers are used in the
hybrid model as well. The only distinction is the
quantum layer that replaces the fully-connected
classification head. The quantum layer receives its
input from the fully connected layer attached to
the GRU layers. The main purpose of this fully
connected layer is to downsize the output from the
GRU layers to match the input size of the quan-
tum layer. It was included in the baseline model to

ensure consistency.

Fully Connected Layer

Output Tag Sequence

Figure 1: Architecture of the Hybrid Model.
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Figure 2: The 8-qubit variational quantum circuit. The
initial Ry gates are parameterized by input features, and

the Rx gates are parameterized by trainable weights.

This entire entangling block is repeated 6 times.

Algorithm 1 Quantum Circuit Layer

1: Input: Classical feature vector x € R®, quan-
tum circuit weights .
2: Output: Expectation values vector E € RS,
Initialize 8-qubit state to |0)5.
Encode x into the state using AngleEmbed-
ding.
Apply the variational BasicEntanglingLayers
circuit parameterized by weights W.
for: =07do
Measure (0,) on qubit .
Ei — (0’ z>i~
end for
return E.

The input to the quantum layer is an 8 dimen-
sional vector This vector is encoded and processed
by a variational quantum circuit. The quantum
circuit consists of two main components. Each
element in the input vector is first encoded on a
qubit using an AngleEmbedding layer, a standard
method for mapping feature vectors into qubit ro-
tations. Following this, a BasicEntanglingLayers
circuit is used with trainable parameters which ap-
plies one-parameter single-qubit rotations on each
qubit followed by a ring of Controlled-Not (CNOT)
gates, where each qubit is entangled with its neigh-
bor, and the last qubit is connected back to the
first, forming a closed chain. This circuit architec-
ture was chosen for the quantum layer to strike a
practical balance between circuit expressibility and
parameter efficiency. Methods for evaluating the
effectiveness of such circuits are an active area of
research (Sim et al., 2019).

The operation of the quantum circuit compu-
tation is discussed in Algorithm 1. After apply-
ing the basic entanglement layer, we measure the
qubits to output classical values. The resulting 8-
dimensional output vector of Pauli-Z expectation
values is then mapped to the tag space by a final
linear layer, which provides the input logits for the
CRF layer for the final tag prediction.

5 Dataset and Preprocessing

5.1 Corpus Description

The data set used in our experiments is a social
media corpus of code-mixed Hindi-English text. It
was originally collected and annotated by Jamatia
et al. (2015). The corpus consists of messages from
the IIT Bombay Facebook Confession page, which



contains informal posts and chat-like comments.
This type of data presents unique challenges for
NLP tasks due to non-standard grammar, transliter-
ated spellings, and informal language (Laskar et al.,
2022).

The data set used is a component of a larger cor-
pus that also includes WhatsApp and Twitter data
and covers other pairs of Indian languages such as
Bengali-English and Telugu-English (Pandey et al.,
2023). However, this study focuses exclusively on
the Hindi-English Facebook portion. The language
distribution at the token level, as reported by the
original authors, is shown in Table 1. It highlights
that the text is predominantly English, with a signif-
icant presence of Hindi and language-independent
universal tokens, such as punctuation. The data
set is annotated with a coarse-grained POS tagset,
which combines universal tags with categories spe-
cific to the text of social networks. This tagset,
which comprises 11 unique tags, is described in
Table 2. Our data set loading process yielded a
total of 1069 sentences.

5.2 Preprocessing and Data Representation

For feature representation, each word in the cor-
pus was mapped to a 100-dimensional vector
using precomputed embeddings for this data set.
Any word not present in the embedding vocabu-
lary was represented by a zero vector. To handle
variable sentence lengths for batch processing, all
sequences were standardized to a uniform length of
62 tokens by padding shorter sequences and trun-
cating longer ones. This length was determined on
the basis of the 95th percentile of sentence lengths
in the corpus. Following these preprocessing steps,
the data set was partitioned into training sets (60%),
validation (20%) and testing (20%), resulting in
641 samples for training, 214 for validation and
214 for testing.

Token Language | Distribution (%)
English 75.61
Hindi 4.17
Universal 16.53
Named Entity 2.19
Acronym 1.46
Mixed 0.02
Undefined 0.01

Table 1: Token-level language distribution for the Face-
book portion of the corpus, as reported by Jamatia et al.
(2015).

Tag Description

G N Noun

GV Verb

G_PRP | Pronoun

G_J Adjective

G R Adverb

PSP Pre- or Post-position
G_PRT | Particle

CC Conjunction
G_SYM | Quantifier / Symbol
DT Determiner

G_X Residual / Other

Table 2: Coarse-grained POS tagset used in the dataset.

6 Experiment and Results

6.1 Experimental Setup

To evaluate our proposed model, we conducted a
series of experiments to benchmark its performance
against a purely classical counterpart. The models
were implemented using PyTorch, with the quan-
tum components built in Pennylane and executed
on the default qubit simulator. The experiments
compare a classical GRU based model against the
proposed hybrid model. To ensure a fair compari-
son, a consistent set of hyperparameters was used
to train both models, as detailed in Table 3.

Both models utilize a final Conditional Random
Field (CRF) layer and were trained by minimizing
its negative log-likelihood. Performance was evalu-
ated using token-level accuracy on the held-out test
set. Training was performed for a maximum of 300
epochs, with early stopping triggered if validation
loss did not improve for 5 consecutive epochs.

Parameter Value
Embedding Dimension 100
GRU Hidden Dimension | 16
GRU Layers 2
Dropout Rate 0.3
Optimizer Adam
Learning Rate 0.001
Batch Size 32
Number of Qubits 8

Table 3: Hyperparameters used for training.

6.2 Results

The final performance of both models was deter-
mined by evaluating the best-performing check-



point, selected based on the peak validation accu-
racy observed during training. A summary of these
results, alongside the final test accuracy and total
parameter counts, is presented in Table 4. The pro-
posed Hybrid QGRU model achieved a final test
accuracy of 78.13%, a result comparable to the
80.29% accuracy achieved by the fully Classical
GRU baseline. The central finding, however, lies in
the model’s efficiency. The hybrid model required
only 16,682 trainable parameters to achieve this re-
sult, a modest but clear reduction of approximately
5.7% compared to the 17,690 parameters of the
classical model.

Model Params | Val. Acc. (%) | Test Acc. (%)
Classical GRU | 17,690 81.80 80.29
Hybrid QGRU | 16,682 71.77 78.13

Table 4: Performance comparison of the baseline and
hybrid models.

To provide a more granular analysis, Table 5
details a per-tag comparison of the F1-scores for
both models on the test set. This breakdown re-
veals a nuanced performance landscape. For high-
support, core grammatical categories such as G_N
(Noun), G_V (Verb), and DT (Determiner), the
hybrid model’s performance is nearly identical to
the classical baseline. Notably, it performs slightly
better on G_PRP (Pronoun) tags. However, the
hybrid model struggles with certain low-frequency
tags, showing a significant performance drop for
CC (Conjunction) and struggling significantly with
G_SYM (Symbol) tags, failing to correctly classify
any instance, likely due to their very low support
in the test set. This suggests that while the quan-
tum layer is effective at learning representations for
common classes, it may be less robust on sparse
data categories compared to its classical counter-
part in this configuration.

7 Conclusion

In this work, we addressed the challenge of high
parameter counts in deep learning models for NLP
by proposing and evaluating a hybrid quantum-
classical Gated Recurrent Unit (QGRU). We ap-
plied this model to the task of POS tagging on
code-mixed social media text, a domain charac-
terized by noisy and non-standard language. Our
findings indicate that the hybrid model achieves
a test accuracy of 78.13%, which is comparable
to the 80.29% accuracy of its classical counter-
part, while requiring approximately 5.7% fewer
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Tag Support | Cls. F1 | Hyb. F1 | A (Hyb-Cls)
CcC 118 0.52 0.19 -0.33
DT 238 0.89 0.91 +0.02
G 199 0.62 0.54 -0.08
G_N 755 0.82 0.81 -0.01
G_PRP 336 0.83 0.86 +0.03
G_PRT 142 0.51 0.42 -0.09
G_R 188 0.63 0.56 -0.07
G_SYM 31 0.43 0.00 -0.43
G_V 697 0.85 0.82 -0.03
G_X 478 0.96 0.95 -0.01
PSP 339 0.81 0.78 -0.03

Table 5: Per-tag F1-score comparison on the test set. A
indicates the change in F1-score for the hybrid model.

trainable parameters. This outcome serves as a suc-
cessful proof-of-concept, demonstrating that the
integration of variational quantum circuits into re-
current architectures is a viable strategy for reduc-
ing model complexity. Our work contributes to
the growing field of quantum NLP by illustrating
a practical approach to develop more compact and
parameter-efficient models.

References

Nihar Jyoti Basisth, Tushar Sachan, Neha Kumari,
Shyambabu Pandey, and Partha Pakray. 2023. An
automatic pos tagger system for code mixed indian
social media text. In International conference on
computational intelligence in communications and
business analytics, pages 273-286. Springer.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar.

Bob Coecke, Giovanni de Felice, Konstantinos Me-
ichanetzidis, and Alexis Toumi. 2020. Foundations
for near-term quantum natural language processing.
arXiv preprint arXiv:2012.03755.

Riccardo Di Sipio, Jia-Hong Huang, Samuel Yen-Chi
Chen, Stefano Mangini, and Marcel Worring. 2022.
The dawn of quantum natural language processing.
In ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8612-8616. IEEE.

Laszlo Gyongyosi and Sandor Imre. 2019. A survey on
quantum computing technology. Computer Science
Review, 31:51-71.

Anupam Jamatia, Bjorn Gambéck, and Amitava Das.
2015.  Part-of-speech tagging for code-mixed



English-Hindi Twitter and Facebook chat messages.
In Proceedings of Recent Advances in Natural Lan-
guage Processing, pages 239-248, Hissar, Bulgaria.

Christian Janiesch, Patrick Zschech, and Kai Heinrich.
2021. Machine learning and deep learning. Elec-
tronic Markets, 31(3):685-695.

Dan Jurafsky. 2000. Speech & Language Processing.
Pearson Education India.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260-270, San Diego, California.

Sahinur Rahman Laskar, Rahul Singh, Shyambabu
Pandey, Riyanka Manna, Partha Pakray, and Sivaji
Bandyopadhyay. 2022. Cnlp-nits-pp at mixmt 2022:
Hinglish-english code-mixed machine translation. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 1158-1161.

Shyambabu Pandey, Nihar Jyoti Basisth, Tushar Sachan,
Neha Kumari, and Partha Pakray. 2023. Quantum
machine learning for natural language processing
application. Physica A: Statistical Mechanics and its
Applications, 627:129123.

Shyambabu Pandey, Pankaj Dadure, Morrel V. L. Nun-
sanga, and Partha Pakray. 2022. Parts of speech
tagging towards classical to quantum computing. In
2022 IEEE Silchar Subsection Conference (SILCON),
pages 1-6. IEEE.

Shyambabu Pandey and Partha Pakray. 2023. Bi-
quantum long short-term memory for part-of-speech
tagging. In Proceedings of the 19th International
Conference on Natural Language Processing (ICON),
pages 272-278, Goa, India.

Shyambabu Pandey, Partha Pakray, and Riyanka Manna.
2024. Quantum classifier for natural language
processing applications. Computacion y Sistemas,
28(2):695-700.

Stuart J. Russell and Peter Norvig. 2010. Artificial In-
telligence: A Modern Approach. Pearson Education,
Inc.

Maria Schuld and Francesco Petruccione. 2021. Ma-
chine Learning with Quantum Computers. Springer.

Abdel-Nasser Sharkawy. 2020. Principle of neural net-
work and its main types. Journal of Advances in
Applied & Computational Mathematics, 7:8-19.

Jinjing Shi, Zhenhuan Li, Wei Lai, Fangfang Li,
Ronghua Shi, Yanyan Feng, and Shichao Zhang.
2023. Two end-to-end quantum-inspired deep neural
networks for text classification. IEEE Transactions
on Knowledge and Data Engineering, 35(4):4335—
4345.

Sukin Sim, Peter D Johnson, and Aldn Aspuru-Guzik.
2019. Expressibility and entangling capability of
parameterized quantum circuits for hybrid quantum-
classical algorithms. Advanced Quantum Technolo-
gies, 2(12):1900070.

Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria
Schuld, Paul K. Faehrmann, Barthélemy Meynard-
Piganeau, and Jens Eisert. 2020. Stochastic gradient
descent for hybrid quantum-classical optimization.
Quantum, 4:314.



