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Abstract

Paraphrase Detection is a core task in natural
language processing (NLP) that aims to deter-
mine whether two sentences convey equiva-
lent meanings. This work proposes a hybrid
quantum—classical framework that integrates
Sentence-BERT embeddings, simulated quan-
tum feature encoding, and classical machine
learning models to enhance semantic similar-
ity detection. Initially, sentence pairs are em-
bedded using Sentence-BERT and standardized
through feature scaling. These representations
are then transformed via rotation-based quan-
tum circuits to capture higher-order feature in-
teractions and non-linear dependencies. The re-
sulting hybrid feature space, combining classi-
cal and quantum-inspired components are eval-
uated using LightGBM and deep neural net-
work classifiers. Experimental results shows
that the hybrid model incorporating quantum-
inspired features achieved superior classifica-
tion performance, yielding a 10% improvement
in overall accuracy outperforming standalone
deep learning baselines. These findings demon-
strate that quantum—classical fusion enhances
semantic feature extraction and significantly
improves paraphrase detection performance.

1 Introduction

Recent studies have explored the intersection of
quantum computing and Natural Language Pro-
cessing (NLP) to enhance semantic understanding
and text similarity modeling. Paraphrase detection
is an important task in natural language process-
ing that aims to identify whether two sentences
convey the same meaning. It has applications in
areas such as question answering, plagiarism de-
tection, and semantic search (Madaan et al., 2016).
Classical machine learning methods have achieved
significant progress using embedding models and
gradient boosting techniques. However, capturing
deeper semantic relationships between sentence
pairs remains a challenge due to the limitations

20

of classical representations. Quantum computing
provides an exciting way through the encoding of
linguistic information into quantum states, which
have a natural way to represent and process the
correlations that are hard to model in classical envi-
ronments. Emerging advances in Quantum NLP (Q-
NLP) demonstrate that quantum circuits can repre-
sent structural and semantic relationships between
sentence parts in manners that complement clas-
sical neural architectures (Meichanetzidis et al.,
2023).

Earlier works (Buhrman et al., 2001) introduced
quantum fingerprinting, demonstrating how quan-
tum states can represent compact data signatures
for efficient comparison—Ilaying the theoretical
foundation for quantum information comparison
techniques. (Darwish et al., 2023) proposed a
quantum genetic algorithm for semantic textual
similarity estimation in plagiarism detection, high-
lighting quantum-enhanced optimization in NLP
tasks. Gao et al. (Gao et al., 2024) developed a
quantum-inspired hierarchical semantic interaction
model for text classification that captures multi-
level contextual relations between words. Mean-
while, Guarasci et al. (Guarasci et al., 2022) dis-
cussed the broader challenges and opportunities in
quantum natural language processing, emphasizing
scalability, noise resilience, and quantum circuit
design constraints. In contrast, the present research
focuses specifically on paraphrase detection using
a hybrid quantum—classical framework, integrat-
ing both classical semantic embeddings and quan-
tum circuit-based similarity estimation for more
accurate and interpretable detection of paraphrased
sentences. Due to the exponential cost of simu-
lating larger circuits, the initial system encodes a
low-dimensional subset of SBERT features into a
4-qubit circuit as a feasibility study. This estab-
lishes a baseline for scaling quantum components
in future work.

The remainder of this paper is organized as
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follows: Section 2 defines the paraphrase detec-
tion task and describes the dataset used in this
study. Section 3 outlines the proposed hybrid quan-
tum—classical framework, including data prepro-
cessing, SBERT embeddings, quantum feature gen-
eration, and classifier design. Section 4 reports
the experimental results and performance analysis,
while Section 5 concludes the paper.

2 Task and Dataset

The task of paraphrase detection can be defined
formally as follows: given two input sentences
sl and s2, decide if they are semantically equiva-
lent. Although certain pairs can be determined by
direct word overlap, most need more in-depth mod-
eling of sentence structure, context, and meaning.
The core problem is to identify semantic similarity
that goes beyond surface-level patterns of words.
This study used a supervised Kaggle dataset, equiv-
alent to the Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005), which
consists of paired text samples divided into train-
ing and test sets. The training set contains 3,554
sentence pairs, while the test set has 1,465 pairs.
Each record in the dataset is structured with five
columns: two identifier fields (#1 ID, #2 ID), two
text fields (#1 String, #2 String), and one label
(Quality) indicating the relationship between the
sentences. The label indicates whether the two
sentences are paraphrased (1) or not (0). The data
set is in CSV format, encoded in UTF-8, and uses
consistent delimiters for easy integration into ma-
chine learning models. Its structure allows exper-
iments in sentence-level detection using classical,
deep learning, or hybrid quantum (Biamonte et al.,
2017) deep learning approaches. Using MRPC
ensures standard benchmarking and comparability
with prior NLP research.!

3 Methodology

This work explores a hybrid quantum-classical ap-
proach for paraphrase detection. The model first
encodes each pair of sentences using Sentence-
BERT (Reimers and Gurevych, 2019) to obtain
dense vector embeddings. The hybrid representa-
tion—combining both classical embeddings and
quantum features—is reduced in dimensionality
using Principal Component Analysis (PCA) (Jol-
liffe, 2002). Two main classifiers are then applied:

"https://www.kaggle.com/datasets/doctri/microsoft-
research-paraphrase-corpus
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LightGBM for boosted decision-tree learning and
a Multi-Layer Perceptron (MLP) for deep learning
inference. The final output is a binary prediction
indicating whether the input sentences are para-
phrased (1) or not (0).

Figure 1 illustrates the proposed hybrid quan-
tum—classical system architecture, which is or-
ganized into four primary layers, each contribut-
ing to efficient paraphrase detection through in-
tegrated quantum—classical processing (Havlicek
et al., 2019). The Data Preprocessing Layer is re-
sponsible for acquiring, cleaning, and organizing
the input data. It pairs sentences with their corre-
sponding labels, removes missing or noisy entries,
ensures balanced class distribution, and stores the
cleaned data along with their embeddings for sub-
sequent processing. The Embedding Layer uses
SentenceBERT that transforms textual data into
dense numerical representations using sentence-
level embedding models, capturing the semantic
relationships necessary for downstream learning.
Each of them acts as a parameter for the learning
and testing stages. The features are balanced by
standardization for fast convergence, so that each
parameter has mean O and standard deviation 1.
The Hybrid Processing Layer augments these clas-
sical embeddings with quantum-enhanced represen-
tations to capture higher-order dependencies and
improve discriminative capability. This layer inte-
grates modules for quantum feature generation, di-
mensionality reduction using PCA, and feature fu-
sion to form a unified hybrid feature space. Finally,
the Learning and Prediction Layer manages model
training and inference, leveraging both classical
and hybrid machine learning models to perform
paraphrase classification as a binary classification
task.

3.1 Data Preprocessing

The preprocessing stage begins by identifying the
text and label columns in the dataset. Rows with
missing values in these columns are removed to
maintain data consistency. The text columns are
cast to string type, and the label column to inte-
ger type. Sentence pairs are then constructed by
concatenating the two text columns with a sepa-
rator token. For embedding generation, SBERT
encodes each sentence pair into dense numeric vec-
tors, which are standardized using a StandardScaler
to achieve zero mean and unit variance. These stan-
dardized embeddings are subsequently used for
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Figure 1: Hybrid Quantum-Classical Architecture for Paraphrase Detection

quantum feature generation. No additional text
normalization, such as lowercasing or punctuation
removal, is applied.

3.2 Quantum Feature Generation

The quantum feature generation process begins
with the SBERT embeddings of sentence pairs. In
the current implementation, four qubits are em-
ployed. The first four parameters of the 384-
dimensional embedding vector are selected for
quantum encoding.The first four SBERT dimen-
sions were selected to ensure deterministic, repro-
ducible mapping for a cost-feasible simulation. Fu-
ture work will incorporate feature-selection meth-
ods (filter/wrapper techniques) to identify more dis-
criminative embedding dimensions for quantum en-
coding. Each parameter is normalized to the range
[—, 7] and mapped to a qubit using an R, rota-
tion gate. The individual qubit states are combined
using the Kronecker product to form a multi-qubit
quantum state. Entanglement is introduced through
a chain of CNOT gates connecting qubit 0 to 1,
1 to 2, and 2 to 3, thereby capturing correlations
among qubits.CNOT gates introduce entanglement
among the encoded parameters, allowing the mea-
surement distribution to capture interaction effects
beyond linear SBERT encoding. These interactions
contribute to the hybrid feature space’s expressive-
ness. The resulting quantum state is measured,
yielding two measurement values per qubit, for a
total of sixteen output values. These outputs consti-
tute the quantum feature vector, which is then used
as input to the hybrid model alongside the SBERT
embeddings. Figure 2 illustrates the quantum cir-
cuit for the hybrid models, where four qubits are
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initialized with Ry rotations, entangled via CNOT
gates. Only a 4-dimensional slice of the SBERT
vector is used for quantum encoding, as compact
encoding is designed as a nonlinear feature transfor-
mation rather than a full high-dimensional quantum
embedding. The circuit is fixed and non-trainable,
with parameters directly mapped from SBERT val-
ues.
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Figure 2: Quantum Circuit

3.3 Classifier Models

This section presents three model variants used in
our study for paraphrase detection: (1) a Light-
GBM (LGBM) classifier based on gradient boost-
ing with optimized hyperparameters; (2) a deep
learning (DL) model comprising three fully con-
nected layers with ReLU activations and dropout
regularization; and (3) a hybrid model that inte-
grates SBERT embeddings with quantum-inspired
features, used in conjunction with either the LGBM
or DL classifier to exploit both classical and quan-
tum representations.



3.3.1 LGBM

LightGBM (Ke et al., 2017) is a gradient boosting
framework that builds ensembles of decision trees
sequentially, with each tree aiming to correct the
residual errors of its predecessors. The model is
tuned using a hyperparameter grid with the num-
ber of leaves 31, 63, 127, 255 and learning rates
0.01, 0.05, 0.1, over a maximum of 1000 boosting
iterations. SBERT embeddings of sentence pairs
serve as input features, and the best combination
of leaves and learning rate is selected as the final
model. Figure 3 visually explains the "leaf-wise"
growth strategy of the LGBM algorithm. Instead of
growing level by level, the tree is built by expand-
ing the leaf that will cause the largest reduction in
error.
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Figure 3: Growth strategy of the LGBM algorithm

3.3.2 DL

We employ a fully connected feedforward neural
network for classification. The model takes SBERT
embeddings as input and passes them through three
hidden layers of 2048, 1024, and 512 neurons with
ReLU activations and 0.3 dropout. It is trained for
50 epochs using the Adam (Kingma, 2014) opti-
mizer and cross-entropy loss with a batch size of
128. Figure 4 depicts the Deep Learning model
used in this study. It is a fully connected feedfor-
ward network comprising multiple hidden layers
with ReL.U activations, each followed by dropout
for regularization, and a Softmax output layer for
classification.

3.3.3 Hybrid Model

The hybrid model combines SBERT embeddings
with quantum-inspired features to enhance the
learning. The SBERT embeddings and quantum
features are concatenated to form a hybrid feature
vector. This hybrid representation serves as input
to either a hybrid LGBM classifier or a hybrid DL
model.
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Figure 4: Deep Learning Model Architecture

4 Results & Discussions

Table 1 shows the performance metrics of the mod-
els in different sizes of training data. In terms of
accuracy, the Hybrid-LGBM model achieved the
highest overall performance, reaching 0.69 in 70%
of the data. It consistently outperformed all other
models across the 20-80% data range. The DL and
Hybrid-DL models lagged behind the LGBM and
Hybrid-LGBM models, likely due to overfitting in
the DL models. The performance of Hybrid-DL
improves significantly at higher data percentages
(80-100%). In precision, the Hybrid-LGBM again
outperformed the other models, achieving its best
precision at 70% of the data. The DL and Hybrid-
DL models initially showed lower precision, but
the Hybrid-DL model steadily improved after 60%
of the data, ultimately achieving its highest preci-
sion at 100% of the dataset. Recall indicates that
LightGBM and Hybrid-LGBM perform best, both
clearly outperforming DL and Hybrid-DL, with
Hybrid-LGBM showing slightly higher recall than
LGBM. Hybrid-DL improves notably after 60%
of the data, surpassing DL at 80% and peaking at
100%. While both DL models perform similarly
on smaller datasets, Hybrid-DL achieves higher
F1 scores at larger data sizes (80—100%), outper-
forming the other models. At 100 percent training
data, the Hybrid-LGBM model exhibited higher
accuracy but a lower F1 score due to dataset class
imbalance. LGBM optimizes leaf-wise splits that
increase precision at the cost of recall, which im-
pacts the F1 metric. The best balance between ac-
curacy and F1 was observed in 70% training data.
The Hybrid-DL model showed sensitivity to over-
fitting due to the larger hybrid feature dimension.
Additional regularization and smaller architectures
will be explored in future phases.



% Model Accuracy Precision Recall F1-Score
10 LGBM 0.6767 0.6559 0.6767 0.6228
DL 0.6528 0.6270 0.6528 0.6281
Hybrid-LGBM 0.6685 0.6440 0.6685 0.5998
Hybrid-DL 0.6432 0.6262 0.6432 0.6309
20 LGBM 0.6828 0.6671 0.6828 0.6297
DL 0.6576 0.6348 0.6576 0.6365
Hybrid-LGBM 0.6849 0.6868 0.6849 0.6142
Hybrid-DL 0.6411 0.6297 0.6411 0.6338
30 LGBM 0.6842 0.6659 0.6842 0.6403
DL 0.6336 0.6226 0.6336 0.6268
Hybrid-LGBM 0.6863 0.6757 0.6863 0.6299
Hybrid-DL 0.6528 0.6281 0.6528 0.6299
40 LGBM 0.6808 0.6626 0.6808 0.6293
DL 0.6514 0.6362 0.6514 0.6405
Hybrid-LGBM 0.6883 0.6794 0.6883 0.6326
Hybrid-DL 0.6377 0.6262 0.6377 0.6305
50 LGBM 0.6863 0.6745 0.6863 0.6317
DL 0.6364 0.6321 0.6364 0.6340
Hybrid-LGBM 0.6876 0.6844 0.6876 0.6248
Hybrid-DL 0.6494 0.6391 0.6494 0.6429
60 LGBM 0.6876 0.6701 0.6876 0.6478
DL 0.6391 0.6365 0.6391 0.6377
Hybrid-LGBM 0.6958 0.7004 0.6958 0.6359
Hybrid-DL 0.6329 0.6204 0.6329 0.6250
70 LGBM 0.6931 0.6858 0.6931 0.6414
DL 0.6521 0.6472 0.6521 0.6494
Hybrid-LGBM 0.6979 0.7060 0.6979 0.6374
Hybrid-DL 0.6507 0.6426 0.6507 0.6458
80 LGBM 0.6876 0.6775 0.6876 0.6327
DL 0.6391 0.6241 0.6391 0.6289
Hybrid-LGBM 0.6910 0.6893 0.6910 0.6311
Hybrid-DL 0.6651 0.6514 0.6651 0.6551
90 LGBM 0.6958 0.6894 0.6958 0.6462
DL 0.6473 0.6413 0.6473 0.6439
Hybrid-LGBM 0.6931 0.6912 0.6931 0.6357
Hybrid-DL 0.6746 0.6624 0.6746 0.6656
100 LGBM 0.6972 0.6943 0.6972 0.6451
DL 0.6644 0.6508 0.6644 0.6545
Hybrid-LGBM 0.6924 0.6986 0.6924 0.6277
Hybrid-DL 0.6801 0.6678 0.6801 0.6708

Table 1: Performance metrics of models across different training data percentages.

Figure 5 and Figure 6 compare the accuracy and
F1 score of four models—LGBM, DL, Hybrid-
LGBM, and Hybrid-DL across varying amounts of
training data.

Accuracy for Different Models

Figure 5: Accuracy

F1 for Different Models
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5 Conclusion

We have compared quantum—classical hybrid learn-
ing with classical learning architectures in data-
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Figure 6: F1 Score




scarce environments. Evaluating LGBM, DL,
Hybrid-LGBM, and Hybrid-DL, we observed that
Hybrid-LGBM consistently delivers competitive
performance while demonstrating superior data ef-
ficiency, achieving a maximum accuracy of 0.69
with 70% of training data. Future work may further
improve accuracy by experimenting with alterna-
tive quantum circuits and varying the number of
qubits.

6 Ethics

The dataset consists of publicly available, non-
sensitive text corpora. Experiments comply with
data licenses and research standards, with no hu-
man subjects involved, so ethical approval was not
required. The hybrid quantum—classical framework
is for research purposes only, and all references are
acknowledged.
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