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Abstract

Traditional machine learning and deep learning
models have demonstrated remarkable perfor-
mance across various NLP tasks in multiple
languages. However, these conventional mod-
els often struggle with languages with com-
plex linguistic structures and nuanced contexts,
such as Bengali. Recent advancements in quan-
tum computing offer promising solutions for
tackling complex, computationally challenging
problems, providing faster, more efficient pro-
cessing than classical systems. This research
aims to address the challenges posed by the in-
tricate linguistic structure of the less-resourced
Bengali language by developing a quantum-
enhanced framework for sentiment classifica-
tion and claim-checkworthiness identification.
We created a classical LSTM framework and
proposed novel 2-qubit and 4-qubit classical-
quantum frameworks, evaluating their effec-
tiveness for sentiment classification and claim-
checkworthiness identification tasks in Bengali.
An entirely new dataset comprising ~3K sam-
ples was developed by curating Bengali news
headlines from prominent sources. We tagged
these headlines with sentiment and claim check-
worthy labels using state-of-the-art LLMs. Our
findings indicate that the quantum-enhanced
frameworks outperform the traditional models
in both tasks. Notably, the 4-qubit-based frame-
work achieved the highest F1-score in senti-
ment classification, while the 2-qubit-based
framework demonstrated the best F1-score in
claim checkworthiness identification.

1 Introduction

The rapid growth of information on the internet has
intensified the challenges of processing and analyz-
ing natural languages at a scale. Two critical tasks
in this domain are sentiment analysis, which iden-
tifies the emotional tone intended in a sentence as
positive, negative, or neutral, and claim checkwor-
thiness identification, which determines whether a
sentence constitutes a checkworthy claim or not,
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facilitating further fact-checking to mitigate mis-
information and disinformation. While classical
deep learning approaches have achieved remark-
able performance in both tasks, their performance
in a quantum-computing environment has not been
broadly explored.

Quantum Computing, a trending and emerging
topic in the computer science domain, is based
on the fundamentals of quantum physics, such as
superposition and entanglement (Gyongyosi and
Imre, 2019). Due to the superposition, entangle-
ment, and other unique characteristics, quantum
computers can solve problems more efficiently
than classical computers by speeding up compu-
tational time with less resource utilization (Gy-
ongyosi and Imre, 2019; Pandey and Pakray, 2023).
One of the best examples for assessing the power of
quantum computing is the breaking of the famous
Rivest—Shamir—Adleman (RSA) algorithm (Rivest
etal., 1978). To break the RSA algorithm generally,
a classical computer takes billions of years; how-
ever, a quantum computer takes only a few hours
to break the RSA algorithm (Shor, 1997; Proos and
Zalka, 2004).

One primary application of quantum comput-
ing is Quantum Machine Learning (QML). Where
classical computers require a large amount of data
and enormous computational resources, quantum
computers could learn from less data, understand
complex patterns in data, and handle noisy data in
a better way than classical computers (Neumann
et al., 2019). These advantages of quantum com-
puting inspire us to analyze NLP tasks, such as
sentiment classification and claim checkworthiness
identification, using QML methods, particularly in
less-resourced languages like Bengali.

The seventh most widely spoken language glob-
ally, Bengali represents over 272 million speakers,
with a majority portion in India and Bangladesh,
yet remains significantly underrepresented in the
natural language processing research community
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compared to high-resource languages like English.
This disparity becomes particularly pronounced
when addressing sophisticated computational tasks
such as sentiment classification or claim checkwor-
thiness identification, where the linguistic complex-
ity and contextual nuances of Bengali pose sub-
stantial challenges for traditional machine learning
approaches.

Our research addresses the linguistic challenges
of the Bengali language and develops a novel
classical-quantum hybrid framework for sentiment
classification and claim checkworthiness detection
in Bengali texts. The contributions in this paper
can be summarized as follows:

* We have developed an entirely new Bengali
dataset for claim checkworthiness detection and
sentiment classification, with a sample size of ap-
proximately 3,000, curating data from the promi-
nent Bengali news portal ‘Sangbad Pratidin’, and
annotating sentiment and claim labels using three
state-of-the-art Large Language Models (LLMs):
GPT-40-mini (OpenAl et al., 2024), Llama-4
(Touvron et al., 2023), and GPT-4.1-mini, fol-
lowed by majority voting.!

* We developed a classical LSTM framework and a
classical-quantum hybrid framework using Vari-
ational Quantum Circuit (VQC) for sentiment
classification and claim checkworthiness identifi-
cation.

* We perform comparative analysis between classi-
cal LSTM and classical-quantum hybrid frame-
works for both sentiment classification and claim
checkworthiness detection, providing valuable
insights into their performance.

The remainder of this paper is organized as fol-
lows: Section 2 presents the related work, pro-
viding an overview of recent studies in the field
of quantum NLP. In Section 3, we discuss our
data collection strategy, the process of dataset
preparation using LL.Ms, and the analysis of inter-
annotator agreement. Section 4 covers the method-
ologies for developing both classical LSTM models
and classical-quantum hybrid frameworks utilizing
VQCs, along with the training hyperparameters.
Section 5 presents the results, discussing the out-
comes of different frameworks for both tasks. Fi-
nally, Section 6 concludes the paper by outlining

!The dataset is publicly available at: https://github.com/
pritampal98/quantum-sentiment-claim
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the valuable findings from this research and sug-
gesting future directions for this work.

2 Related Works

In this section, we discuss some related works on
quantum computing in the natural language pro-
cessing (NLP) domain. Although quantum com-
puting has been a hot topic for the last decade, the
applications of quantum computing in the NLP do-
main have not been extensively explored and are
still in the early stages (Varmantchaonala et al.,
2024).

Basile and Tamburini (2017) proposed quantum
language models using quantum probability theory.
The authors have shown that their proposed quan-
tum language models outperform the state-of-the-
art language models in terms of perplexity scores.
Tamburini (2019) also used quantum probability
theory for developing a word sense disambiguation
algorithm.

A joint multi-modal multi-task learning frame-
work for sentiment and sarcasm detection us-
ing quantum probability was proposed by Liu
et al. (2021). The authors evaluated their pro-
posed framework on two datasets, MUStARDex¢
(Chauhan et al., 2020) and Memotion (Sharma
et al., 2020), demonstrating that its performance
surpasses that of the state-of-the-art. Phukan and
Ekbal (2023) proposed a multimodal framework
for sentiment analysis using a variational quan-
tum circuit (VQC) (Qi et al., 2021). The authors
have also demonstrated that their framework out-
performs other frameworks for the CMU-MOSEI
dataset (Bagher Zadeh et al., 2018). A multimodal
quantum-based framework for emotion detection
was also explored in the study by Li et al. (2023).

One of the popular NLP tasks, part-of-speech
(POS) tagging, was also explored by several re-
searchers (Sipio et al., 2021; Pandey et al., 2022;
Pandey and Pakray, 2023) utilizing QLSTM. While
Sipio et al. (2021) and Pandey et al. (2022) worked
with unidirectional QLSTM, Pandey and Pakray
(2023) used bidirectional QLSTM in their study
to identify POS tags in a text. In contrast, Pandey
et al. (2022) used the Mizo language, which is a
low-resourced Indian language, and Pandey and
Pakray (2023) used codemixed texts in their exper-
iments.

Quantum frameworks are also explored in the do-
main of text classification (Xu et al., 2024; Shi et al.,
2023), sentiment analysis (Yan et al., 2024; Zhang



et al., 2019), sarcasm detection, claim identifica-
tion (Pal and Das, 2025), and metaphor detection
(Qiao et al., 2024) tasks. While Xu et al. (2024)
used quantum RNNs to develop their text classifi-
cation framework and evaluated their models in the
Rotten Tomatoes dataset (Pang and Lee, 2005), Shi
et al. (2023) developed quantum-inspired convolu-
tion neural network-based models and evaluated
their models on popular benchmark datasets such
as SST, SUBJ, MPQA, etc.

Coecke et al. (2020) proposed ‘DisCoCat’, a
quantum framework for NLP tasks that preserves
the linguistic meaning and structure of a text and
converts them into a quantum circuit. The appli-
cations of the DisCoCat framework are shown in
the papers (Ruskanda et al., 2023, 2022; Ganguly
et al., 2022) where the authors performed sentiment
analysis using the DisCoCat framework with ‘lam-
beq’ (Kartsaklis et al., 2021) toolkit. ‘Lambeq’>
is the first open-source Python library for quan-
tum natural language processing, which provides a
vast range of modules and classes to develop quan-
tum circuits for sentence representation, training of
quantum circuits, and many others.

There are several survey papers (Wu et al., 2021;
Guarasci et al., 2022; Varmantchaonala et al., 2024;
Widdows et al., 2024) that discussed quantum nat-
ural language processing and its applications in a
more elaborate and detailed way. Among them,
one of the interesting articles proposed by Wu et al.
(2021) discusses and categorizes different quantum
algorithms and NLP tasks, showing that quantum
NLP models produce better or equivalent results
than classical NLP models.

3 Dataset

A completely new dataset was developed for this
experiment with sentiment and claim checkworthy
labels. The data was collected from news head-
lines from one of the popular and prominent Ben-
gali news portals, ‘Sangbad Pratidin’ 3. We uti-
lized Python’s BeautifulSoup web-scraping method
to systematically scrape news headlines and store
them in an Excel file. Following the collection of
data, the entire crawled data was reviewed by the
authors to check for inconsistent entries, such as
HTML tags or undefined Unicode characters, and
the texts were manually cleaned.

Upon collection of data, the news headlines were

*https://docs.quantinuum.com/lambeg/
3https://www.sangbadpratidin.in/
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annotated with claim checkworthy and sentiment
labels using Large Language Models (LLMs). Due
to their state-of-the-art performance across various
NLP tasks, including question answering, machine
translation, and classification tasks, we employed
three distinct LLMs for the data annotation task:
GPT-40-mini, GPT-4.1-mini, and Llama-4. It is ev-
ident that annotation data with professional human
annotation is always of high quality and provides
gold-standard annotated labels. However, the hu-
man annotation requires specialized training, sig-
nificant annotation costs, and time. Also, in the
context of resource-constrained languages, such as
Bengali, finding quality professional data annota-
tors is quite challenging. The following prompt
was provided to each LLM model to annotate the
claim and sentiment labels:

You are a language expert annotating Bengali news
headlines.

Now classify the sentiment of news headline as:

- Positive: Expresses praise, hope, success, happiness,
or celebration

- Negative: Expresses criticism,
danger, sadness, or loss

- Neutral: Factual or informational, without emotional
tone

fear, conflict,

Then decide if the headline is check-worthy:

- Check-worthy: A verifiable claim with potential
public impact

Not check-worthy:
unverifiable

= Opinion-based, vague, or

Output Format: ["<Positive|Negative|Neutral>",
"<Check-worthy|Not check-worthy>", "<A brief
justification in English enclosed with quotation>"]

Now annotate the headline: "{txt}"

All the LLM models were accessed through their
corresponding APIs, and the temperature and top-p
values were set to 0 and 0.95, respectively.

Upon annotating claim and sentiment labels with
three distinct LLMs, the final annotation was car-
ried out through a majority voting scheme. For
both sentiment and claim checkworthy labels, the
label with the most frequent outcome was selected
as the final label. The annotations, where no ma-
jority was found, were further annotated manually
by the annotators. The inter-annotation agreement
score between different LLMs was calculated using
Fleiss’ Kappa (Fleiss, 1971) and Gwet AC1 (Gwet,
2006) metrics. For the sentiment label annotation,
the Fleiss’ Kappa score was 0.7751, and the Gwet
ACI score was 0.8209. In case of claim checkwor-
thiness, the Fleiss’ Kappa and Gwet AC1 scores
were 0.3554 and 0.6516, respectively.

However, instead of fully relying on LLM anno-



tating data, all the final annotations (after majority
voting selection) were further reviewed through
a rigorous review process by three undergraduate
computer science interns. If any inconsistencies
were found, those are marked by the interns and
further reviewed and resolved by the authors. A
complete flow diagram of the overall data annota-
tion process is provided in Figure 1. The distribu-
tion of sentiment and claim labels is provided in
Table 1.
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Figure 1: Overall flow diagram of the data sentiment
and claim-checkworthy data annotation process utilizing
three state-of-the-art LLMs followed by majority voting
and manual intervention.

Label #Train  #Test
Negative 1640 396
Sentiment  Neutral 463 118
Positive 665 179
Claim Check-worthy 2164 529
Not Check-worthy 604 164
Table 1: Distribution of sentiment label and claim-

checkworthy label for training and testing set.
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4 Methodology

This section provides a brief overview of the
methodology for sentiment classification and
claim-checkworthiness detection, with a classical-
quantum LSTM framework.

4.1 Task Definition

Given a tokenized sequence S = [t1,to, t3, ..., ty]
where S is the sentence or text and t;’s are text
tokens or words. For sentiment classification, each
text was annotated with either positive, negative, or
neutral labels. For claim identification, each text
was annotated with either claim-checkworthy or
not claim-checkworthy labels. Our objective is to
predict appropriate labels using quantum machine
learning algorithms.

4.2 Framework Description

We developed three frameworks for both sentiment
analysis and claim checkworthiness identification:
1) a classical LSTM framework where no quan-
tum modules are used, 2) a 2-qubit-based classical-
quantum framework where we used a 2-qubit-
based VQC layer, and 3) a 4-qubit-based classical-
quantum framework where a 4-qubit-based VQC
layer was utilized. A flow diagram of classical
LSTM and 4-qubit-based classical-quantum frame-
work is provided in Figure 2.

As depicted in Figure 2, for both classical and
classical-quantum frameworks, the tokenized se-
quence was first provided through an embedding
layer of 128 dimensions to get a vector represen-
tation of each ¢; in S, let’s say X of dimension
n x 128. Next, the embedding matrix [X], 128
was provided as input to an LSTM layer with 128
hidden units and a tanh activation function.

Following the LSTM layer, the last hidden state
representation from the LSTM, with a dimension
of 1 x 128, was further passed through a fully con-
nected layer (FC layer) with 32 hidden units and a
sigmoid activation function.

Zte = sigmoid(LST Moy;)

Here, Z . represents the output of the FC layer and
LST M, is the last hidden state output from the
LSTM layer.

4.2.1 VQC Layer

In the case of the classical-quantum hybrid frame-
work (Figure 2 (b)), the Z. was further split into
equal chunks to serve as an input to the VQCs, i.e.,
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Figure 2: System framework for sentiment classification and claim-chekworthy identification: (a) classical LSTM
framework, (b) hybrid classical-quantum framework utilizing classical LSTM followed by a layer of VQCs

for the 2-qubit-based framework, the Z7. was di-
vided into 16 equal chunks (each chunk with vector
length 2), and for the 4-qubit-based framework, the
Z . was split into eight equal chunks (each chunk
with vector length 4).

VQC:s or Variational Quantum Circuits are a spe-
cial type of quantum circuit that has tunable param-
eters, and the parameters are updated iteratively by
the gradient descent method. A typical VQC con-
sists of three blocks: First, a data encoding block
(U(x)) where the classical data is encoded into a
quantum state, Second, a variational block (V' ())
where the encoded quantum state representation
of classical bits gets a parameterized rotation with
learnable parameter weights followed by several
CNOT gates, and a quantum measurement block
which measure the output for every qubit in the
Pauli-Z basis. The diagrammatic representation of
2-qubit and 4-qubit-based VQCs used for devel-
oping the classical-quantum hybrid framework is
provided in Figure 3.

As depicted in Figure 3, the first block is the
data encoding block (U (x)), where the H gate or
Hadamard gate first transforms each qubit state |0)
to a superposition state (|0) + |1))/2. Followed by
H gate, for each classical input z;, the R, gate is
used as an angle to rotate a qubit around the Y-axis
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Figure 3: Diagramatic representation of VQCs devel-
oped for the classical-quantum hybrid: the top figure
is the VQC with 2-qubit, and the bottom figure is the
VQC with 4-qubit. H represents the Hadamard gate,
R, Ry, R, are the rotation gates around the X-axis, Y-
axis, and Z-axis of the Bloch sphere, respectively.

of the Bloch sphere.

After data encoding, the next step is the vari-
ational block (V' (6)), where every qubit gets a
trainable Euler rotation (RX, RY, RZ), followed
by an entangling ring of CNOTS, which enables the
model to learn interactions between features. And,
the final block is the quantum measurement block,



which measures the expectations () on each qubit
(<Z> S [_17 1])

4.2.2 Classification

For classification, in the classical LSTM frame-
work, Z . was passed to a final output layer with a
softmax activation function. For sentiment classi-
fication, the output layer consists of three hidden
units; for claim checkworthiness detection, it con-
sists of two hidden units.

P = softmax(Zy.)

On the other hand, for the classical-quantum hybrid
framework, the output from each VQC unit was
concatenated and further passed through the final
output layer.

Zvoc = Concatenate(z‘l/QC, Z%/QC, o z‘k/QC)
P = softmazx(Zyqc)

Y = argmax(P)
J

Here, Z%/QC is the output of each VQC unit (z =
1,2,...,k), Zyqc is the concatenated output, P
represents the probability value for each class and
Y represents the predicted class label and j repre-
sents the number of classes.

4.3 Training

In order to accomplish the training process, the
training dataset was divided into a 90-10 ratio,
where 90% of the data was used for training the
framework and 10% of the data was reserved as a
validation set. The CrossEntropy loss was used
with a learning rate of 0.0025 to train all the frame-
works. The optimizer selected was Adam (Kingma
and Ba, 2017), and the number of epochs chosen
for training the frameworks was 10 with a batch
size of 64.

5 Experiment and Results

5.1 Experimental Setup

All experiments were performed using the PyTorch
and Pennylane libraries * with an NVIDIA RTX-
5000 GPU. PennyLane is a robust and open-source
framework for quantum computing and quantum
machine learning. It enables us to execute and
train quantum circuits with a variety of backends,
including real quantum computers and quantum
simulators.

*https://pennylane.ai/
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The VQC modules were trained and executed
using the Pennylane quantum computing simula-
tor with the ‘default.qubit’ backend. For eval-
uation, the precision, recall, and macro-F1 score
metrics were computed for the test dataset for both
sentiment classification and claim checkworthiness
identification.

To ensure a fair comparison between classical
and 2-qubit and 4-qubit-based classical-quantum
hybrid frameworks, all the frameworks were
trained on the same training data with the same
hyperparameters as reported in Section 4.3 and
evaluated on the same test datasets as mentioned in
Table 1.

5.2 Result

The performance for sentiment classification and
claim checkworthiness detection is provided in Ta-
ble 2. For sentiment classification, the best pre-
cision score of 62.14 is provided by the classical
LSTM framework. Conversely, the best recall and
F1-score of 52.64 and 52.67 is provided by a 4-
qubit-based classical-quantum framework, which
is a performance improvement of 0.25% in terms of
F1-score when compared with the classical LSTM
framework. Notably, the performance in the 2-
qubit-based classical-quantum hybrid framework
is surprisingly decreased to 47.62 F1-score, which
is a performance dropout (F1-score) of 9.36% and
9.59% compared to the classical LSTM framework
and classical-quantum hybrid framework, respec-
tively.

Framework Precision Recall F1
classical 62.14 5145 5254
Sentiment  2-gb 54.69 46.82  47.62
4-gb 56.88 52.64 52.67
classical 65.95 72.02 64.27
Claim 2-gb 68.35 65.58  66.63
4-gb 66.20 66.47  66.33

Table 2: Result of sentiment classification and claim-
chekworthy identification for test dataset. ‘classical’ rep-
resents the classical LSTM framework, ‘2qb’ and ‘4qb’
represent the 2-qubit-based and 4-qubit-based classical-
quantum hybrid frameworks, respectively.

One possible reason for the low F1-score in the
2-qubit-based classical-quantum hybrid framework
for sentiment classification is the division of the
output of the FC layer into small chunks (vector
length of 2), which loses the overall contextual
relationship in the text, resulting in a low F1-score.



In the case of claim checkworthiness detection,
both the 2-qubit and the 4-qubit-based classical-
quantum hybrid framework outperform the classi-
cal LSTM framework in terms of Fl-score. The
classical LSTM framework only provides the
best recall score of 72.02. The 2-qubit and 4-
qubit-based classical-quantum hybrid frameworks
achieved Fl1-scores of 66.63 and 66.33, repre-
senting a performance improvement of 3.67%
and 3.1%, respectively, compared to the classical
LSTM framework.

5.3 Error Analysis

Error analysis was performed using confusion ma-
trices for sentiment analysis and claim checkwor-
thiness identification in both the classical LSTM
framework and two quantum-enhanced frame-
works: the 2-qubit and 4-qubit-based classical-
quantum hybrid frameworks. The confusion matrix
for sentiment classification and claim checkwor-
thiness identification is provided in Figure 4 and
Figure 5, respectively.

Classical l-Quantum (2qb) Classical 1-Quantum (4qb)

0.101  0.030 0.894 0.063  0.043 0.798 0.162 0.040

0390 0025 -5NCEM 0203 0102 3§

E
EH 0140  0.307

uuuuuuuuuu gative Neutral positive
Predicted Label Predicted Label

0.127

0.117  0.285 é— 0.302 0.341 0.358

Negative Neutral Positive

Figure 4: Confusion matrix for sentiment classification.
The left confusion matrix is for the classical LSTM,
the middle and right confusion matrices are for the 2-
qubit and 4-qubit-based classical-quantum hybrid frame-
works, respectively.

From Figure 4, for sentiment analysis, the neu-
tral class shows the majority of error cases. In the
2-qubit-based classical-quantum hybrid framework,
only 20.3% instances are correctly classified, fol-
lowed by the classical LSTM framework, where
39% neutral instances are appropriately classified.
The 4-qubit-based classical-quantum hybrid frame-
work achieves 42.4% accuracy in identifying neu-
tral classes, which is the highest neutral class clas-
sification accuracy among the three frameworks.
The majority of misclassification for the neutral
class is observed towards the negative class, where
58.5%, 69.5%, and 44.9% of neutral instances are
misclassified as the negative class for the classi-
cal LSTM, 2-qubit-based classical-quantum, and 4-
qubit-based classical-quantum hybrid frameworks,
respectively.

This misclassification trend is also observed for
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positive classes, where 59.8% and 55.8% positive
instances are misclassified as the negative class
in classical LSTM and 2-qubit-based classical-
quantum hybrid frameworks, respectively. The mis-
classification rate for the negative class is reduced
to 30.2% for the 4-qubit-based classical-quantum
framework; however, 34.1% positive instances are
misclassified as the neutral class for the 4-qubit-
based classical-quantum hybrid framework.

One possible reason for the majority of misclassi-
fication as the negative class is that the distribution
of sentiment labels is highly imbalanced, with more
than 50% of instances tagged as the negative class,
which makes the model slightly biased towards the
negative sentiment. As a result, neutral and positive
instances are misclassified as negative sentiment.

Classical-Quantum (2b) Classical-Quantum (4gb)

0.494 0.506

NNNNNNNN

ot Claim Cai
Predicted Label Predicted Label

ccccc

Figure 5: Confusion matrix for claim checkworthiness
identification. The left confusion matrix is for the clas-
sical LSTM, the middle and right confusion matrices
are for the 2-qubit and 4-qubit-based classical-quantum
hybrid frameworks, respectively.

On the other hand, in the case of claim checkwor-
thiness identification, 37.1% claim-checkworthy
instances are misclassified in the classical LSTM
framework. Notably, this misclassification rate is
overcome in the classical-quantum hybrid frame-
works, with misclassification rates of 11.5% and
16.4% in the 2-qubit-based classical-quantum hy-
brid framework and the 4-qubit-based classical-
quantum hybrid framework, respectively.

However, while quantum-enhanced frameworks
demonstrate strong performance in classifying
checkworthy claims, their performance in identi-
fying non-checkworthy claims deteriorates, with
misclassification rates of 57.3% and 50.6% in the 2-
qubit and 4-qubit-based classical-quantum hybrid
frameworks, respectively. In contrast, the classical
LSTM framework achieves a lower error rate of
18.9% in classifying non-checkworthy claims.

Along with analyzing confusion matrices, a few
examples of error cases for sentiment classifica-
tion and claim checkworthiness identification in
different frameworks are provided in Table 3.



Predicted Label
D Text True
Label | classical 2qb 4qb
s IR STIIIEAL ([FFG, T SEool Rel TR BT {fF (T: ICC Champions Trophy reaches .. . .. ..
1 . . Lo . positive | negative | positive | positive
new heights, sets all-time record in viewership)
Y SOICE AP RIS N NRITAGT, RS JHFMGF ATTION =B (T: Mohammedan desperate to . I
S5 - . . R neutral | neutral | positive | positive
beat Punjab in the last match, hints at multiple changes in the team)
s 99 ISR RTFIE RO ¢o RIS W WM AR, A1 FFIGT (BT (MUY BTRLS TSI (T: 'If so many . . .
3 . Sy e R negative | neutral | negative | negative
cylinders explode, 50,000 people will die', Mamata expresses concern after seeing Park Street restaurant)
s CARROIR [T AR O™ 8 WHIRIE, Br751 INGTT AGHLTIF UG (T: Famine and starvation are . ..
4. R . . R negative | positive | neutral | neutral
increasing alarmingly in the world, UN report raises concerns)
OO AW (YTF IFIFNOA G2 FIPLPS WARIY! AOw beled IS fBR (T: Two farmers from . . . .
C; . . . . R claim n-claim claim claim
Balurghat kidnapped from India-Bangladesh border! Flag meeting continues all night)
EROANE T WFH, (FR1R (A(F FAPTOTY WS SIS WIHICFIDGI (T: New attraction at the zoo, . . . .
C, . . claim claim n-claim claim
green anaconda coming to Kolkata from Chennai)
R OGP QB RI6 [NTT (ST ZSHLI57, (BI6-WHITS Tl STGICIR B & SHIHS (T: East Bengal . . . .
C; . = . , ] L. n-claim | n-claim claim claim
face a hat-trick of defeats in Goa, Oscar's challenge is to shape the team due to injuries)
RGN NRBIAL WICE (2 WGy (U AHF ACGHL WRRISTT (T: Rain in Knights match at Eden? What will . . . .
Cy o n-claim claim n-claim | n-claim
the weather be like in the state today?)

Table 3: Some examples of error cases in the test dataset. S to Sy are the error cases for sentiment classification
and C to Cy are the error cases for claim checkworthiness identification. The red-coloured texts represent the
misclassified labels, and the blue-coloured texts represent the correctly classified labels. (‘T:” represents the

translation of the Bengali text)

6 Conclusion

This paper represents a novel classical-quantum
hybrid framework for sentiment classification and
claim checkworthiness identification for the less-
resourced Bengali language. We developed an
entirely new dataset for sentiment classification
and claim-checkworthiness identification, com-
prising approximately 3,000 samples, and exper-
imented with a classical LSTM framework and
two quantum-classical hybrid frameworks based
on 2-qubit and 4-qubit VQC. Our experiments and
findings show that the classical-quantum hybrid
framework outperforms the classical LSTM frame-
work for both sentiment classification and claim
checkworthiness identification.

Furthermore, to more accurately and robustly
justify our findings and observations, we’ll eval-
uate the proposed frameworks with other lan-
guages, such as English, Hindi, Assamese, and
Odia, among others. In addition, we will experi-
ment with quantum-enhanced Bi-LSTM, GRU, or
Bi-GRU models in our future work.

Limitations

Our proposed work also has some potential lim-
itations. First, all the classical-quantum hybrid
frameworks were trained and evaluated on a quan-
tum simulator, which somewhat limits the actual
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potential of real quantum hardware.

Second, we experimented with only the 2-qubit-
based and 4-qubit-based VQCs in the development
of the classical-quantum hybrid framework due to
resource limitations. Chunking the output of the FC
layer into 2 and 4 chunks and providing it through
2-qubit-based and 4-qubit-based VQCs sometimes
loses the original contextual relationship between
the words in a sentence. In our future work, we will
aim to develop advanced techniques to preserve
the contextual relationships between words while
chunking. Also, we’ll experiment with higher qubit
VQCs, such as 8-qubit or 16-qubit, in our future
work.

Third, due to the lack of trained professional an-
notators, time constraints, and economic reasons,
we have to annotate the sentiment and claim check-
worthy labels with the help of LLMs. Although
we used three LLMs, followed by majority voting
and manual verification, instead of relying on a
single LLM model, there might still be some in-
correctly annotated samples, as no LLM is 100%
accurate. However, we’ll aim to develop a fully
human-annotated dataset and evaluate our proposed
framework with that dataset in our future work.

Fourth, there is a high level of imbalance in the
claim-checkworthy labels and sentiment labels in
the dataset, which sometimes makes the frame-
works biased towards the majority labels. However,



in our future work, we’ll incorporate more sam-
ples into the existing dataset (especially those with
minority labels) to make the dataset more balanced.

Lastly, the dataset is limited to news headlines,
which restricts our ability to assess the framework’s
performance in a broader scope, such as with data
from Twitter or Reddit.
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