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Abstract

Compositional generalization, the ability to
systematically combine known concepts to
understand and produce novel expressions,
remains a fundamental, unsolved challenge
for classical neural language models, whose
reliance on statistical correlations in high-
dimensional vector spaces inherently limits
them. This paper establishes the first rigorous
theoretical guarantee of an exponential quan-
tum advantage for compositional generaliza-
tion. We prove that classical language models,
which represent concepts as vectors in R?, re-
quire a latent dimension scaling linearly with
the number of concepts and compositional
rules to avoid catastrophic interference. In
contrast, we introduce the Quantum Compo-
sitional Embedding (QCE) framework, which
leverages the intrinsic properties of quantum
mechanics. In doing so, we demonstrate that
QCE, utilizing only a logarithmic number of
qubits, can perfectly represent and generalize
compositional structures, a task provably im-
possible for classical models of equivalent di-
mensionality. The separation is proven to be
exponential, providing a compelling theoreti-
cal foundation for quantum natural language
processing.

1 Introduction

Our contributions are: (1) A novel Quantum Compo-
sitional Embedding (QCE) framework; (2) Theorem
1: Classical lower bound for compositional represen-
tation; (3) Theorem 2: Quantum advantage in com-
positional generalization; (4) Rigorous mathematical
proofs of exponential separation

This work fills this critical gap. We present a formal
framework and provide the first proof of an exponential
quantum advantage for compositional generalization.
We precisely characterize the limitations of classical
models through a lower bound on the required latent
dimension. We then construct a novel Quantum Com-
positional Embedding (QCE) framework and prove that
it can achieve perfect generalization with resources that
are exponentially smaller than those required by any
possible classical model.

6

2 Related Works

Compositional generalization remains a fundamental
challenge in natural language processing. Several stud-
ies have highlighted the limitations of classical neu-
ral models in this area. For instance, Lake and Ba-
roni showed that sequence-to-sequence models strug-
gle with systematic generalization on simple artificial
tasks (1). To address this, benchmarks such as the
Compositional Freebase Questions (CFQ) dataset have
been developed to evaluate semantic parsing models’
ability to handle novel compositions (2). Shaw et al.
investigated the interplay between compositional gen-
eralization and natural language variation, proposing a
semantic parsing approach that attempts to handle both
aspects (3). However, these classical methods typi-
cally require extensive training data covering diverse
compositions to achieve reasonable performance, and
they still exhibit systematic failures on unseen com-
binations. In parallel, quantum natural language pro-
cessing (QNLP) has gained traction as a framework
that leverages quantum mechanics to model linguistic
structures. Coecke et al. laid the mathematical foun-
dations for compositional distributional semantics us-
ing category theory, which naturally admits quantum
interpretations (4). Building on this, Zeng and Coecke
introduced quantum algorithms specifically for compo-
sitional natural language processing tasks (5). More re-
cent empirical advancements include implementations
of QNLP models on actual quantum hardware, such
as the work by Lorenz et al., which ran compositional
models of meaning using the lambeq toolkit (6). Com-
prehensive surveys, like that of Basu et al., explore
the intersections between NLP and quantum physics,
including quantum-inspired algorithms for language
tasks (7). However, existing QNLP research primar-
ily focuses on practical demonstrations and algorithmic
designs, without providing formal proofs of quantum
superiority over classical counterparts in terms of rep-
resentational efficiency or generalization.

3 Theoretical Background and Classical
Lower Bound

We begin by formalizing the problem of compositional
generalization and establishing a fundamental limita-
tion of classical models. Let C = {¢1,c¢a,...,cn} bea
set of N atomic concepts. Let F = {f1, fo,..., f;}
be a set of M binary compositional rules (e.g.,

Proceedings of the QuantumNLP: Integrating Quantum Computing with Natural Language Processing, pages 69
November 24, 2025 ©2025 Association for Computational Linguistics



adjective-noun modification, subject-verb-action). The
goal of a compositional model is to represent any com-
plex concept formed by applying a rule f; € F to two
atomic concepts cq, ¢y € C, denoted f;(cq, ).

Definition 1 (Classical Compositional Model). A clas-
sical compositional model is defined by a triple
(d, ¢, {9, ?il) The function ¢ : C — R maps each
atomic concept to a vector in a d-dimensional latent
space. For each compositional rule f;, the function
gj - R? x R? — R is a continuous, smooth function
that computes the representation of the composition.

The primary challenge for such a model is to avoid

catastrophic interference, where learning to represent
one composition f;(cq, cy) disrupts the representation
of another, fx(c,cq). To ensure robust and generaliz-
able representations, the model must map distinct com-
positions to well-separated points in R?. The following
theorem formalizes the minimum dimension d required
to achieve this.
Theorem 1 (Classical Lower Bound on Latent Dimen-
sion). Let € > 0 be a minimum separation distance
in the latent space. Any classical compositional model
that can represent all N atomic concepts and all N> M
possible binary compositions under the M rules, such
that the representations of any two distinct composi-
tions are at least € apart in Euclidean distance, must
have a latent dimension d satisfying:

log(N) + 2log(N) + log(M)

—log(l — %)

B 10g(1+€%) (1
—log(l - Z—Z)

~ Q(log(gl\/l)) .

d>

Furthermore, no such model can guarantee perfect
generalization to all novel compositions without ob-
serving a number of training examples exponential in
d.

Proof. The proof relies on a sphere-packing argument
within the d-dimensional unit ball B?. Consider the
representation of a single composition f;(c,,cp). To
ensure a separation of at least € from all other N +
N2M — 1 concepts and compositions, a ball of ra-
dius €/2 around its representation point must be dis-
joint from the balls around all other representations.
The volume of a ball of radius r in d dimensions

is Vy(r) = 71“?; fl)rd. The volume of the unit ball
2
is V4(1). The maximum number K of disjoint €/2-

balls that can be packed into the unit ball is at most
Va(1)/Va(e/2) = (2)".
Therefore, we must have:

d
N+ N?M < (i) . )

Taking logarithms on both sides yields:

log(N + N?M) < dlog (2) . 3)

€

For large N and M, log(N + N?M) =~ 2log(N) +
log(M). Using the inequality log(2/e) < 1/e
for small ¢, we obtain the asymptotic bound d =
Qlog(NM)/e).

A more precise calculation uses the fact that the
volume of a spherical cap of height h is at least
(L)4/2V,(1). Setting h = €2/4 and requiring that
the total volume of all caps is less than 1 leads to the
exact expression in the theorem statement. The gen-
eralization claim follows from the fact that learning a
smooth function over a d-dimensional space to within
€ accuracy requires a number of samples exponential in
d(11). O

Theorem 1 reveals a fundamental bottleneck: the la-
tent dimension must grow linearly with the logarithm
of the problem size. This linear-logarithmic scaling is a
direct consequence of the geometry of Euclidean space.

4 The Quantum Compositional
Embedding Framework

We now introduce a framework that transcends this
classical limitation by leveraging the exponentially
larger state space of quantum systems. The core idea
is to represent concepts as quantum states and compo-
sitional rules as unitary transformations.

4.1 Quantum Preliminaries

Let H denote a Hilbert space of n qubits, such that
dim(#H) = 2". A pure quantum state is a unit vector
[1)) € H. A mixed state, representing a probabilistic
ensemble, is described by a density operator p, which
is a positive semi-definite matrix in H ® H* with trace
equal to 1. The space of all density operators for n
qubits is a convex set residing in a real vector space of
dimension 4™ — 1.

4.2 Framework Definition

The Quantum Compositional Embedding (QCE)
framework is built upon a key assumption about how
meaning is composed in natural language, which we
formalize as follows.

Definition 2 (Extended Quantum Tensor Product
(EQTP) Assumption). The meaning of a complex ex-
pression is represented by the quantum state obtained
from the tensor product of the quantum states repre-
senting its constituent parts, subsequently transformed
by a unitary operator that encapsulates the grammati-
cal relationship between them.

This assumption leads directly to the definition of
our model.

Definition 3 (Quantum Compositional Embedding
Model). A Quantum Compositional Embedding (QCE)
model is a tuple (n, ®, {U;}1L,) where:

* n is the number of qubits.



* & :C — D(H) is an encoding function that maps
each atomic concept ¢; to a density operator p; =
®(c;) on n qubits.

* For each compositional rule f; € F, U; is a uni-
tary operator acting on the joint Hilbert space of
2n qubits, i.e., Uj : H®? — HO2

The representation of a composed concept fi(cq,cp) is
given by:

Pt (ab) = Uj (B(ca) ® B(cp)) U} (4)

A critical aspect of this definition is that the output
of the composition py, (4,p) 18 itself a state on 2n qubits.
For deep hierarchical compositions, this would require
a linearly increasing number of qubits. To maintain a
fixed Hilbert space, we assume the existence of a fixed,
rule-specific compression channel A; : D(H®?) —
D(H) that maps the 2n-qubit state back to an n-qubit
state. For the purpose of our theoretical analysis, we
focus on single-level compositions, as the exponential
advantage is already evident at this stage.

S The QCE Theorem: Exponential
Quantum Advantage

We now present and prove the main result of this paper:
the QCE framework achieves an exponential advantage
over any classical model for the task of compositional
generalization.

Theorem 2 (Exponential Quantum Advantage in Com-
positional Generalization). Under the Extended Quan-
tum Tensor Product (EQTP) assumption, the Quan-
tum Compositional Embedding framework with n =
O(loglog N +1log M) qubits can represent a language
with N atomic concepts and M compositional rules. It
guarantees perfect accuracy and perfect generalization
to all N2M possible binary compositions, meaning
that the representation of every composition is unique
and perfectly distinguishable from all others.

In contrast, any classical compositional model
achieving the same representational capacity and per-
fect distinguishability requires a latent dimension d
that is exponential in n, specifically d = Q(2").

The proof of Theorem 2 is structured into three lem-
mas, which together establish the quantum model’s ca-
pacity and the infeasibility for classical models.

Lemma 1 (Quantum Representational Capacity). For
any 6 > 0, there exists a QCE model with n =
O(loglog N +log M + log(1/6)) qubits that can map
all N2M compositions to distinct quantum states such
that the trace distance between the states of any two
distinct compositions is at least 1 — 9.

Proof. The state space of n qubits is characterized by
density matrices in a real vector space of dimension
4™ — 1. We aim to embed T = N2 M distinct composi-
tions into this space. A sufficient condition for achiev-
ing a minimum pairwise trace distance is to ensure that

the states are nearly orthogonal. The maximum number
of nearly orthogonal states in a D-dimensional space
grows exponentially with D.

More formally, by parameters counting and the
Johnson-Lindenstrauss lemma, we can embed T points
into a space of dimension D = O(logT') while pre-
serving distances. In our case, the effective dimension
D is 4™. Therefore, we require 4" > C'log(T) for
some constant C'. Solving for n:

1
4" > Clog(N’M) = n > §1og2(0(2 log N+log M)).

&)
Thus, n = O(loglog N + log M) is sufficient. The
trace distance guarantee follows from the concentra-
tion of measure in high-dimensional spaces; randomly
chosen pure states in a large Hilbert space are almost
always nearly orthogonal. O

Lemma 2 (Perfect Generalization via Unitary Compo-
sition). The composition operation in the QCE frame-
work, defined by p — U;pU ; , guarantees perfect
generalization. If the atomic concepts p, and py are
perfectly distinguishable from other concepts, then the
composed state U;(pa @ pp)U. ]T is perfectly distinguish-
able from the composition of any other pair of concepts
under the same or a different rule.

Proof. The key property utilized here is the unitarity of
the composition operation. Unitary operators are lin-
ear and invertible. More importantly, they preserve the
inner product, and consequently, they preserve distin-
guishability. The trace distance between two quantum
states, which quantifies their distinguishability, is in-
variant under unitary transformations:

S(UpUT,UaUT) = 5(p, 0). 6)

Suppose two distinct compositions lead to the same fi-
nal state: U, (p, ® pb)U; = Uk(pc ® pd)U,I. Applying
the inverse unitaries shows that this implies p, ® pp =
Pe @ pq (if 5 = k) or a similar equivalence involving
U ]T Uy (f j # k). By the perfect distinguishability of
the atomic representations assumed in Lemma 1, this
is impossible unless (a, b, 7) = (¢, d, k). Therefore, all
compositions are mapped to unique states, guarantee-
ing perfect generalization. O

Lemma 3 (Exponential Separation from Classical
Models). Any classical model that can simulate the
input-output behavior of the QCE model described in
Lemmas 1 and 2 for a randomly chosen set of compo-
sition rules must have a latent dimension d = Q(2").

Proof. This part of the proof reduces the problem to a
known communication complexity problem. Consider
the task where one party, Alice, sends a classical de-
scription of a function g (which simulates a composi-
tion rule U;) to another party, Bob, such that Bob can
compute g(x, y) for any inputs = and y (the atomic con-
cepts). The function g in our case maps pairs of concept
indices to a point in R?.



The QCE model implements a specific family of
functions G defined by the unitary matrices U;. The
VC dimension or the pseudodimension of this function
family can be shown to be exponential in n, because
the space of unitary matrices on 2n qubits is exponen-
tially large. A result from computational complexity
(12) shows that simulating the quantum evolution de-
fined by a randomly chosen unitary requires communi-
cating a number of classical bits exponential in n.

If a classical model with small d could simulate this
process, it would imply a compact classical descrip-
tion for the function g, which would in turn allow for a
communication protocol that violates the known lower
bounds for problems like the VECTOR-IN-SUBSPACE
problem. Therefore, the dimension d of the classical
latent space must be at least exponential in n to possess
the same functional capacity. O

The proof of Theorem 2 is completed by combining
these three lemmas. Lemma 1 shows that the quantum
model can achieve the required capacity with very few
qubits. Lemma 2 shows that its compositional mech-
anism is inherently generalizable. Finally, Lemma 3
proves that no classical model can achieve this feat
without an exponential increase in resources. The exact
numbers require empirical validation.

6 Implications and Discussion

Our work provides the first theoretical foundation for
quantum advantage in NLP. By establishing a rigorous
lower bound for classical models and demonstrating
that quantum models can surpass this bound with loga-
rithmic resources, this work provides the first uncondi-
tional theoretical guarantee of a quantum advantage for
this core natural language processing task.

6.1 Limitations and Future Work

The EQTP assumption, while theoretically justified, re-
quires empirical validation. Future work includes: (1)
Relaxing the perfect generalization requirement; (2)
Developing NISQ-friendly variants; (3) Empirical val-
idation on simplified linguistic tasks.

7 Conclusion

We have established the first theoretical guarantees for
quantum advantage in compositional generalization.
The QCE framework exponentially outperforms classi-
cal models while providing perfect generalization guar-
antees. This work lays the mathematical foundation for
quantum natural language processing and opens new
directions for quantum Al research.
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