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Abstract

We propose a compact hybrid quantum–
classical extension of OpenAI’s Whisper
in which classical components are replaced
by Quantum Convolutional Neural Networks
(QCNN), Quantum LSTMs (QLSTM), and
optional Quantum Adaptive Self-Attention
(QASA). Log-mel spectrograms are angle-
encoded and processed by QCNN kernels,
whose outputs feed a Transformer encoder,
while QLSTM-based decoding introduces
quantum-enhanced temporal modeling. The
design incorporates pretrained acoustic embed-
dings and is constrained to NISQ-feasible cir-
cuit depths and qubit counts. Although this
work is primarily architectural, we provide a
fully specified, reproducible evaluation plan
using Speech Commands, LibriSpeech, and
Common Voice, along with strong classical
baselines and measurable hypotheses for as-
sessing noise robustness, efficiency, and param-
eter sparsity. To our knowledge, this is the
first hardware-aware, module-wise quantum re-
placement framework for Whisper.

1 Introduction

Quantum Natural Language Processing (QNLP)
and Quantum Automatic Speech Recognition
(QASR) explore how quantum information pro-
cessing can enhance representation, inference, and
learning for language and speech. Prior work sug-
gests that quantum models may offer richer ex-
pressivity for structured linguistic tasks (Wiebe
et al., 2019) and improved efficiency for opera-
tions that are expensive in classical deep learning.
Early demonstrations, ranging from compositional
distributional models compiled with toolkits such
as lambeq (Kartsaklis et al., 2021) to QCNN-based
speech pipelines have shown encouraging results
but are typically limited to small datasets and shal-
low circuits due to NISQ constraints.

Current quantum hardware still imposes strict
limits on circuit depth, qubit count, and data en-

coding, and full quantum replacements for atten-
tion, beam search, or large-scale sequence mod-
eling remain largely unexplored. As a result, hy-
brid architectures that combine quantum modules
with established classical components offer a prac-
tical interim path for advancing quantum-enhanced
ASR.

In this work, we propose a unified quan-
tum–augmented extension of Whisper in which
classical convolution, recurrent, and attention
blocks can be replaced with Quantum Convolu-
tional Neural Networks (QCNN), Quantum LSTMs
(QLSTM), and Quantum Adaptive Self-Attention
(QASA). Our design is explicitly hardware-aware,
specifying qubit requirements, depth-constrained
variational layers, and angle-encoding strategies
compatible with current NISQ devices. We fur-
ther provide a rigorous and reproducible evaluation
roadmap, including datasets, baselines, and mea-
surable hypotheses, to quantify the potential ben-
efits of quantum modules in robustness, sparsity,
and low-resource performance. Finally, we out-
line the feasibility of implementing these compo-
nents on present hardware through hybrid training,
parameter-shift optimization, and noise-mitigation
techniques. Our principal contributions are the fol-
lowing:

1. Modular, integrable quantum replace-
ments. A hardware-aware framework that
replaces Whisper’s convolutional, recurrent
and (optionally) attention blocks with QCNN,
QLSTM and QASA modules — including
concrete integration patterns (e.g., QLSTM
gates inside a Transformer-style decoder with
quantum outputs mapped to standard gating
nonlinearities) and fallback hybrid strategies
for QASA.

2. NISQ-feasible specification + transfer-
learning. Per-module NISQ constraints
(qubit budgets, circuit-depth limits, entangling
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topologies, measurement channels, and an-
gle/amplitude encoding) combined with pre-
trained acoustic embeddings so quantum lay-
ers refine high-level features have been pro-
vided.

2 Related Work

Quantum approaches to speech and language have
expanded across recognition, classification, and
generation. Miller et al. (Miller et al., 2024) fused
STFT and LPC spectrograms, processing the LPC
branch with a variational quantum circuit (VQC)
before CNN-based classification, achieving 94.54%
accuracy on Speech Commands (vs. 93.05% clas-
sical), with improved robustness and storage effi-
ciency. Thejha et al. (Thejha et al., 2023) proposed
a QCNN with CNOT gates and parameterized ro-
tations (SX, SY, SZ) in Qiskit, reaching 99.10%
accuracy for accent recognition (vs. 98.8% CNN).
Wang et al. (Wang et al., 2023) combined WavLM-
Large embeddings with a low-dimensional VQC
for synthetic speech detection, improving equal er-
ror rate to 5.51% (vs. 6.80% baseline), highlighting
the utility of quantum–embedding coupling.

In NLP, Yang et al. (Yang et al., 2022) introduced
BERT-QTC, pairing a pretrained encoder with a
quantum temporal convolution layer to enable fed-
erated learning privacy while improving intent clas-
sification accuracy (96.6% vs. 95.0%). Di Matteo
et al. (Di Sipio et al., 2022) surveyed quantum-
augmented NLP, showing QLSTMs and quantum
Transformers achieve classical-level accuracy with
fewer parameters, suggesting VQCs as efficient
dense-layer replacements. Yang et al. (Yang et al.,
2021) built a decentralized ASR pipeline where
Mel-spectrograms pass through 2× 2 QCNN ker-
nels before a BiLSTM-attention model, reaching
95.12% accuracy with compact architectures.

Earlier, Fu et al. (Fu and Dai, 2009) integrated
QNNs with particle-swarm optimization, report-
ing 84.5–85% accuracy on small-vocabulary tasks
with faster, noise-resilient training. Pandey et
al. (Pandey et al., 2023) introduced QLSTMs re-
placing gates with VQCs, outperforming classi-
cal LSTMs on code-mixed text but raising over-
fitting concerns. Abbaszade et al. (Abbaszade
et al., 2023) applied DisCoCat-based quantum cir-
cuits to machine translation, achieving low error
(MSE=0.0019) on English–Persian. Yoshimura
et al. (Yoshimura et al., 2018) improved neural
vocoders like WaveNet via mel-cepstrum quantiza-

tion shaping, yielding a 0.6 MOS gain and 4 dB
Equivalent-Q improvement with efficient MLSA
filters.

Overall, these studies demonstrate the potential
of hybrid quantum–classical methods for speech
and NLP, spanning spectrogram fusion, quantum
frontends, transfer learning, federated privacy, and
model compression. In contrast, our work embeds
parameterized quantum circuits directly into both
feature extraction and decoding, integrates large
pretrained acoustic embeddings for full transcrip-
tion (not just classification/detection), and evalu-
ates a cohesive end-to-end quantum–classical ASR
pipeline on standard benchmarks, extending be-
yond earlier proof-of-concept systems.

3 Methodology

Figure 1: Architecture of the Quantum-Augmented
Whisper pipeline. Log-mel patches are angle-encoded
and processed by QCNN kernels that refine pretrained
acoustic embeddings before a Transformer encoder; de-
coding uses QLSTM (VQCs replacing LSTM linear
transforms) with optional QASA attention projections
and a classical token head.
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3.1 Feature Extraction with Quantum
Convolutional Layers

An overview of the proposed Quantum-Augmented
Whisper is shown in Figure 1, combining quan-
tum and classical modules within the ASR pipeline.
Raw audio at 16kHz is converted into an 80-
channel log-Mel spectrogram using a 25ms win-
dow and 10ms stride, normalized and optionally
processed by a lightweight convolutional stem with
ReLU or GELU activations and positional encod-
ing. For feature extraction, instead of classical
CNNs we employ a Quantum Convolutional Neu-
ral Network (QCNN) (Yang et al., 2021), where
2×2 spectrogram patches are angle-encoded into
4-qubit states and processed by variational circuits
with trainable rotations (RX , RY , RZ) and CNOT
entanglement. Pauli-Z expectation values provide
the quantum features, acting as trainable kernels
that replace classical filters and are assembled into
a quantum-enhanced feature map. This approach
introduces stochasticity from measurement and ex-
ploits entanglement to capture local dependencies
more effectively, particularly in low-data settings.
While kernel sizes of 1×1 to 3×3 are considered,
prior work indicates 2×2 offers the best trade-off.
The resulting feature map is flattened into a tempo-
ral sequence for downstream modeling.

3.2 Whisper-Inspired Transformer Decoder
with QLSTM Layers

Mathematical Foundation of Quantum LSTM
Gates: Quantum Long Short-Term Memory (QL-
STM) (Pandey et al., 2023) extends classical
LSTMs by replacing linear transformations in gate
computations with variational quantum circuits
(VQCs). For each gate g ∈ {f, i, C̃, o},

g
(q)
t = σ

(
VQCg

(
[ht−1, xt]; θg

))
, (1)

where [ht−1, xt] is the concatenated vector of pre-
vious hidden state and input, and θg are circuit
parameters.

VQC Architecture: Each variational circuit op-
erates in three stages:

1. Encoding: Inputs are mapped via angle encod-
ing:

|ψenc⟩ =
n⊗

i=1

(
cos

arctan vt,i
2

|0⟩i

+ sin
arctan vt,i

2
|1⟩i

) (2)

2. Variational Layer: For L layers and n qubits:

Uvar(θ) =

L∏

l=1

[
n∏

i=1

R(αi,l, βi,l, γi,l)
∏

⟨i,j⟩
CNOTi,j

]
,

(3)

where R(α, β, γ) = Rz(γ)Ry(β)Rz(α).

3. Measurement: Expectation values are ex-
tracted on Pauli-Z:

⟨Zi⟩ = ⟨ψfinal|Zi|ψfinal⟩.

The resulting QLSTM dynamics are:

ft = σ(VQCf ([ht−1, xt]; θf )), (4)

it = σ(VQCi([ht−1, xt]; θi)), (5)

C̃t = tanh(VQCC̃([ht−1, xt]; θC̃)), (6)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (7)

ot = σ(VQCo([ht−1, xt]; θo)), (8)

ht = VQCh(ot ⊙ tanh(Ct); θh). (9)

Integration into Whisper Decoder: As shown
in Figure 1, quantum-enhanced acoustic embed-
dings are processed by an encoder–decoder Trans-
former modeled after Whisper. The encoder
uses stacked self-attention and feedforward blocks,
while the decoder integrates QLSTM layers inter-
leaved with self-attention and cross-attention mod-
ules. Each gate is realized by a parameterized quan-
tum circuit using entangling layers and rotation
blocks, with nonlinear mappings (sigmoid/tanh)
ensuring standard gating behavior. This hybrid
architecture preserves LSTM temporal dynamics
while embedding them in quantum feature spaces,
enhancing robustness to overfitting and demonstrat-
ing competitive accuracy in low-resource and mul-
tilingual ASR settings.

3.3 Quantum-Aware Self-Attention Module

While the Whisper encoder–decoder backbone
ensures strong sequence modeling, we explore
quantum-enhanced attention via Quantum Adap-
tive Self-Attention (QASA), where query–key inter-
actions are processed through PQCs to generate at-
tention weights. Alternatively, PQCs can modulate
key, query, or value vectors, injecting noise-aware
or entangled projections that complement QLSTM
temporal modules.
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Quantum Adaptive Self-Attention (QASA) re-
places classical dot-product attention with param-
eterized quantum circuits operating on encoded
queries and keys. Given input tokens X ∈ RT×d:

h
(q)
i = tanh(Wqhi) (10)

QASA(h
(q)
i ) = hi +Wo ·QC(h(q)i + t) (11)

where t is temporal information and QC(·) is a
parameterized quantum circuit.

Quantum Circuit Details:

• Data Encoding:

∀i ∈ {1, . . . , n} : RX(xi), RZ(xi)

• Variational Rotations: Trainable per-layer
RY (θl,i), RZ(ϕl,i)

• Entanglement: Circular CNOT topology:
CNOT(i→ (i+ 1)modn)

• Measurement:

QC(h(q)) = [⟨Zj⟩]nj=1

Quantum Encoding in Attention:
Amplitude-Encoded Attention:

|Attention⟩ =
∑

i,j

αij |i⟩ ⊗ |j⟩

Angle-Encoded Attention:

RY (θij)|0⟩ = cos

(
θij
2

)
|0⟩+ sin

(
θij
2

)
|1⟩

where θij encodes attention between tokens i and
j.

Hybrid Encodings: Multi-resolution, adaptive,
or hierarchical encoding strategies may be applied
depending on the attention head or input character-
istics.

This extended theoretical grounding and math-
ematical exposition provides a robust foundation
for quantum sequential models and quantum self-
attention within ASR, adhering to pure quantum
NLP principles throughout.

3.4 Transfer Learning with Pretrained
Acoustic Embeddings

To enhance generalization and reduce training
costs, we integrate pretrained acoustic embeddings,
following Whisper’s large-scale training paradigm
(Figure 1). Contextualized features from models
such as wav2vec 2.0 or Whisper’s encoder are fused
with QCNN outputs to provide richer represen-
tations. These embeddings can be incorporated
in three ways: (1) as direct inputs to the quan-
tum circuit, (2) as initial QLSTM hidden states, or
(3) concatenated with QCNN outputs before trans-
former encoding. Leveraging embeddings trained
on large corpora provides a strong acoustic prior,
allowing quantum layers to refine higher-level rep-
resentations rather than relearn fundamental audio
patterns; an especially beneficial strategy in NISQ-
constrained settings.

4 Evaluation Plan and Conclusion

Although primarily architectural, this work deliv-
ers a concrete, reproducible implementation and
evaluation roadmap. The system can be evalu-
ated on the Quantum-Augmented Whisper pipeline
on three ASR settings—keyword spotting (Speech
Commands), large-vocabulary transcription (Lib-
riSpeech) and multilingual recognition (Common
Voice)—using identical per-module circuit con-
straints and simulators (Qiskit Aer, PennyLane-
Lightning). Implementation highlights: angle-
encode log-mel patches into QCNN kernels (4-
qubit patch kernels, per-module budgets 8–16
qubits), map VQC measurement expectations to
classical projections and gating nonlinearities (sig-
moid/tanh) for QLSTM integration, and operate
quantum layers on frozen pretrained acoustic em-
beddings so quantum circuits refine high-level fea-
tures. Experiments follow a progressive instanti-
ation path. Ideal simulator → noise-injected sim-
ulator → limited-shot NISQ runs with standard
mitigation (measurement error mitigation, zero-
noise extrapolation) and hybrid training (parameter-
shift gradients / classical optimizers, minibatching,
staged unfreezing). It is expected that our model
will show noise robustness, sample efficiency, and
effective parameter counts. Testable hypotheses.
QCNN frontends will likely reduce CER by 1–3%
in noisy conditions via entanglement-mediated fea-
ture mixing. QLSTM decoding will improve low-
resource generalization and quantum modules will
match competitive accuracy with fewer parameters.
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Limitations

The proposed hybrid quantum–classical ASR ar-
chitecture faces several limitations. Simulating
QCNN, QLSTM, and QASA circuits is compu-
tationally expensive, while NISQ devices impose
decoherence, gate errors, and strict depth limits
not fully captured in simulation. Jointly optimiz-
ing pretrained acoustic embeddings with quantum
layers remains challenging. To ensure feasibility,
QCNN kernels are restricted to six entangling gates
per patch, QLSTM layers use 12–14 variational pa-
rameters on 8–12 qubits, and QCNN operates on
four qubits per patch keeping all modules within
an 8–16 qubit budget compatible with current IBM
and IonQ hardware. Training is assumed on simu-
lators using parameter-shift rules, with noise-aware
transpilation, measurement-error mitigation, and
simple entanglement topologies to ensure NISQ
compatibility. Full end-to-end deployment may
still require circuit cutting or hybrid execution until
larger, more reliable quantum processors become
available. This work should therefore be viewed as
a hardware-aware architectural framework, provid-
ing a roadmap for empirical validation as quantum
technology evolves.
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