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Preface

We welcome you to the Second Workshop on Integrating NLP and AI for Multilingual and Patient-
Centric Healthcare Communication (NLP-AI4Health 2025), held on December 23, 2025, in Mumbai,
India, in conjunction with IJCNLP-AACL 2025.

Healthcare communication is a complex domain where language barriers, cultural nuances, and technical
literacy often hinder effective patient care. The primary objective of NLP-AI4Health is to explore how
Natural Language Processing (NLP) and Artificial Intelligence (AI) can bridge these gaps, particularly
in multilingual and resource-constrained environments. This year, we continue our mission to build a
community of interdisciplinary experts including clinicians, developers, and researchers dedicated to co-
creating inclusive and ethically aligned language technologies.

For this second edition, we received 11 submissions from researchers around the globe. The review pro-
cess was rigorous, focusing on technical novelty, clinical relevance, and adherence to ethical standards.
Ultimately, 4 papers were accepted for presentation, resulting in an acceptance rate of approximately
36%.

The accepted papers cover a focused yet diverse spectrum of healthcare applications, bridging the gap
between clinical rigor and linguistic reality. The research explores key tasks such as multimodal emo-
tion recognition, automated behavioral coding, and the construction of large-scale medical knowledge
graphs. Notably, the proceedings highlight significant advancements in mental health, with studies pro-
posing novel frameworks for cross-lingual distress ontologies and systems for evaluating counselor-client
interactions.

Shared Task and Keynotes
A highlight of this year’s workshop is the Shared Task on Multilingual Health Question Answering,
focusing on Head and Neck Cancer (HNC) and Cystic Fibrosis (CF). This task challenges participants
to build models capable of summarizing and answering patient questions across 8 languages, including
Hindi, Telugu, Tamil, and Bengali, fostering robust QA systems for the Indian context.

We are also honored to host two distinguished keynote speakers: Prof. Tanmoy Chakraborty (IIT Delhi)
and Dr. Parag R. Rindani (Wockhardt Hospitals). Their combined expertise spanning state-of-the-art
AI research and hospital administration perfectly encapsulates the workshop’s goal of uniting technical
innovation with clinical reality.
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We hope these proceedings inspire new collaborations and innovations that make healthcare more acces-
sible, understandable, and equitable for all.
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Keynote Talk
Towards Enhanced Conversational Dynamics for Effective

Virtual Therapist-Assistive Counseling
Tanmoy Chakraborty

IIT Delhi

Abstract: The increasing demand for digital healthcare, coupled with current infrastructure limitations,
requires digital therapeutic interventions. My talk will focus on the design and implementation of Virtual
Mental Health Assistants modules that serve as therapist-assistive mechanisms to automate their complex
work cycle. We work on building novel LLM-based methods for dialogue understanding, summarization,
causation and generation, and our research captures the intricacies of therapeutic communication whi-
le incorporating signs into human behavior analysis. In support of this, we also develop novel datasets,
tools and techniques (some of which have gone through rigorous POC) in collaboration with professional
therapists and counselors.

Bio: Tanmoy Chakraborty is a Rajiv Khemani Young Faculty Chair Professor in AI and an Associate
Professor in the Dept. of Electrical Engineering and the School of AI at IIT Delhi. He leads the La-
boratory for Computational Social Systems (LCS2), a research group that primarily focuses on building
economical, adaptable and interpretable language models. He served as the DAAD visiting professor at
MPI Saarbrucken, PECFAR visiting professor at TU Munich and Humboldt visiting professor at TU Dar-
mstadt. Tanmoy has received numerous recognitions, including the ACM India Outstanding Contribution
to Computing Education Award, INSA Young Associate, Ramanujan Fellowship, ACL ’23 Outstanding
Paper Award, IJCAI’23 AI for Social Good Award, and several faculty awards from industries like Micro-
soft, IBM, Google, LinkedIn, JP Morgan, and Adobe. He has authored two textbooks – Social Network
Analysisand Introduction to Large Language Models". Tanmoy earned his PhD from IIT Kharagpur in
2015 as a Google PhD Scholar. More details may be found at tanmoychak.com.
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Keynote Talk
Language Technology Adoption in Health - What Should We

Know from Safety Standards?
Parag R Rindani

Wockhardt Hospitals

Abstract: As Natural Language Processing and AI systems enter clinical workflows — from automated
transcription to patient-facing chatbots — the stakes for safety, reliability, and accountability are higher
than ever. These technologies promise greater efficiency, improved documentation, and enhanced patient
access, but they also introduce new vulnerabilities around accuracy, bias, data privacy, and inappropria-
te clinical decision influence. This talk examines how healthcare can embrace language technologies
without compromising patient safety. It connects technological innovation with established medical safe-
ty standards, highlighting the regulatory frameworks, risk-mitigation protocols, and clinical governance
mechanisms that should shape the development and deployment of NLP-driven tools. The session will
outline practical safeguards for developers, hospital leaders, and clinicians to ensure that language te-
chnology enhances patient outcomes — not endangers them.

Bio: Dr. Parag R Rindani is working as Group Chief Executive Officer - Wockhardt Hospitals Ltd.
He is a post-graduate in Microbiology, Hospital Administration and Management with specialization in
Finance. He is a Principal Assessor for the NABH and is part of the Programme on Implementation
training, accreditation and assessor training team at NABH. He has over multiple NABH assessments
done and has participated in many programmes on Implementation as also Assessor Refresher Courses
and Conclaves. He has also been awarded the “Wockhardt Quality Team Leadership Award” in 2007.
He has worked extensively on setting up quality management systems in Indian hospitals. He has been
an integral part of NABH and JCI accreditation and re-accreditation process. He has also successfully
conducted programmes on setting up infection control programmes in hospitals using PDCA cycle in
the Maldives, India and Bahrain. He has also contributed and various articles on lab management and
clinical governance.
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Enhancing Patient-Centric Healthcare Communication Through
Multimodal Emotion Recognition: A Transformer-Based Framework for

Clinical Decision Support

Vineet Channe
Sardar Patel Institute of Technology
vineet.channe22@spit.ac.in

Abstract

This paper presents a multimodal emotion anal-
ysis framework designed to enhance patient-
centric healthcare communication and sup-
port clinical decision-making. Our system ad-
dresses automated patient emotion monitor-
ing during consultations, telemedicine sessions,
and mental health screenings by combining
audio transcription, facial emotion analysis,
and text processing. Using emotion patterns
from the CREMA-D dataset as a foundation
for healthcare-relevant emotional expressions,
we introduce a novel emotion-annotated text
format “[emotion] transcript [emotion]” inte-
grating Whisper-based audio transcription with
DeepFace facial emotion analysis. We sys-
tematically evaluate eight transformer archi-
tectures (BERT, RoBERTa, DeBERTa, XLNet,
ALBERT, DistilBERT, ELECTRA, and BERT-
base) for three-class clinical emotion classifi-
cation: Distress/Negative (anxiety, fear), Sta-
ble/Neutral (baseline), and Engaged/Positive
(comfort). Our multimodal fusion strategy
achieves 86.8% accuracy with DeBERTa-v3-
base, representing a 12.6% improvement over
unimodal approaches and meeting clinical re-
quirements for reliable patient emotion detec-
tion. Cross-modal attention analysis reveals
facial expressions provide crucial disambigua-
tion, with stronger attention to negative emo-
tions (0.41 vs 0.28), aligning with clinical prior-
ities for detecting patient distress. Our contribu-
tions include emotion-annotated text represen-
tation for healthcare contexts, systematic trans-
former evaluation for clinical deployment, and
a framework enabling real-time patient emo-
tion monitoring and emotionally-aware clinical
decision support.

1 Introduction

Patient emotion recognition is fundamental to qual-
ity healthcare delivery, enabling clinicians to iden-
tify distress, anxiety, and engagement levels that
patients may not explicitly communicate during

consultations. In healthcare settings, missed emo-
tional cues can indicate mental health issues, treat-
ment non-compliance, or communication barri-
ers, particularly critical in telemedicine and cross-
cultural healthcare environments where traditional
verbal and visual indicators become limited. Cur-
rent healthcare systems lack robust tools for real-
time patient emotion monitoring, creating gaps in
patient-centered care that automated multimodal
emotion analysis can address.

Existing emotion recognition approaches typi-
cally focus on single modalities audio, visual, or
textual, missing the rich complementary informa-
tion essential for understanding complex patient
emotional states. Recent advances in transformer
architectures have demonstrated remarkable suc-
cess in natural language processing tasks, yet their
systematic application to healthcare-oriented multi-
modal emotion recognition remains underexplored,
particularly for clinical deployment scenarios.

Current multimodal emotion recognition sys-
tems employ sophisticated fusion strategies,
with Cross-Modal Transformers (CMT) showing
promise across benchmark datasets (Khan et al.,
2025). However, existing approaches lack system-
atic evaluation for healthcare applications and fail
to leverage multimodal integration in formats suit-
able for clinical decision support systems.

This paper addresses these healthcare commu-
nication challenges by introducing a novel multi-
modal emotion analysis framework designed for
patient-centric care contexts. Our key innovation
lies in the emotion-annotated text format “[emo-
tion] transcript [emotion]” that embeds visual emo-
tional cues directly into textual representations, en-
abling transformer models to learn cross-modal
relationships crucial for detecting patient distress,
engagement, and emotional state transitions during
healthcare interactions.

Our primary contributions include: (1) A
novel emotion-annotated text representation for
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healthcare communication contexts; (2) System-
atic evaluation of eight transformer architectures
for clinical-grade emotion recognition; (3) Anal-
ysis of cross-modal attention mechanisms for pa-
tient emotion detection; (4) Framework enabling
real-time patient emotion monitoring, telemedicine
enhancement, and emotionally-aware clinical deci-
sion support systems.

2 Related Work

2.1 Multimodal Emotion Recognition for
Healthcare

Recent advances in multimodal emotion recogni-
tion have focused on sophisticated fusion strategies
combining audio, visual, and textual information,
with growing applications in healthcare contexts
for patient emotion monitoring and clinical deci-
sion support (Wu et al., 2025; Guo et al., 2024).
Cross-Modal Transformers (CMT) have emerged
as the dominant approach, with MemoCMT achiev-
ing state-of-the-art performance on conversational
datasets that mirror patient-clinician interactions
(Khan et al., 2025).

Recursive Joint Cross-Modal Attention
(RJCMA) represents another significant advance-
ment, iteratively refining intra- and inter-modal
correlations across modalities (Praveen and
Alam, 2024). This approach computes attention
weights based on cross-correlation between
joint multimodal representations and individual
modality features, achieving strong performance
on dimensional emotion tasks relevant for clinical
applications.

Multimodal Transformers have shown effective-
ness in handling unaligned multimodal sequences,
providing robust frameworks for processing tempo-
ral misalignments common in healthcare settings
(Tsai et al., 2019). Advanced fusion strategies show
particular promise for clinical applications, with
recent approaches demonstrating effectiveness in
depression detection (Zhang et al., 2024; Fang et al.,
2023) and patient emotional state monitoring dur-
ing medical consultations.

Healthcare-oriented emotion recognition re-
quires high reliability for detecting negative emo-
tional states, as missing patient distress has more
severe clinical consequences than false positive
detections. Hybrid fusion strategies combin-
ing feature-level and model-level fusion through
Cross-Transformer Encoders generate multimodal
emotional intermediate representations that guide

modal interactions essential for clinical decision
support systems.

Emotion-aware clinical decision support systems
represent an emerging frontier, with recent frame-
works demonstrating integration of affective com-
puting into healthcare decision-making processes
(Vazquez-Rodriguez et al., 2024). These systems
leverage patient emotional states to enhance di-
agnostic accuracy and treatment personalization,
particularly valuable for mental health screening
and patient-clinician interaction optimization dur-
ing consultations and telemedicine sessions.

2.2 CREMA-D Dataset Applications
The CREMA-D dataset, containing 7,442 audio-
visual clips from 91 actors expressing six basic
emotions (anger, disgust, fear, happy, neutral, sad),
provides a robust foundation for multimodal emo-
tion recognition research (Cao et al., 2014). The
dataset’s comprehensive coverage of emotional ex-
pressions has enabled development of models ap-
plicable to healthcare contexts where detecting pa-
tient emotional states is crucial for clinical decision-
making.

Recent transformer-based approaches have
demonstrated strong performance on CREMA-D
and similar emotion recognition benchmarks, es-
tablishing foundations for clinical applications re-
quiring reliable emotion detection.

2.3 Transformer Architectures for Emotion
Recognition

Comparative studies reveal significant performance
differences among transformer architectures for
emotion recognition tasks. RoBERTa has demon-
strated strong performance on fine-grained emo-
tion classification tasks, with F1-scores reaching
0.62-0.84 across different emotion categories (Liu
et al., 2019), while DeBERTa shows superior ef-
ficiency, achieving human-level performance on
SuperGLUE (89.9 vs 89.8 human baseline) with its
disentangled attention mechanism (He et al., 2021).

DistilBERT emerges as an optimal efficiency-
performance trade-off, providing 60% faster infer-
ence than BERT while maintaining competitive
accuracy, crucial for clinical deployment scenar-
ios. Recent comprehensive surveys demonstrate
that transformer-based approaches achieve state-
of-the-art performance across multimodal emotion
recognition tasks (Hazmoune et al., 2024), with
growing applications in healthcare emotion moni-
toring showing promising results for patient emo-
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tional state detection and clinical decision support
applications (Guo et al., 2024).

The evolution of transformer architectures has
been foundational, with BERT establishing the
paradigm for understanding contextual relation-
ships in text (Devlin et al., 2019). Multimodal ap-
proaches combining facial expression recognition
with text analysis have shown promising results for
healthcare emotion monitoring (Reghunathan et al.,
2024).

2.4 Cross-Modal Attention Mechanisms
Cross-modal attention mechanisms enable effective
information exchange between modalities through
learned attention weights. Mathematical formula-
tions typically follow the pattern:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

(1)

CrossAttention(Mi,Mj) = Attention(Qi,Kj , Vj)
(2)

where Q represents queries from one modality
while K and V come from another. Multi-head
attention mechanisms capture different aspects of
cross-modal relationships, while bidirectional at-
tention ensures mutual information exchange be-
tween modalities.

3 Methodology

3.1 Dataset and Preprocessing
Our experiments utilize the CREMA-D dataset,
containing 7,442 audio-visual clips from 91 actors
expressing six basic emotions across four intensity
levels, providing foundational emotional expres-
sion patterns transferable to healthcare communica-
tion contexts. We map these to a three-class clinical
emotion classification: Patient Distress (anger, dis-
gust, fear, sad), Stable State (neutral), and Patient
Engagement (happy).

Dataset and Mapping Justification: While
CREMA-D uses acted emotions, basic emotional
expressions show universal patterns across acted
and spontaneous contexts (Ekman and Friesen,
1971), providing transferable baseline patterns for
clinical fine-tuning. We reduce six emotions to
three clinically-actionable categories: Distress
(anger, disgust, fear, sad) requires immediate clin-
ical attention; Stable (neutral) provides baseline
monitoring; Engaged (happy) indicates therapeutic

rapport. This mapping prioritizes detecting patient
distress over granular classification, aligning with
clinical workflows where missing negative affect
has serious consequences, while maintaining 86.8%
accuracy necessary for deployment.

Audio-to-Text Conversion Each video is pro-
cessed through Whisper ASR (Radford et al.,
2023) to obtain timestamped transcripts, simulating
speech-to-text capabilities essential for real-time
patient monitoring during consultations.

Facial Emotion Extraction Facial frames are
extracted at 5fps and processed through pre-trained
emotion classification models to detect the six
CREMA-D emotions. Time-aligned emotion pre-
dictions are mapped to corresponding transcript
segments, creating comprehensive emotional pro-
files crucial for clinical decision support.

3.2 Emotion-Enhanced Text Annotation

Detected facial emotions are used to annotate the
textual transcript to enhance context awareness in
downstream sentiment models, particularly valu-
able for healthcare applications where patients may
suppress or mask emotional distress. Each utter-
ance is wrapped with the dominant emotion ob-
served during its duration. When emotion shifts
are detected within an utterance, annotation bound-
aries are adjusted accordingly.

Example:

[sad] I really don’t feel like talking today
[sad] [happy] but I’m glad you called
[happy]

This annotated text becomes the input to an aug-
mented sentiment model. We train transformer-
based sentiment classifiers that treat emotion tags
as special tokens. These tokens guide the model to
adjust its interpretation based on facial affect, im-
proving sensitivity to nuanced emotional shifts cru-
cial for clinical contexts, such as detecting patient
anxiety despite verbal reassurances, or identifying
depression markers when patients minimize their
distress.

3.3 Model Pipeline Overview

The full pipeline comprises:

• Audio Transcription: Whisper ASR gener-
ates timestamped transcripts from video audio,
enabling real-time patient speech processing
during consultations.
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• Facial Emotion Detection: CNN-based emo-
tion classifiers process facial frames to detect
emotional expressions that patients may not
verbally communicate.

• Emotion-Text Alignment: Transcript seg-
ments are annotated with facial emotion tags
corresponding to aligned time windows, creat-
ing comprehensive patient emotional profiles.

• Multimodal Sentiment Classification: Eight
transformer architectures (BERT, RoBERTa,
DeBERTa, XLNet, ALBERT, DistilBERT,
ELECTRA variants) process the emotion-
tagged text for clinical-grade sentiment classi-
fication.

Figure 1: Multimodal Emotion Recognition Pipeline for
Healthcare Applications

Figure 1 illustrates our comprehensive multi-
modal architecture, showing the parallel processing
of audio and visual modalities that converge into
emotion-annotated text for transformer-based clini-
cal emotion classification.

3.4 Transformer Architecture Comparison

We systematically evaluate eight transformer archi-
tectures to identify optimal models for healthcare
deployment scenarios, considering both accuracy
and computational efficiency requirements for clin-
ical settings:

BERT variants: bert-base-uncased (110M
parameters), bert-large-uncased (340M parameters)
(Devlin et al., 2019)
RoBERTa: roberta-base (125M parameters)
DeBERTa: microsoft/deberta-v3-base (86M
parameters)

XLNet: xlnet-base-cased (110M parameters)
ALBERT: albert-base-v2 (11M parameters)
DistilBERT: distilbert-base-uncased (66M param-
eters)
ELECTRA: google/electra-base-discriminator
(110M parameters)

This diverse selection enables evaluation of
accuracy-efficiency trade-offs crucial for real-
world healthcare deployment, from resource-
constrained clinical devices (ALBERT, Distil-
BERT) to high-performance hospital systems
(BERT-large, DeBERTa).

3.5 Architecture and Training Details

Our architecture employs a standard transformer-
based classification pipeline optimized for health-
care emotion analysis with emotion-annotated text
inputs. The model architecture consists of:

1. Tokenization: Text inputs tokenized using
model-specific tokenizers with maximum se-
quence length of 256 tokens (suitable for typi-
cal patient utterances during consultations)

2. Transformer Encoder: Pre-trained trans-
former models fine-tuned for clinical emotion
classification

3. Classification Head: Linear layer with soft-
max activation for three-class prediction (Pa-
tient Distress, Stable State, Patient Engage-
ment)

4. Loss Function: Cross-entropy loss with label
smoothing ( = 0.1) to handle clinical emotion
classification uncertainty

Training hyperparameters optimized for clinical
deployment: Learning rate: 2e-5, batch size: 16,
epochs: 4, warmup steps: 500, weight decay: 0.01.
All models trained using mixed precision on Tesla
V100 GPUs to ensure computational efficiency for
healthcare applications.

3.6 Evaluation Metrics

We employ standard classification metrics includ-
ing accuracy, precision, recall, and F1-score, with
particular emphasis on clinical performance re-
quirements. Weighted metrics account for class im-
balance inherent in healthcare emotion data, while
macro-averaged metrics provide equal weight to
all classes. We prioritize recall for Patient Dis-
tress detection, as false negatives (missing patient
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emotional distress) have more serious clinical con-
sequences than false positives. Additionally, we
compute confusion matrices to analyze emotion-
specific performance patterns and identify potential
clinical misclassification risks between Patient Dis-
tress, Stable State, and Patient Engagement classes.

3.7 Dataset Split and Validation
We employ stratified 5-fold cross-validation to en-
sure robust performance estimation while maintain-
ing class distribution balance across Patient Dis-
tress, Stable State, and Patient Engagement classes.
Speaker-independent validation prevents overfit-
ting to specific actor characteristics, crucial for
real-world clinical generalization where the system
must accurately recognize emotions from diverse
patient populations without prior patient-specific
training.

3.8 Baseline Comparisons
We compare our multimodal approach against sev-
eral baselines to demonstrate the clinical value
of emotion-annotated text for healthcare emotion
recognition:

1) Unimodal Text-Only: Transformer models
trained on Whisper transcripts without emotion an-
notations, simulating text-only patient monitoring
systems
2) Unimodal Audio: Traditional audio-only ap-
proaches using MFCC features with SVM classifi-
cation, representing voice-based patient assessment
tools
3) Unimodal Visual: CNN-based facial emotion
recognition using raw video frames, mimicking
visual-only patient emotion monitoring
4) Simple Concatenation: Feature-level fusion
without emotion-annotated format, representing ba-
sic multimodal integration approaches in existing
clinical systems

3.9 Main Results
Table 1 presents our comprehensive results across
all transformer architectures and approaches.

Key findings: DeBERTa-v3-base achieves the
highest performance at 86.8% accuracy, demon-
strating the effectiveness of disentangled attention
mechanisms for multimodal integration. All trans-
former architectures show consistent improvements
of 12.4% when using our emotion-annotated format
compared to text-only approaches, with improve-
ments ranging from +12.2% to +12.7% across all
models.

Table 1: Performance Comparison of Transformer Ar-
chitectures

Model Uni. Multi. Improv.

DeBERTa-v3-base 74.2% 86.8% +12.6%
RoBERTa-base 73.1% 85.7% +12.6%
BERT-large 72.4% 85.1% +12.7%
XLNet-base 71.6% 83.9% +12.3%
BERT-base 70.8% 83.2% +12.4%
DistilBERT 69.3% 81.8% +12.5%
ALBERT-base 67.9% 80.1% +12.2%
ELECTRA-base 67.2% 79.4% +12.2%

3.10 Ablation Studies

Table 2 presents ablation study results using
DeBERTa-v3-base.

Table 2: Ablation Study Results (DeBERTa-v3-base)

Component Acc. ∆Acc.

Full Model 86.8% —
Without Emotion Tags 74.2% -12.6%
Simple Concatenation 75.9% -10.9%
Audio Features Only 67.8% -19.0%
Visual Features Only 71.5% -15.3%
Random Emotion Tags 75.1% -11.7%

The ablation study demonstrates that emotion
tags provide crucial information for classification
performance. Simple concatenation approaches
achieve only marginal improvements (+1.7%) com-
pared to our emotion-annotated format (+12.6%),
highlighting the importance of structured multi-
modal integration for clinical emotion recognition
applications.

3.11 Attention Analysis

We visualize attention patterns to understand how
models process emotion-annotated text for clini-
cal emotion recognition. Cross-modal attention
analysis reveals that models consistently attend to
emotion tags when processing ambiguous textual
content, with attention weights averaging 0.34 for
emotion tokens compared to 0.12 for regular text
tokens, demonstrating the clinical value of visual
emotional cues in patient communication analysis.

Emotion-specific attention patterns show clin-
ically relevant behavior: models attend more
strongly to emotion tags during negative sentiment
classification (0.41 average attention) compared to
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positive sentiment (0.28 average attention), sug-
gesting that facial expressions provide more disam-
biguating information for detecting patient distress.
This asymmetric attention pattern aligns with clini-
cal priorities where identifying patient anxiety, fear,
or emotional distress is more critical than detecting
positive engagement, making the approach partic-
ularly suitable for healthcare applications where
missing negative emotional states has more serious
consequences than false positive detections.

4 Discussion

4.1 Performance Analysis

Our results demonstrate that multimodal integra-
tion provides substantial benefits across all trans-
former architectures, with consistent improvements
of approximately 12.4%. The emotion-annotated
text format enables effective cross-modal learning
by providing explicit bridges between visual and
textual information, particularly valuable for health-
care applications where patients may suppress ver-
bal emotional distress.

DeBERTa’s superior performance (86.8% accu-
racy) can be attributed to its disentangled attention
mechanism, which separates content and positional
information. This architectural innovation appears
particularly beneficial for processing our emotion-
annotated format, where positional relationships
between emotion tags and text content are crucial
for clinical emotion assessment.

4.2 Computational Efficiency

Training efficiency analysis reveals significant dif-
ferences between models for healthcare deploy-
ment. DistilBERT achieves 81.8% accuracy with
60% faster inference than BERT-base, making
it ideal for resource-constrained clinical environ-
ments. ELECTRA provides excellent training ef-
ficiency at 79.4% accuracy while requiring 25%
less computation, suitable for edge deployment in
telemedicine applications.

4.3 Limitations and Future Work

Current limitations include: (1) Dependence on
high-quality facial detection, which may fail in
clinical environments with poor lighting or mask-
wearing; (2) Limited validation on diverse patient
populations; (3) Privacy concerns for processing
patient facial data.

Future research should explore: (1) Privacy-
preserving emotion recognition techniques for

healthcare data; (2) Robust performance with miss-
ing modalities during telemedicine; (3) Real-time
processing optimizations for clinical deployment;
(4) Cross-cultural validation across diverse patient
populations.

Robustness to Missing Modalities: Our cur-
rent architecture requires both audio and visual
modalities, degrading when one is unavailable (e.g.,
poor video quality in telemedicine, noisy ASR
outputs). Future work should explore modality
dropout training where models learn robust repre-
sentations with randomly excluded modalities dur-
ing training, uncertainty-aware fusion that down-
weights low-quality inputs based on detection con-
fidence, and cascaded fallback systems that attempt
multimodal analysis but revert to best-available uni-
modal processing when quality thresholds are not
met (Ma et al., 2021).

Privacy concerns for processing patient facial
data require comprehensive mitigation strategies.
We propose: (1) Federated learning to train mod-
els across hospitals without sharing raw patient
videos, only encrypted parameter updates; (2) Dif-
ferential privacy adding calibrated noise to fea-
tures while maintaining clinical accuracy; (3) On-
device processing where emotion analysis occurs
locally without cloud transmission; (4) Face de-
identification preserving emotion-relevant features
while removing identity information; (5) End-to-
end encryption for telemedicine video streams.

4.4 Bias and Fairness Considerations

Our evaluation lacks systematic bias analysis
across demographic groups (gender, age, ethnicity),
a critical limitation for clinical deployment. Facial
emotion recognition systems exhibit documented
performance disparities across demographic groups
(Xu et al., 2020), with lower accuracy for darker
skin tones, older adults, and non-Western expres-
sions. The CREMA-D dataset contains 48 male
and 43 female actors, ages 20-74, across diverse
ethnic backgrounds, but without fairness metrics
(Demographic Parity, Equalized Odds), our sys-
tem risks perpetuating healthcare disparities where
certain patient populations receive inferior emotion
monitoring. Future work requires demographically-
balanced validation on clinical datasets, adversarial
debiasing techniques, and fairness constraints dur-
ing training to ensure equal performance across
protected demographic categories before clinical
deployment.
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4.5 Broader Implications

Our emotion-annotated text format represents a
generalizable approach for clinical multimodal
integration with significant potential for health-
care applications, aligning with recent advances
in emotion-aware clinical decision support sys-
tems (Vazquez-Rodriguez et al., 2024) and compre-
hensive patient emotion monitoring frameworks
(Wu et al., 2025). The methodology could ex-
tend to patient-clinician interaction analysis, men-
tal health screening systems, and telemedicine plat-
forms where detecting patient emotional states is
crucial for quality care. The systematic transformer
comparison provides valuable insights for health-
care practitioners selecting models based on clini-
cal deployment requirements, offering clear guid-
ance on accuracy-efficiency trade-offs for resource-
constrained clinical environments versus high-
performance hospital systems.

5 Conclusion

This paper presents a comprehensive multimodal
emotion analysis framework for healthcare appli-
cations that significantly advances clinical emotion
recognition capabilities. Our emotion-annotated
text format “[emotion] transcript [emotion]” en-
ables effective integration of visual and textual in-
formation for patient emotion monitoring, achiev-
ing 86.8% accuracy with DeBERTa-v3-base, a
12.6% improvement over unimodal approaches and
substantially exceeding the 63.6% human baseline
for multimodal emotion recognition.

Key contributions include: (1) Novel emotion-
annotated text representation optimized for clinical
multimodal integration; (2) Systematic evaluation
of eight transformer architectures on healthcare-
relevant emotion classification; (3) Comprehen-
sive analysis of cross-modal attention mechanisms
showing models prioritize emotion tags during neg-
ative sentiment detection (0.41 vs 0.28 attention
weights), aligning with clinical priorities for patient
distress identification; (4) Demonstration of consis-
tent ∼12.4% performance improvements across all
tested architectures, providing robust options for
diverse healthcare deployment scenarios.

Our systematic comparison reveals that while
DeBERTa achieves the highest accuracy for maxi-
mum clinical performance, different models offer
varying trade-offs suitable for healthcare deploy-
ment: DistilBERT (81.8%, 60% faster inference)
for resource-constrained clinical environments, and

ELECTRA (79.4%, 25% less computation) for effi-
cient training in healthcare settings. The proposed
framework provides a practical solution for real-
world clinical emotion recognition, with applica-
tions in patient-clinician interaction analysis, men-
tal health screening, and telemedicine platforms.

Future work will focus on privacy-preserving
emotion recognition for healthcare data, ro-
bust performance with missing modalities dur-
ing telemedicine, and real-time processing opti-
mizations for clinical deployment. The emotion-
annotated text format opens new possibilities for
structured multimodal learning in healthcare con-
texts, enabling more effective detection of patient
emotional distress where traditional verbal commu-
nication may be insufficient.

Limitations

This work has several limitations that should be ac-
knowledged. First, our approach depends on high-
quality facial emotion detection, which may fail
in clinical environments with poor lighting, mask-
wearing patients, or camera occlusion scenarios
common in healthcare settings. Second, the eval-
uation is limited to the CREMA-D dataset, which
primarily contains North American actors, poten-
tially limiting generalizability across diverse pa-
tient populations and cultural contexts essential for
global healthcare deployment. Third, the computa-
tional overhead from processing multiple modali-
ties poses challenges for real-time deployment in
resource-constrained clinical environments. Fourth,
our emotion annotation approach assumes tempo-
ral alignment between audio and visual modali-
ties, which may not hold during telemedicine ses-
sions with network latency or technical interrup-
tions. Fifth, privacy concerns regarding process-
ing patient facial data require additional security
protocols for clinical implementation. Sixth, our
evaluation lacks systematic bias and fairness analy-
sis across demographic groups, risking differential
performance across patient populations. Finally,
the three-class sentiment mapping may oversim-
plify the rich spectrum of human emotions relevant
for comprehensive patient emotional assessment,
potentially missing subtle indicators of anxiety, de-
pression, or other clinically significant emotional
states.
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Abstract

The human body is highly interconnected,
where a diagnosis in one organ can influ-
ence conditions in others. In medical re-
search, graphs (such as Knowledge Graphs
and Causal Graphs) have proven useful for
capturing these relationships, but construct-
ing them manually with expert input is both
costly and time-intensive, especially given the
continuous flow of new findings. To address
this, we leverage the extraction capabilities
of large language models (LLMs) to build
the MultiOrgan Diagnosis Knowledge Graph
(MOD-KG). MOD-KG contains over 21,200
knowledge triples, derived from both text-
books ( 13%) and carefully selected research
papers (with an average of 444 citations each).
The graph focuses primarily on the heart, lungs,
kidneys, liver, pancreas, and brain, which are
central to much of today’s multimodal imaging
research. The extraction quality of the LLM
was benchmarked against baselines over 1000
samples, demonstrating reliability.Our dataset
is publicly available1.

1 Introduction

The human body is a deeply interconnected system,
where dysfunction in one organ often cascades into
effects on others. Capturing these inter-organ re-
lationships in a structured form has long been a
goal in medical informatics. Graph-based represen-
tations—most notably Knowledge Graphs (KGs)
and Causal Graphs (CGs)—have emerged as pow-
erful tools to encode relationships among diseases,
risk factors, and treatments. They support explo-
ration of associations, causal pathways, and rea-
soning across complex medical conditions, and
have already been applied in tasks such as clinical
decision support, drug repurposing, treatment dis-
covery, medical imaging report generation, causal
drug prioritization, comorbidity network analysis,

1https://github.com/anas2908/MOD-KG

etc. Despite their promise, building such graphs
remains a bottleneck.

Manual curation requires substantial expert time,
struggles to keep pace with the constant influx of
biomedical knowledge, and is difficult to scale. To
address this, we present the Multi-Organ Diag-
nosis Knowledge Graph (MOD-KG), compris-
ing 21,200+ triples extracted from textbooks and
high-quality research papers, focusing on six key
organs: heart, lungs, kidneys, liver, pancreas, and
brain—which are central to many clinical diag-
noses and multimodal imaging studies.
MOD-KG enables a wide range of downstream
applications:

1. Diagnostic support: for example, linking kid-
ney disease with heart failure to prompt car-
diovascular monitoring.

2. Multimodal imaging: contextualizing CT find-
ings of pulmonary fibrosis with associated
liver comorbidities.

3. Causal reasoning: tracing pathways such as
diabetes → kidney disease → stroke.

4. Comorbidity discovery: uncovering links such
as between cirrhosis and hepatic encephalopa-
thy.

5. Diagnosis omission detection: flagging over-
looked risks, e.g., pneumonia noted in a report
but sepsis risk not considered.

Global Patient Safety Report 2024 by WHO2,
notes that most adults will experience at least one
diagnostic error in their lifetime and highlights tech-
nology based systems as promising interventions.
Similarly, (Panagioti et al., 2019) found that 16%
of preventable patient harm is linked to diagnostic
errors, with diagnosis omission being especially
prevalent. Detailed use cases are in Section 7

2https://www.who.int/publications/i/item/
9789240095458
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Our work makes the following key contributions:

• We introduce MOD-KG, the first large-scale
Multi-Organ Diagnosis Knowledge Graph,
consisting of over 21,200 high-quality knowl-
edge triples covering six critical organs (heart,
lungs, kidneys, liver, pancreas, and brain).

• We propose a pipeline for extracting medi-
cal knowledge triples from textbooks and re-
search papers, benchmark the extraction qual-
ity against baseline methods over 1000 sam-
ples, and release MOD-KG along with all as-
sociated metadata for the community.

2 Related Work

Biomedical knowledge graphs (BKGs) integrate
diverse sources such as databases, ontologies, and
literature to represent entities (e.g., diseases, drugs,
genes) and relations, supporting applications like
question answering, drug repurposing, and deci-
sion support via path-based or embedding-based
reasoning (Zhu et al., 2020; Lu et al., 2025; Ar-
senyan et al., 2024). In drug discovery, KG-based
approaches leverage drug–disease–gene networks
with path, embedding, and causal methods to prior-
itize candidates and explain mechanisms, exempli-
fied by RPath (Zhu et al., 2020; Ma et al., 2023a;
Zhu et al., 2023; Domingo-Fernández et al., 2022).
In radiology and multimodal medicine, organ- or
modality-specific KGs enhance vision–language
models for accurate report generation (Kale et al.,
2023b,a), while automated extraction pipelines
(e.g., SemMedDB, SemRep, PubTator) and hy-
brid rule–ML methods improve coverage and preci-
sion for specialized biomedical relations (Kilicoglu
et al., 2020; Wei et al., 2019; Lai et al., 2023; Pawar
et al., 2021). Large language models have further
enabled zero/few-shot and ontology-guided triplet
extraction pipelines for text-to-KG construction,
reducing annotation costs but facing challenges
in calibration, factuality, and entity standardiza-
tion (Papaluca et al., 2024; Mo et al., 2025; Kho-
rashadizadeh et al., 2024).

MOD-KG distinguishes itself as an organ-
centric graph encoding both intra- and inter-organ
relations, automatically extracted from curated text-
books and highly cited research, with 21.7k triples
across six major organs, supporting applications in
imaging context, comorbidity discovery, and omis-
sion detection.

3 MultiOrgan Diagnostic Knowledge
Graph (MOD-KG)

3.1 Definition and representation
We represent inter- and intra-organ diagnostic
knowledge initially as quintuples of the form

Q = ⟨d1, o1, r, d2, o2⟩,

where di is a diagnosis (or clinical concept), oi is
the organ in which di occurs, and r is a relation
(e.g., “may cause”, “is associated with”, “increases
risk of”). Quintuples explicitly bind each diagno-
sis to an organ, which reduces ambiguity when
the same diagnosis label can appear in multiple
anatomical contexts.

For graph construction we map each quintu-
ple to a canonical triple by collapsing the diag-
nosis+organ pair into a single node identifier via a
canonicalization function c(·, ·):

Q = ⟨d1, o1, r, d2, o2⟩
−→ t = ⟨h, r, t⟩
with h = c(d1, o1), t = c(d2, o2).

The set of all canonical entities (nodes) is denoted
E and the set of relation types is R. The resulting
knowledge graph is

G = (E ,R, T ),

where T ⊆ E × R × E is the set of extracted
triples. Representative intra- and inter-organ triples
are shown in Table 1 and node examples in Table 2.

3.2 Relation to existing organ-centric work
and embedding strategy

Organ-centric KGs have been shown useful for
multimodal clinical tasks; in particular, Kaveri
Kale et al. construct abdominal-organ knowledge
representations and demonstrate benefits when
these triples are injected into vision–language
pipelines for radiology report generation (Kale
et al., 2023b,a). Following the same spirit of con-
verting structured text extractions into an embed-
dable graph, we produce MOD-KG triples and
compute translational embeddings using TransE
(Bordes et al., 2013) so that MOD-KG is immedi-
ately amenable to downstream neural integration.

Concretely, for each triple (h, r, t) ∈ T we learn
low-dimensional vectors eh, et, r ∈ Rk with the
TransE scoring function

f(h, r, t) = ∥eh + r− et∥2,
10



Inter Organ Triples Intra Organ Triples
Cirrhosis in Liver, may cause, Impaired Ventricular Ejection in Heart Pneumothorax in Lung, may cause, Hypoxia in Lung
NAFLD in Liver, is associated with, Myocardial infarction in Heart COPD in Lung, contributes to, Emphysema in Lung
COPD in Lung, may lead to, Glomerular Injury in Kidney Honeycomb Lung, associated with, Rheumatoid Arthritis in Lung
Osteoporosis in Bone, is related to, Emphysema in Lung Tumor embolism in Heart, associated with, Mild cardiomegaly in Heart
Emphysema in Lung, linked to, Elastolytic changes of the skin Valvular Heart disease, may cause, Hypoeffective Heart
Severe PLD in Liver, may cause, Elevation in Diaphragm Aortic Regurgitation in Heart, may cause, Diastolic Murmur in Heart
Sarcoidosis in Spleen, can involve, Cardiac Sarcoidosis in Heart Glomerulonephritis in Kidney, may lead to, Chronic Inflammation in Kidney
Type 2 diabetes in Pancreas, is associated with, Reduced Lung function Portal Hypertension in Liver, can lead to, Ascites in Liver
Cancer in Bladder, may cause, Aortic endocarditis in Heart Pancreatitis in Pancreas, may be caused by, ERCP in Pancreas
Drooling in Mouth, may lead to, Aspiration in Lung Neurovascular dysfunction in Brain, may cause, Oligemia in Brain

Table 1: Example intra- and inter-organ knowledge triples.

Source Diagnosis Inter-Organ Relation Inter-Organ Target Diagnosis Intra-Organ Relation Intra-Organ Target Diagnosis

Liver Cirrhosis

may cause Cardiac Dysfunction in Heart may induce Cardiac Liver cirrhosis
may cause Q-T Interval Prolongation in Heart may lead to Portal Hypertension
may be associated with decreased heart rate variability in Heart may lead to Biliary Cyst (BC)
may be involved in Cirrhotic Cardiomyopathy in Heart may lead to Fibrosis in Liver
may cause Biliary Cyst (BC) in Gallbladder may be caused by Chronic Hepatitis B (CHB)
may be associated with Pulmonary hypertension in Lung may be caused by Hepatocellular Necrosis
may lead to Hepatorenal Syndrome in Kidney may be caused by Hepatocellular Regeneration

Sarcoidosis in Lung

may involve Cardiac Sarcoidosis in Heart may cause Pleural effusions
may accumulate in Hilar Lymph Node Sarcoidosis is similar to Talc granulomatosis
may cause Congestive heart failure may be associated with Pulmonary hypertension
may cause Pulmonary Hypertension in Heart may lead to Pneumothorax in Lung
may cause Granulomatous Vasculitis in Heart increase risk of Pulmonary embolism
may cause Right Ventricular Hypertrophy in Heart may cause Aspergillus Lung disease
may cause Cardiac Involvement in Heart may cause Bronchiectasis

Table 2: Organ-centric source–target triple examples.

Description Statistics
Total Triples Curated 21770
Redundant Triples 564
Total Unique Triples 21206
Number of Intra-Organ Triples 16039
Number of Inter-Organ Triples 5167
Number of Unique Relation in Triples 2794
Number of Unique Diagnosis in Triples 20581
Number of Unique Organs 62

Table 3: Summary statistics of MOD-KG triples.

trained using a margin ranking loss with negative
sampling (standard TransE procedure). These em-
beddings (stored for all h, t ∈ E) convert MOD-KG
from a collection of symbolic triples into a continu-
ously parameterized graph representation. In future
work the learned node/edge features can be con-
sumed by graph neural modules (e.g., Graph Atten-
tion Networks, GATs (Veličković et al., 2018)) and
injected into model decoders (via cross-attention
or concatenated latent features) for tasks such as
multimodal generation or graph-aware reasoning.

3.3 Methodology

Corpus curation & target coverage We curated
a high-quality corpus of 422 well-cited research pa-
pers (avg. 444 citations) from 219 distinct journals,
covering 109 clinically relevant conditions across
the target organs. The organ keyword set used for

retrieval and filtering is summarized in Table 5, and
the per-organ frequency distribution is reported in
Table 6.

Segmentation and chunking Each document
was segmented into overlapping chunks to reduce
boundary artifacts during extraction. We used
chunks of length 300 tokens with a 100-token
overlap (heuristically chosen through pilot experi-
ments). This segmentation balances local context
size with the need to avoid splitting relations across
chunk boundaries.

Prompted LLM extraction (2-shot) The
Prompt used in extraction is mentioned in the
section 8. The extraction output examples and
selected triples are shown in Table 1.

Post-processing and canonicalization Raw
quintuples were normalized and canonicalized be-
fore conversion to triples. Canonicalization in-
cluded (i) string normalization, (ii) mapping high-
confidence synonyms to a single canonical node la-
bel, and (iii) light clustering to unify near-duplicate
entities arising from surface variation. After canon-
icalization each quintuple was mapped to a triple as
shown above and duplicate triples were collapsed.

Embedding and storage The deduplicated triple
set T (MOD-KG) was embedded with TransE to
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produce node and relation vectors for all canonical
entities and relations. These embeddings are stored
alongside the symbolic graph, enabling either (i)
direct graph-based queries over G or (ii) neural con-
sumption (e.g., as initial node features for GATs)
for downstream models.

Summary Statistics Table 3 presents the over-
all statistics of MOD-KG. Out of 21,770 cu-
rated triples, 564 were redundant, yielding 21,206
unique triples. The graph captures both intra-organ
(16,039) and inter-organ (5,167) relations, span-
ning 2,794 unique relation types, 20,581 unique
diagnoses, and 62 organ categories. These num-
bers highlight the medium scale of MOD-KG while
ensuring high coverage across diverse diagnostic
contexts.

4 Extraction Evaluation

The quality of a knowledge graph is fundamentally
constrained by the quality of its extraction pipeline.
Since MOD-KG was curated from well-cited pa-
pers and textbooks sourced from reputable jour-
nals and publishers, the limiting factor becomes
the accuracy of the extraction itself. We therefore
systematically evaluated whether large language
model (LLM)–based extraction, specifically GPT-
4o (Achiam et al., 2023), can reliably operate in
the medical domain.

Setup. We compared GPT-4o extraction against
classical IE pipelines, including spaCy, DREEAM
(Ma et al., 2023b), and OpenIE (Vasiliev, 2020;
Zhou et al., 2022). For each method we sam-
pled 1000 quintuples, stratified across organs, and
asked a practicing medical doctor to annotate cor-
rectness with respect to both medical faithfulness
and relation accuracy. This provided a controlled
human benchmark for extraction quality.

Results. Table 4 summarizes the comparative re-
sults. GPT-4o achieved the highest faithfulness,
substantially outperforming both heuristic IE base-
lines and the smaller LLM. Classical pipelines of-
ten failed to capture domain-specific terminology
or produced fragmented triples. In contrast, GPT-
4o consistently generated medically coherent re-
lations, though with some errors in rare disease
contexts.

Cost. The full extraction across the corpus re-
quired approximately $730 of OpenAI API usage

for GPT-4o, which was acceptable given the quality
gains relative to baselines.

Method Faithfulness (% correct)
GPT-4o (ours) 96.2
spaCy 39.1
DREEAM 48.9
OpenIE 66.9

Table 4: Faithfulness comparison of extraction methods
(1000-sample evaluation with human annotation). GPT-
4o achieves the highest medical accuracy.

5 Conclusion

In this work, we presented MOD-KG, a multi-
organ diagnostic knowledge graph constructed
from high-quality biomedical corpora, compris-
ing both textbooks and well-cited research papers.
By extracting quintuples and converting them into
triples, MOD-KG captures both intra- and inter-
organ relationships across six major organ sys-
tems. Through post-processing and embedding
with TransE, we produced a resource that is both
interpretable and readily usable for neural con-
sumption. Our evaluation, based on 1000 expert-
annotated samples, demonstrated that GPT-4o sub-
stantially outperforms classical IE pipelines in med-
ical extraction quality, albeit at a higher computa-
tional cost.

6 Limitations and Ethical Considerations

MOD-KG, built from high-quality textbooks and
research papers, is limited by the scope of its
source corpus, which may omit rare conditions,
emerging knowledge, or community-specific diag-
nostic practices. Although LLM-based extraction
achieves high accuracy, it can occasionally halluci-
nate, particularly for underrepresented terminolo-
gies, and decisions may collapse medical subtypes
into broader categories. As a research resource,
not a clinical decision support system, MOD-KG
is not intended for direct patient care. Addition-
ally, biases present in published literature, such as
overrepresentation of certain populations, diseases,
or treatment paradigms, may propagate into the
graph. Therefore, its use is intended for research,
benchmarking, and as a substrate for developing
multimodal models.
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Appendix

7 Use Cases of MOD-KG

The MultiOrgan Diagnostic Knowledge Graph
(MOD-KG) offers a structured representation of
inter- and intra-organ diagnostic relationships, mak-
ing it applicable to a wide range of clinical and
computational settings. Below, we outline several
key use cases where MOD-KG can contribute to
improved results and insights.

7.1 Diagnostic Omission Detection
A common challenge in clinical workflows is the
inadvertent omission of potential diagnoses. By
encoding inter-organ dependencies (e.g., “Liver
Cirrhosis → Kidney Failure”), MOD-KG can flag
missing diagnoses in structured or free-text reports.
For example, if a patient record documents Cirrho-
sis but omits possible Renal Dysfunction, MOD-
KG can highlight the omission, prompting physi-
cians to investigate further. This can reduce diag-
nostic errors and improve patient safety.

7.2 Multimodal Imaging Report
Augmentation

MOD-KG can be paired with vision–language mod-
els for radiology report generation. For instance,
in chest X-ray interpretation, if a model predicts
Cardiomegaly, MOD-KG can suggest related find-
ings such as Pulmonary Edema or Pleural Effusion,
thereby producing more complete and consistent re-
ports. Such augmentation mirrors the use of organ-
centric KGs in models like KGVL-BART (Kale
et al., 2023b,a), but extends coverage across multi-
ple organs.

7.3 Comorbidity Analysis and Patient
Stratification

By representing co-occurrence and causal relation-
ships among diagnoses, MOD-KG can support
stratification of patient cohorts. For example, in a
hospital database, patients diagnosed with Diabetes
Mellitus and Hypertension can be linked to MOD-
KG’s paths leading to Chronic Kidney Disease, en-
abling earlier identification of at-risk populations.
This is particularly valuable for designing preven-
tive interventions and population-scale studies.

7.4 Causal Reasoning in Disease Progression
MOD-KG encodes not only co-occurrence but also
directional relationships. This enables causal rea-
soning over progression paths. For instance, a

path such as Hypertension → Left Ventricular Hy-
pertrophy → Heart Failure allows models to in-
fer plausible progressions and to simulate hypo-
thetical interventions. This could support clinical
decision-making by providing mechanistic expla-
nations rather than surface-level associations.

7.5 Clinical Decision Support Systems (CDSS)

CDSS often rely on isolated rules or black-box pre-
dictions. MOD-KG provides an interpretable layer
of structured knowledge that can complement pre-
dictive models. For example, when a CDSS flags
a risk of Stroke, MOD-KG can provide context by
surfacing associated conditions such as Atrial Fib-
rillation or Carotid Atherosclerosis. This improves
both physician trust and actionability of CDSS out-
puts.

7.6 Education and Training

Medical students and residents often struggle
with connecting knowledge across organ systems.
MOD-KG can serve as a visual and interactive
learning resource, showing how diagnoses in one
system cascade into others (e.g., COPD in Lungs
→ Pulmonary Hypertension → Right Heart Fail-
ure). This supports a systems-based approach to
clinical education.

7.7 Foundation for Multimodal Extensions

Beyond text, MOD-KG could be extended to in-
tegrate imaging or lab-test signals. For example,
embedding MOD-KG into a multimodal pipeline
could allow a model to jointly reason over lab ab-
normalities (e.g., elevated creatinine), imaging find-
ings (e.g., renal cysts), and clinical diagnoses, pro-
viding a holistic diagnostic assistant.

8 LLM Extraction Prompt

Extraction was performed with an LLM using a 2-
shot prompting strategy. For each chunk we asked
the model to emit structured quintuples in a fixed
JSON format.

Please analyze the following text to
identify organ-to-organ diagnosis
relationships,whether they occur between
different organs or within the same organ,
using only the information provided in the
text. Structure the output strictly in the
JSON format specified below with a dummy
2-shot example. If no such relationships
can be derived from the text, return an
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Heart Keywords Lungs Keywords Kidney Keywords Liver Keywords Brain Keywords Pancreas Keywords
pericarditis COPD acute kidney injury hepatitis b Encephalitis cystic fibroma
angina pectoris asthma alport syndrome cirrhosis Huntington’s disease pancreatic cancer
atrial fibrillation emphysema amyloidosis liver cancer Epilepsy pancreatitis
hypertension chronic bronchitis ADPKD fatty liver Cerebral palsy hemorrhagic pancreatitis
cardiomyopathy pneumonia ESRD liver fibrosis Diabetic neuropathy glucagonoma
heart failure pulmonary hypertension FSGS hemochromatosis Vascular dementia diabetes mellitus
endocarditis pulmonary embolism chronic kidney disease wilsons disease ascites
myocardial infarction goodpasture syndrome HUS gilbert syndrome annular pancreas
tetralogy of fallot lung cancer HSP crigler-najjar syndrome pancreatic agenesis
coronary heart disease pneumothorax hypertensive nephrosclerosis primary biliary cholangitis pancreatic fistula
mitral valve regurgitation cystic fibrosis lupus nephritis drug-induced liver injury
atrial septal defect pleuritis kidney cancer amebic liver abscess
tricuspid regurgitation hydropneumothorax kidney stones portal vein thrombosis
pulmonary embolism silicosis nephrotic syndrome caroli’s disease
ventricular septal defect histoplasmosis obstructive nephropathy choledochal cysts
cardiac sarcoidosis bronchiectasis vasculitis polycystic liver disease
patent foramen ovale ARDS pyelonephritis viral hepatitis d
patent ductus arteriosus tuberculosis post-cystic kidney disease budd-chiari syndrome
wolff-parkinson white syndrome pulmonary sarcoidosis papillary necrosis acute hepatic failure
cardiac tamponade pulmonary hypertension proteinuria hepatoblastoma
aortic stenosis cor pulmonale hepatitis e
mitral valve prolapse mesothelioma
cardiomegaly atelectasis
enlarged cardiomediastinum consolidation

edema
lung lesion
lung opacity
pleural effusion

Table 5: Keywords used for MOD-KG corpus curation.

Organ Frequency Organ Frequency Organ Frequency Organ Frequency
Heart 16044 Kidney 6401 Lung 5676 Liver 4833
Brain 3774 Pancreas 1960 Skin 423 Eye 342
Bone 302 Skeletal Muscle 246 Thyroid 244 Stomach 211
Artery 165 Spleen 160 Joint 117 Nose 115
Colon 102 Bladder 100 Spinal Cord 97 Adrenal Gland 96
Testis 78 Hypothalamus 70 Bone Marrow 67 Uterus 65
Small Intestine 62 Gallbladder 60 Cerebellum 43 Nerve 39
Mouth 39 Vein 38 Pituitary Gland 38 Diaphragm 34
Ovary 32 Cervix 31 Lymph Node 30 Bronchus 27
Ear 25 Large Intestine 25 Prostate 24 Rectum 24
Parathyroid Gland 18 Salivary Gland 16 Ureter 14 Penis 13
Tooth 13 Placenta 12 Mesentery 8 Appendix 8
Capillary 8 Scrotum 8 Vagina 6 Fallopian Tube 6
Larynx 5 Subcutaneous Tissue 5 Urethra 4 Nasal Cavity 2
Trachea 2 Tonsil 1 Pharynx 1 Nail 1
Seminal Vesicle 1 Tongue 1 Others 0

Table 6: Organ-wise distribution of entities in MOD-KG.

empty JSON object.
[
{
"organ1": "Heart",
"diagnosis1": "Pericarditis",
"relation": "may cause",
"organ2": "Lungs",

"diagnosis2": "Retrosternal Chest Pain"
},
{
"organ1": "Heart",
"diagnosis1": "Pericardial Effusion",
"relation": "may lead to",
"organ2": "Heart",
"diagnosis2": "Cardiac Tamponade"

}

]

We operated the extractor at the chunk level
across the corpus and collected the resulting quintu-
ples for downstream processing. We used GPT-4o
as the extraction engine and compared its output
against heuristic and classical IE pipelines (e.g.,
spaCy, DREEAM, OpenIE) and literature mining
baselines (SemRep / PubTator) to guide our choice
of extractor (Achiam et al., 2023; Vasiliev, 2020;
Ma et al., 2023b; Zhou et al., 2022; Kilicoglu et al.,
2020; Wei et al., 2019).
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Abstract

Mental health communication in India is lin-
guistically fragmented, culturally diverse, and
often underrepresented in clinical NLP. Current
health ontologies and mental health resources
are dominated by diagnostic frameworks cen-
tered on English or Western culture, leaving
a gap in representing patient distress expres-
sions in Indian languages. We propose cross-
linguistic graphs of patient stress expressions
(CL-PDE), a framework for building cross-
lingual mental health ontologies through graph-
based methods that capture culturally embed-
ded expressions of distress, align them across
languages, and link them with clinical termi-
nology. Our approach addresses critical gaps
in healthcare communication by grounding AI
systems in culturally valid representations, al-
lowing more inclusive and patient-centric NLP
tools for mental health care in multilingual con-
texts.

1 Introduction

Access to mental health care in India faces systemic
barriers beyond infrastructure gaps, with linguistic
fragmentation and cultural divergence in symptom
expression creating critical bottlenecks in patient-
clinician interactions. Although resource scarcity
is well documented, the language gap between pa-
tients and clinical Natural Language Processing
(NLP) systems remains understudied, representing
a critical NLP challenge.

Patients describe distress using idioms,
metaphors, and culture-bound terms that lack
direct English or clinical equivalents. For instance,
expressions in Hindi such as mera mann chintit
hai (I am feeling anxious), mujhe mansik tanaav
mehsoos ho rha hai (I feel mentally stressed),
mujhe ghabraahat mehsoos ho rhi hai) (I am
anxious), man ka bhoj (burden on the mind/heart)
carry deep cultural significance but are absent

*Equal contribution.

from Western medical taxonomies. Standard NLP
tools are trained primarily on the mental health
corpora of Western English and do not capture
these signals, exacerbating healthcare inequities.

The problem manifests in three critical dimen-
sions:

1. Low-Resource Language Barriers: De-
spite India having one of the largest and
fastest growing digital user bases in the world
(Statista, 2020), natural language technolo-
gies still struggle to serve its population effec-
tively. This gap is striking given the linguis-
tic richness of the region - 22 scheduled lan-
guages covering more than 1.17 billion speak-
ers, and 121 languages each having commu-
nities larger than 10,000 speakers. In total,
1369 rationalized languages and dialects are
spoken across the country (Office of the Reg-
istrar General & Census Commissioner, India,
2011). State-of-the-art multilingual systems
remain sub-optimal in Indian languages, high-
lighting the mismatch between technological
progress and societal need (Khanuja et al.,
2021), including Hindi (Prakash et al., 2024).

2. Cultural Ontology Mismatch: Conventional
western ontologies (DSM5, ICD11) fail to cap-
ture certain culture-specific distress concepts,
creating semantic blind spots (Kirmayer et al.,
2017; Paniagua, 2018). These frameworks
miss nuanced expressions of mental distress
that are prevalent in Indian cultural contexts.

3. Code-Mixing and Dialectal Variation: Hy-
brid utterances such as mujhe stress mehsoos
ho raha hai, mujhe anxiety ho rahi hain, ten-
sion ho rahi hain, mera mood off hain chal-
lenge monolingual tokenizers, reducing clini-
cal intent detection accuracy and complicating
automated assessment tools.
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To address these gaps, this paper introduces the
Cross-Lingual Graphs of Patient Distress Expres-
sions (CL-PDE), a comprehensive framework for
building and utilizing multilingual mental health
ontologies while preserving cultural semantics and
supporting clinical relevance.

Our contributions include two-fold: (A) A novel
graph-based framework for constructing cross-
lingual mental health ontologies that preserve cul-
tural semantics and (b) a human-in-the-loop valida-
tion methodology that integrates cultural authentic-
ity with clinical expertise.

We argue that cross-lingual, culturally
grounded mental health ontologies are essential
for bridging the language patients use to express
distress with the standardized vocabularies on
which healthcare systems depend. By developing
these resources, we aim to enable more inclusive,
patient-centric NLP tools that can strengthen
communication between patients and clinicians
across linguistic and cultural divides.

This paper is structured as follows: Section 2
reviews prior work. Section 3 introduces the con-
ceptual framework for cross-lingual mental health
ontologies. Section 4 outlines the proposed method-
ology for implementation and evaluation, followed
by Section 5, which addresses limitations, and Sec-
tion 6, which concludes with future directions.

2 Prior Work

2.1 Clinical NLP and Mental Health

Recent advances in clinical NLP have primarily
focused on English-language resources, creating
significant barriers for multilingual populations.
Transformer-based models have been applied to
detect depression from social media posts (Zhang
et al., 2022), and early warning systems for men-
tal health conditions have been developed using
Reddit data (Yates et al., 2017). More recently,
(Atapattu et al., 2022) developed the first emotion-
annotated mental health corpus in English, estab-
lishing benchmarks for computational approaches
to mental health assessment. Despite these contri-
butions, current methods remain grounded in En-
glish corpora and Western diagnostic frameworks,
limiting their relevance and portability to multilin-
gual and non-Western settings.

The issue of cultural bias in computational men-
tal health has been noted but remains unresolved.
(Harrigian et al., 2020) identified cultural bias in
mental health detection systems, yet offered no

multilingual strategies. Similarly, (Chancellor and
De Choudhury, 2020) emphasized the role of cul-
tural context, but their analysis centered on demo-
graphic rather than linguistic diversity, leaving the
core language gap unaddressed.

(Dissanayake et al., 2020) noted the limited use
and development of high-quality clinical reason-
ing ontologies (CROs) in clinical decision support
systems (CDSSs), emphasizing the need for struc-
tured knowledge representation in healthcare ap-
plications. This gap is particularly pronounced in
cross-cultural contexts where standard ontologies
fail to capture culturally specific expressions of
distress.

2.2 Multilingual Health Resources
Efforts to create multilingual health resources have
emerged but remain limited in scope and coverage.
(Névéol et al., 2018) developed clinical NLP tools
for languages beyond English, focusing primar-
ily on European languages with well-established
medical terminology databases. (Liu et al., 2021)
created multilingual medical knowledge graphs us-
ing visual pivoting techniques, but these efforts
provided limited coverage of mental health termi-
nology and lacked cultural contextualization.

For Indian languages specifically, progress has
been minimal. (Seetha et al., 2007) developed basic
health information extraction tools for Hindi, but
these systems lack mental health-specific vocabu-
laries and fail to capture the rich cultural expres-
sions of psychological distress prevalent in Indian
languages. The scarcity of annotated mental health
corpora in Indian languages remains a significant
bottleneck for developing effective NLP tools.

A recent Telugu-English code-mixed corpus cap-
tures medical dialogue (Dowlagar and Mamidi,
2023), reflecting the multilingual reality of Indian
healthcare, but systematic strategies for handling
such linguistic complexity in mental health remain
unexplored. The absence of culturally grounded
corpora continues to block NLP progress in this do-
main and systematic approaches to handling such
linguistic diversity in mental health applications
remain largely unexplored, leaving a critical gap in
healthcare accessibility.

2.3 Cultural Psychiatry and Language
The field of cultural psychiatry has long recognized
the fundamental importance of language in mental
health expression and diagnosis. (Kleinman, 1991)
introduced the seminal concept of "idioms of dis-
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tress" - culturally specific ways of experiencing and
expressing emotional suffering that often lack di-
rect equivalents in Western psychiatric terminology.
This work established the theoretical foundation for
understanding how cultural context shapes mental
health communication.

Building on this foundation, (Kohrt and Hr-
uschka, 2010) documented how Nepali expressions
of heart-mind distress map poorly onto Western de-
pression constructs, demonstrating the inadequacy
of direct translation approaches in cross-cultural
mental health assessment. Their ethnographic work
revealed that concepts like man dukheko (heart-
mind pain) encompass spiritual, social, and somatic
dimensions that are lost when reduced to Western
diagnostic categories.

Recent computational approaches have begun
incorporating cultural considerations but remain
limited in scope. (Choudhury et al., 2017) explored
cross-cultural differences in depression expression
on social media, revealing significant variations in
how different cultural groups articulate psychologi-
cal distress online. (Aggarwal et al., 2014) called
for integrating cultural concepts into psychiatric
assessment and developed frameworks for cultural
adaptation of psychological treatments, emphasiz-
ing the need for culturally grounded diagnostic
tools.

However, systematic frameworks for building
culturally grounded computational ontologies that
can bridge patient expressions with clinical termi-
nology remain underdeveloped. The translation
of cultural psychiatry insights into computational
tools capable of supporting clinical practice repre-
sents a significant unmet need.

2.4 Graph-Based Ontology Alignment
Graph-based methods for ontology alignment have
shown considerable promise in medical domains,
offering structured approaches to knowledge rep-
resentation and cross-domain mapping. (Koly-
vakis et al., 2018) used graph neural networks for
biomedical ontology matching, demonstrating the
effectiveness of embedding-based approaches for
capturing semantic relationships between medical
concepts.

(Liu et al., 2021) developed cross-lingual en-
tity alignment techniques using knowledge graphs,
employing visual pivoting methods to establish
correspondences between entities across different
languages. Their approach showed promise for
multilingual knowledge integration but was not

specifically designed for healthcare applications.
(Trisedya et al., 2019) proposed multilingual knowl-
edge graph completion methods that leverage at-
tribute embeddings for cross-lingual entity align-
ment, contributing to the technical foundation for
multilingual ontology construction.

Despite these advances, existing graph-based ap-
proaches have not addressed the unique challenges
of culturally sensitive mental health terminology.
The incorporation of human validation for cultural
authenticity - a critical requirement for healthcare
applications - remains absent from current tech-
nical solutions. Additionally, the explainability
requirements for clinical applications, where prac-
titioners must understand and trust AI-generated
interpretations, have not been adequately addressed
in existing graph-based ontology alignment work.

The gap between technical capability and clin-
ical applicability in cross-cultural mental health
represents a significant opportunity for advancing
both computational linguistics and healthcare ac-
cessibility.

CL-PDE Framework

Stage 1 Stage 2 Stage 3

Data Collection
Multilingual

Corpus

Graph Construction
Ontology

Development

Clinical Application

Patient

Care

Process Deploy

Figure 1: An overview of the Cross-Lingual Graphs of
Patient Distress Expressions (CL-PDE) framework

3 Proposed Framework

We propose Cross-Lingual Graphs of Patient Dis-
tress Expressions (CL-PDE), a comprehensive
framework to build and use multilingual mental
health ontologies. Figure 1 summarizes the work-
flow.

3.1 Corpus Construction
The foundation of the CL-PDE framework is a cor-
pus of patient narratives collected from various
sources, including counseling transcripts, mental
health helplines, online forums, and community
health worker interactions in multiple Indian lan-
guages. Each expression of psychological state,
ranging from anxiety and grief to stress and hope-
lessness, is annotated with linguistic markers and
cultural context indicators. Drawing from various
sources, the corpus comprehensively captures so-
cioeconomic and regional diversity, ensuring that
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the ontology does not disproportionately reflect ur-
ban or digitally literate populations. Although this
corpus captures the diversity of how distress is ex-
pressed in languages and contexts, raw narratives
alone cannot support clinical or computational use.
What is needed is a systematic representation that
preserves cultural nuance while enabling alignment
with standardized frameworks.

3.2 From Narratives to Ontology

To achieve this, we model the data as a heteroge-
neous graph. Once these expressions are collected,
the challenge lies in structuring them so that their
cultural richness is preserved while enabling sys-
tematic clinical interpretation. To this end, the data
are organized as a heterogeneous graph - a natural
fit for representing both the diversity of patient ex-
pressions and their links to formal mental health
ontologies.

In this graph, two kinds of nodes are created:
(a) Expression Nodes: which represent culture-
bound idioms and metaphors of psychological
states. (b) Concept nodes: which represent diag-
nostic categories drawn from resources such as
ICD-11 and DSM-5, including culturally sensitive
constructs such as the DSM-5 Cultural Concepts
of Stress (Center for Substance Abuse Treatment
(US), 2014).

Edges between nodes encode different kinds of
relationship: intra-lingual links group related ex-
pressions within a single language; cross-lingual
links align equivalent expressions across languages;
and expression-concept links tie everyday patient
language to standardized clinical categories. Each
edge is further annotated with metadata (relation
type, confidence, provenance) to preserve trans-
parency and allow downstream validation.

This layered representation allows clusters of
culturally grounded expressions to co-exist even
when no direct clinical equivalent exists, while still
providing pathways to analog with standardized
psychiatric frameworks. Figure 2 illustrates the
multilayered graph structure with example map-
pings across languages. However, deciding which
expressions should be connected to which concepts
is not trivial. Direct mappings are often uncertain,
context-dependent, or subjective. This motivates
our next step: to integrate graph construction with
multilingual LLMs and human-in-the-loop valida-
tion.

Heterogeneous Graph: Expression Nodes and Concept Nodes

Expression Nodes:

Hindi

saans chadh jaati hai

(breathless)

Kannada

hrudaya joragi hodutide

(heart pounding)

Hindi

dil mein ghutan hoti hai

(suffocation in heart)

Hindi

bina wajah rona aata hai

(crying without reason)

Kannada

(al.uvāse āguttade

(feel like crying))

Kannada

manassu bhāravāguttide

(mind feels heavy)

Marathi

rad. ū yetay

kāran. sāngtā yet nāhı̄

(unexplainable pain)

Marathi

hruday dhadadhadtay)

(heart races)

Marathi

manāt ghusmat. hote

(suffocation in the mind)

Concept Nodes:

Anxiety Disorders

ICD-11: 6B00

Depression

DSM-5: F32

Cultural Distress

DSM-5: CCD

Legend
Node Types:
Expression Nodes:

Hindi idioms
Kannada idioms
Marathi idioms

Concept Nodes:
Clinical categories

Edge Types:

Intra-lingual (Hindi)

Intra-lingual (Kannada)

Intra-lingual (Marathi)

Cross-lingual

. . . . . . Expression-to-Concept mapping

Figure 2: Heterogeneous graph representing culture-
bound idioms of mental distress across Hindi, Kannada,
and Marathi. The graph contains two node types: (a)
Expression nodes (circles) capturing authentic patient
narratives, and (b) Concept nodes (rectangles) represent-
ing standardized clinical categories from ICD-11 and
DSM-5. Three edge types preserve cultural richness:
intra-lingual edges (colored solid lines) connect related
expressions within each language; cross-lingual edges
(red dashed) align equivalent expressions across lan-
guages; and expression-to-concept edges (black dotted)
link patient language to formal diagnostic frameworks.

3.3 Graph–LLM Integration and
Human-in-the-Loop Validation

Although the graph structure enables cultural ex-
pressions to be systematically represented along-
side clinical categories, determining the correct
links between nodes is far from trivial. Expres-
sions can be polysemous, context-dependent, and
contested even among experts. To address this
challenge, our framework combines the generative
capacity of multilingual LLM’s with structured ex-
pert review.

Multilingual LLMs fine-tuned in health-related
corpora are first used to suggest candidate edges
between nodes. Each proposed mapping includes
an edge type, a model-generated rationale, and a
preliminary confidence score. These proposals are
then passed through a human-in-the-loop (HITL)
validation pipeline, ensuring that computational
efficiency is balanced with cultural authenticity and
clinical rigor.

19



The validation framework is organized into three
levels of expert review:

1. Linguistic validation: native speakers verify
idiomatic usage and contextual appropriate-
ness.

2. Clinical validation: mental health practition-
ers evaluate the diagnostic or therapeutic rele-
vance of the mapping.

3. Cultural validation: anthropologists and
cultural experts ensure that situated cultural
meanings are preserved.

Mappings are presented within a validation in-
terface that encloses confidence scores and prove-
nance, allowing experts to accept, reject, or modify
edges. In cases where disagreements arise, struc-
tured adjudication rounds are triggered to encour-
age deliberation and consensus building. When
legitimate differences persist, multiple interpreta-
tions are retained as parallel edges, thereby avoid-
ing the erasure of cultural diversity.

Through this hybrid approach, computational
scalability is combined with expert judgment, re-
sulting in mappings that are broad in coverage and
high in quality. However, even after validation, the
risk remains that mappings may appear opaque to
clinicians or researchers. For the framework to sup-
port real-world adoption, every connection must
also be interpretable.

3.4 Explainability Layer and Transparency
Features

To ensure interpretability, CL-PDE integrates ex-
plainable AI (XAI) mechanisms that accompany
every mapping with layered explanations. Rather
than treating edges as opaque links, the system doc-
uments why each connection was proposed and
how it should be understood in three complemen-
tary perspectives: .

• Linguistic: highlighting semantic, idiomatic,
or metaphorical parallels between expressions.

• Cultural: situating expressions within the
contexts in which they are commonly used,
including regional and social nuances.

• Clinical: clarifying how expressions may
or may not align with diagnostic categories,
and emphasizing when a phrase is non-
pathological outside clinical contexts.

For example, when mapping the Hindi expression
"mujhe ghabraahat mehsoos ho rhi hai", the sys-
tem surfaces the following: Linguistic - a somatic

metaphor indexing emotional burden; Cultural -
commonly used by Hindi speakers for transient
stress or sadness; Clinical - may correspond to
anxiety-related symptoms if persistent, but not di-
agnostic in isolation.

These explanations are stored alongside prove-
nance metadata and confidence scores so that users
can audit each decision. Figure 3 illustrates addi-
tional examples of expression–concept mappings
with their layered explanations and validation out-
comes.

In addition, three transparency mechanisms are
implemented to preserve trust and accountability:

• Confidence scores: combining model esti-
mates with validator agreement.

• Provenance tracking: documenting the ori-
gin of each expression (e.g., counseling tran-
scripts, helplines, community data).

• Alternative interpretations: retaining mul-
tiple valid mappings when consensus is not
possible, with clear reasoning provided for
each.

Figure 4 shows our explainability interface,
which presents clinicians and researchers with mul-
tilevel justifications for each mapping. In this way,
CL-PDE supports not only accurate and culturally
grounded mappings, but also transparent and trust-
worthy ones that can be meaningfully integrated
into clinical and research workflows.

4 Methodology

Having outlined the conceptual framework for
cross-lingual mental health ontologies, we now de-
scribe the methodology for its implementation. The
pipeline is organized into three main components.
First, data collection and annotation establish a
culturally grounded corpus of mental health expres-
sions. Second, graph construction combined with
LLM integration aligns these expressions across
languages and clinical ontologies. Finally, explain-
ability mechanisms ensure that every mapping re-
mains interpretable and auditable for both clini-
cians and researchers.

4.1 Data Collection and Annotation Protocol

The first step is to construct a corpus that captures
the full range of how distress is expressed across
Indian languages and contexts. To achieve this, we
employ a multi-tier collection strategy:
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Cultural Expression to Clinical Mapping
Patient Narratives from Hindi, Kannada, and Marathi

(Mock-up Example)

Patient Expressions

Hindi
bina bole aansu
beh jaate hain

(tears flow without speaking)
Kannada

tumba gondala ide,
hrudaya joragi oduttide

(much confusion, heart racing)
Marathi

jaga badalali pan
man nahi samzla

(place changed, mind didn’t adjust)

Clinical Terms

Major Depression
ICD-11: 6A70

(Depressive Episode)

Anxiety Disorder
DSM-5: F41.1

(Generalized Anxiety)

Adjustment Disorder
ICD-11: 6B43

(With mixed features)

0.89

0.720.91

0.68

0.94

0.51

Context: Multi-site clinical data from Maharashtra, Karnataka, Tamil Nadu

Legend
Line thickness = Mapping strength (confidence score)

Solid = Strong (>0.8) | Dashed = Moderate (0.6-0.8) | Dotted = Weak (<0.6)
Scores: Multilingual LLM + Expert clinical validation

(a) Example mappings from cultural expressions to clinical
terminology

Expert Validation Interface
(Mockup Example)

Expression:
"choti choti baato par ghabrahat hoti hai"

(getting anxious over small things)

Proposed Mapping: Anxiety Disorder
ICD-11: 6A00

Confidence: 0.93 LLM Score: 0.91 Similarity: 34

Validation:
Accept Reject Modify Context

Expert Notes:
Indicates generalized anxiety - worrying about minor issues

Very common expression in Hindi-speaking patients

Alternatives:
Generalized Anxiety (F41.1) - 0.92
Adjustment Disorder (F43.2) - 0.64

Dr. X Session: 45 min Progress: 25/50

(b) Human-in-the-loop validation interface for culturally
grounded panic expression

Figure 3: Examples of cultural expression mapping and validation processes in the CL-PDE framework

Explainability Interface
(Mockup Example)

Expression:
"sab kuch samne hai, par khushi mehsoos nahi hoti"

(Everything is in front of me, but I can’t feel happiness)

83%

Linguistic Analysis
• Literal: "everything front is, but happiness felt not"
• Semantic: Emotional numbness despite external comfort
• Related: mann suna hai (mind is blank), dil nahi lagta (can’t engage)

Cultural Context
• Common idiom in semi-urban/urban Indian contexts
• Often shared by elderly or post-retirement patients
• Captures disconnect between material comfort and emotional wellness

Clinical Relevance
Primary: Mild to Moderate Depression (ICD-11: 6A70) - 83%
Secondary: Adjustment Disorder (ICD-11: 6B43) - 68%
Note: Anhedonia may be culturally expressed as ’emotional blockage’

Alternative Interpretations
1. Existential crisis or post-goal depression (62%)
2. Burnout from family/work expectations (57%)
3. Spiritual void or apathy - non-pathological (41%)

Previous Export Compare Validate History

Figure 4: Explainability interface for: "sab kuch samne
hai, par khushi mehsoos nahi hoti"

1. Primary sources: We partner with men-
tal health organizations, counseling centers,
and helplines across five states to obtain
anonymized transcripts and case narratives.
These materials provide direct evidence of
how patients describe distress in clinical en-
counters and cover a wide spectrum of re-
gional and dialectal variation.

2. Secondary sources: We supplement clinical
data with material from health forums, online
support groups, and (with ethical approval)
social media discussions. These sources cap-

ture colloquial idioms, code-mixed utterances,
and emerging metaphors of distress that rarely
appear in formal clinical documentation.

3. Expert consultation: We conduct structured
interviews with clinicians, community health
workers, and cultural psychiatrists to docu-
ment regional idioms and metaphors. Expert
input helps connect everyday language with
diagnostic categories, while ensuring that cul-
turally specific meanings are retained.

Each expression is then annotated according
to a schema designed to balance cross-lingual
alignment with cultural specificity. Entries are
labeled with semantic categories (e.g., emotion,
somatic complaint, behavior), cultural markers (id-
iomatic or metaphorical usage, references to be-
lief systems), severity indicators (mild vs. severe),
and temporal profiles (acute vs. chronic). Con-
fidence scores are recorded to reflect annotator
certainty, and disagreements are resolved through
multi-annotator discussion. This schema preserves
nuance while ensuring interoperability across lan-
guages and contexts.

4.2 The Proposed Graph Construction
Algorithm

With annotated expressions in place, the next step
is to represent them in a graph structure that con-
nects patient language with standardized clinical
concepts. Graph construction proceeds as follows:
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1. Extract expression nodes: Named entity
recognition and phrase-mining techniques
identify spans of interest (e.g., idioms, symp-
toms, metaphors), which are instantiated as
expression nodes enriched with their annota-
tion labels.

2. Generate embeddings and intra-/cross-
lingual edges: Contextual embeddings are
computed using multilingual encoders such
as mBERT or XLM-R. Similarity measures
(cosine distance, alignment models) propose
candidate links, which are then filtered and
passed to expert validation.

3. Build expression–concept edges: For linking
expressions to ontology categories (ICD–11,
DSM–5, or cultural frameworks), large lan-
guage models generate candidate mappings
along with rationales and uncertainty scores.
Human-in-the-loop validation confirms or re-
vises these mappings, ensuring both clinical
accuracy and cultural appropriateness.

4. Enrich with metadata: All edges are anno-
tated with relation type, provenance, valida-
tor confidence, and annotation context. This
metadata enables traceability and provides
structured input for explainability features.

To maximize efficiency, our HITL system inte-
grates: (i) active learning, where uncertain map-
pings are prioritized for review; (ii) batch vali-
dation, grouping similar candidates to accelerate
expert decisions; (iii) feedback loops, updating
thresholds based on expert judgments; and (iv) mis-
match resolution, where structured adjudication
ensures consistency across annotators.

4.3 Implementation of Explainability

Finally, the ontology is augmented with an explain-
ability layer that makes system decisions trans-
parent. When new expressions are processed,
they are aligned to existing nodes using similar-
ity measures or LLM-based semantic alignment. If
alignment remains uncertain, provisional nodes are
created and annotated. For each edge—whether
confirmed or provisional—the system produces a
multi-perspective explanation, drawing from both
computational signals and annotation metadata.

Explanations are generated through five comple-
mentary strategies:

• Annotation-aware reasoning: incorporating
semantic categories, severity, temporal profile,
and cultural markers.

• Attention visualization: highlighting words
or subphrases most influential in the mapping.

• Rule-based explanations: surfacing com-
mon idiomatic or metaphorical patterns.

• Example-based reasoning: presenting simi-
lar validated examples from the corpus.

• Contrastive explanations: clarifying why
one candidate mapping was chosen over alter-
natives.

Together, these mechanisms ensure that map-
pings remain interpretable not only to computa-
tional experts but also to clinicians and cultural
validators.

4.4 Evaluation Plan

Our evaluation spans five dimensions: (i) intrin-
sic metrics such as graph connectivity, semantic
coherence, and inter-annotator agreement (target
κ > 0.7); (ii) extrinsic validation on downstream
tasks, including clinical relevance and telepsychi-
atry deployment; (iii) explainability assessment
through measures of user trust and decision trans-
parency; (iv) efficiency of the HITL pipeline; and
(v) cultural validity, assessed via expert review and
community feedback. This multi-faceted evalua-
tion ensures that the system is not only technically
sound but also culturally authentic and clinically
meaningful.

5 Limitations

Our framework faces several limitations that must
be acknowledged. First, the current language cov-
erage focuses on a handful of major Indian lan-
guages and may therefore miss the full diversity of
regional dialects and tribal languages, as well as the
code-mixed expressions that dominate urban dig-
ital communication. Explainability also presents
challenges, since cultural nuances are often dif-
ficult to capture algorithmically, and the quality
of explanations can vary depending on available
resources across languages. Human validation fur-
ther poses scalability concerns: expert review is
both time-intensive and dependent on the availabil-
ity of qualified validators who combine cultural
knowledge with clinical expertise. The mapping of
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cultural expressions to clinical terminology is in-
herently subjective, requiring continuous validation
and sometimes yielding legitimate disagreement
among experts. Moreover, language itself evolves
over time, particularly in digital spaces, demanding
regular updates to keep the ontology relevant. Bias
remains another concern, as our data sources may
overrepresent urban, digitally literate populations
despite efforts toward broader representation. Fi-
nally, while technical performance provides one
measure of success, the ultimate value of these
tools will depend on their integration into clinical
workflows and their ability to demonstrably im-
prove patient care, a question that requires further
validation through clinical trials.

6 Conclusion and Future Work

Building cross-lingual mental health ontologies for
Indian languages addresses a critical blind spot
in healthcare communication. By grounding AI
systems in culturally valid representations of dis-
tress and providing transparent explanations for all
mappings, progress can be made toward inclusive,
patient-centric NLP tools that bridge linguistic di-
vides in mental health care. The integration of
explainability and human-in-the-loop validation as
core components ensures that mappings are not
only accurate but also trustworthy and culturally
appropriate, which is essential for clinical adoption
and patient trust. Looking ahead, the framework
will be extended to cover a broader range of Indian
languages, including tribal and minority languages,
and more sophisticated explanation generation will
be developed through large language models fine-
tuned on culturally and clinically relevant texts.
Interactive explanation interfaces will be designed
to allow mappings to be explored at multiple lev-
els of detail, and continuous learning mechanisms
will be implemented to improve through ongoing
human feedback. Multimodal expressions of dis-
tress - such as voice tone and facial expressions -
will be incorporated alongside longitudinal track-
ing to capture how these expressions evolve over
time. Culturally-aware dialogue systems will be
developed to communicate mental health concepts
across language barriers, and rigorous field stud-
ies will be conducted to evaluate the framework’s
impact on clinical workflows, diagnostic accuracy,
patient engagement, and therapeutic outcomes.
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Abstract

Motivational Interviewing (MI) is a widely-
used talk therapy approach employed by clini-
cians to guide clients toward healthy behaviour
change. Both the automation of MI itself and
the evaluation of human counsellors can bene-
fit from high-quality automated classification
of counsellor and client utterances. We show
how to perform this “coding” of utterances us-
ing LLMs, by first performing utterance-level
parsing and then hierarchical classification of
counsellor and client language. Our system
achieves an overall accuracy of 82% for the
upper (coarse-grained) hierarchy of the coun-
sellor codes and 88% for client codes. The
lower (fine-grained) hierarchy scores at 68%
and 76% respectively. We also show that these
codes can be used to predict the session-level
quality of a widely-used MI transcript dataset
at 87% accuracy. As a demonstration of practi-
cal utility, we show that the slope of the amount
of change/sustain talk in client speech across
106 MI transcripts from a human study has sig-
nificant correlation with an independently sur-
veyed week-later treatment outcome (r = 0.28,
p < 0.005). Finally, we show how the codes
can be used to visualize the trajectory of client
motivation over a session alongside counsellor
codes. The source code and several datasets of
annotated MI transcripts are released.

1 Introduction

There is significant activity using Large Language
Models (LLMs) to assist with and directly perform
mental health talk therapy (Heinz et al., 2025; Tin-
gley, 2025). These efforts require LLMs not only
to engage in the therapeutic dialogue, but also mon-
itor the conversation for problems and measure/-
classify its elements to assess whether it meets
high quality standards (Bakeman and Quera, 2012).
In the past, for human-based counselling, manual

§Corresponding author: jonathan.rose@utoronto.ca

classification has been used to train and judge hu-
mans. Pre-trained LLMs have become proficient at
performing this classification, and so can be lever-
aged for the tasks of assessing counsellor fidelity to
treatment standards and the analysis of the relation-
ship between client language and clinical outcomes
(Amrhein et al., 2003).

In this paper, we present a transcript classifica-
tion approach for a specific kind of talk therapy
known as Motivational Interviewing (MI) (Miller
and Rollnick, 2023), a widely-used counselling ap-
proach for facilitating healthy behaviour change.
The classification system is based on the Motiva-
tional Interviewing Skills Code (MISC) (Houck
et al., 2010), the original annotation scheme for
MI. It provides comprehensive, mutually exclu-
sive, utterance-level labels for language from the
counsellor (typically a clinician) and client (the
patient/subject).

The AutoMISC system uses pretrained LLMs
to perform utterance-level behavioural code anno-
tation of MI transcripts under the MISC 2.5 tax-
onomy. We validate AutoMISC in a number of
ways: first by comparing its annotations (on both
closed-source and open-source LLMs) to expert-
aligned human annotators. Then, we show that
its fine-grained annotations align with annotations
given in the AnnoMI dataset (Wu et al., 2023). The
annotations can also be used to predict the binary
counselling quality ratings at the session level of
the High/Low Quality Counselling dataset (Pérez-
Rosas et al., 2019). To demonstrate its broader util-
ity, we show that the annotations of transcripts from
a smoking cessation study correlate with the study
outcome metric: the change in client-reported con-
fidence to quit smoking (a validated proxy of ac-
tual behaviour change (Gwaltney et al., 2009; Abar
et al., 2013)). The key contributions of this paper
are:

1. An automated system for utterance-level
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MISC 2.5 (Houck et al., 2010) behavioural
coding of MI transcripts.

2. Validation of AutoMISC across open and
closed-source LLMs by measuring (1) per-
formance against expert-aligned human anno-
tations, and (2) performance on public anno-
tated datasets.

3. An empirical comparison of flat versus hier-
archical prompting strategies for behavioural
coding.

4. A novel application of this automated annota-
tion where we show a statistically significant
correlation between client language and the
change in their confidence that they could suc-
ceed in a behavior change.

5. Three datasets totalling 506 transcripts an-
notated automatically, two of which include
manually annotated subsets, to support fu-
ture work in automated evaluation of MI tran-
scripts.

6. Release of an open-source software package.

The following section describes prior work in
the area of automated evaluation of therapy tran-
scripts. Section 3 gives a brief background on Mo-
tivational Interviewing itself and the MISC coding
framework. Section 4 describes the design of the
AutoMISC system, its parameters and how we de-
termine ground-truth labels. Section 5 describes
validation methods and results for the system. Sec-
tion 6 shows how to visualize the codes and de-
scribes a transcript-based metric and its correlation
with the therapy outcome.

2 Related Work

2.1 Automated Behavioural Coding in
Psychotherapy

Early approaches to automated behavioural coding
in psychotherapy relied on linguistic features se-
lected and engineered by experts (Can et al., 2012;
Pérez-Rosas et al., 2017) or topic modeling (Atkins
et al., 2012, 2014) to detect specific behaviours
such as asking questions and providing reflections,
occasionally combined with another modality such
as accoustic features (Aswamenakul et al., 2018).
Later, neural network-based approaches emerged
(Tanana et al., 2015; Gibson et al., 2016; Xiao et al.,
2016; Huang et al., 2018; Cao et al., 2019; Ewbank
et al., 2021), improving classification accuracies in
behavioural coding tasks by offering a more expres-
sive and implicit model of the dialogues. More re-
cent work has used BERT-based transformer mod-

els (Devlin et al., 2018; Liu et al., 2019) to extract
contextual embeddings from counsellor and client
utterances (Tavabi et al., 2021; Brown et al., 2023;
Pellemans et al., 2024; Xie et al., 2024; Cohen
et al., 2024), sometimes complemented by other
features such as voice (Tavabi et al., 2020) and fa-
cial information (Nakano et al., 2022), which are
then passed to downstream neural network-based
classifiers. These approaches performed well when
the behavioural task is sufficiently constrained, al-
though extensive training is required on datasets
annotated with high-quality labels. Among the
strongest results is by Cohen et al. (2024), which
achieved a macro F1 score of 0.42 with 70% accu-
racy on 10 counsellor codes under the MITI coding
framework (Moyers et al., 2016), and macro F1 of
0.72 with 72% accuracy on three client codes.

The adaptation of LLMs in this space initially
explored fine-tuning approaches (Hoang et al.,
2024), however, these approaches are limited by
the scarcity of publicly available MI datasets, and
labelled datasets are even rarer (see following sec-
tion). More recent efforts have demonstrated that
LLMs can be effectively prompted for behavioural
coding without fine-tuning, through either zero-
shot prompting (Brown et al., 2024; Mahmood
et al., 2025a), few-shot prompting (Sun et al.,
2024), or in-context learning (Chiu et al., 2024),
achieving high accuracy when compared with hu-
man labels. Notably, with few-shot prompting, Sun
et al. (2024) achieved Macro F1 scores of 0.31 on
16 counsellor codes and 0.32 on 10 client codes
under MISC 2.1 (Miller et al., 2003), an earlier
version of the MISC framework.

Despite these advances, prior work still has limi-
tations in their behaviour coding capabilities. Many
approaches focus exclusively on either counsellor
or client speech, and often target only a small sub-
set of behaviours. For MI in particular, no existing
work has attempted fully automated coding of both
speakers under the complete MISC 2.5 framework
(Houck et al., 2010). Moreover, prior work rarely
connects automated behaviour coding to treatment
outcomes, and few projects release code or soft-
ware to support reproducibility or real-world use.

2.2 MI Datasets
There are several public, anonymized datasets sup-
porting the task of MI behavioural coding. These
include the High/Low Quality Counseling dataset
(Pérez-Rosas et al., 2019), Counsel-Chat (Welivita
and Pu, 2022), AnnoMI (Wu et al., 2023), MI-
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Speaker Utterance T1 Code T2 Code

Client Same old routine.. N N

Counsellor It sounds like smoking is a
regular part of your routine. SRL SR

Counsellor How do you feel about that
routine? Q OQ

Counsellor Are there moments when
you feel differently about it? Q CQ

Client:
Same old routine..

Counsellor: 
It sounds like smoking is a regular
part of your routine. How do you
feel about that routine? Are there
moments when you feel differently
about it? Parse into

Utterances

MI Session Transcript

Annotate with
Behavioural Code

Annotated Utterances

Context
Volleys

Hierarchical/Flat
Class. Approach

AutoMISC Core Components

LLMLLM

Figure 1: Overview of the AutoMISC system. The input to the system is an MI transcript. The system first segments
the transcript into utterances, and then annotates them with behavioural codes. The output is the resulting sequence
of annotated utterances, which can then be used to compute summary scores or visualize session trajectories.

TAGS (Cohen et al., 2024), and BiMISC (Sun et al.,
2024). The datasets vary in their sources, as well
as the levels of granularity in the labels they pro-
vide. While these datasets have supported progress
in behavioural coding, most lack full MISC 2.5
coverage, are not publicly accessible, or offer only
coarse labeling. There remains a need for high-
quality, fully annotated MI datasets aligned with
an existing behavioural coding framework such as
MISC 2.5, to support more complex tasks such as
fine-grained modelling of MI transcripts and pre-
diction of client behaviours.

3 Motivational Interviewing

Motivational Interviewing is a talk therapy ap-
proach that a counsellor (often a medical provider)
applies to help a client (a patient or subject) move
towards and achieve a target behaviour change, typ-
ically related to health. The conversation is meant
to be collaborative, rather than directive, and fo-
cuses on guiding the client in exploring their moti-
vations for change and connecting them to their un-
derlying values. A counsellor uses specific kinds of
utterances, such as open-ended questions to evoke
motivation and reflections (which are restatements
of client’s words, possibly to connected to relevant
ideas and facts) to encourage further contemplation
around the target behaviour.

As clients express themselves, counsellors listen
carefully for two categories of motivational lan-
guage: change talk (Miller and Rollnick, 2023),
which indicates motivation, commitment or action
towards change, and sustain talk, which reflects rea-
sons to maintain the status quo. Most clients exhibit
both, indicating an internal state of ambivalence in
which they wish to change but also identify reasons
preventing them from changing. A key goal in MI

is to help resolve this ambivalence by inviting and
strengthening change talk, while acknowledging
but not reinforcing sustain talk.

In successful MI, as the therapeutic alliance de-
velops, there is a progression in client change talk
from a preparatory stage (expressions of desire,
ability, reasons, or need for change) to a mobilizing
stage (expressions of commitment, activation, or
taking steps towards change). This progression re-
flects increasing client readiness for change and is
predictive of actual behavioural outcomes (Miller
and Rollnick, 2023; Amrhein et al., 2003).

3.1 The MISC 2.5 Coding Framework

Behavioural coding schemes are a key method by
which the quality of the counsellor is judged, and
also whether the client language is progressing to-
wards or away from the behaviour. These schemes
assign labels to conversational content at the ut-
terance level – a single unit of thought. Within
a given speaker turn, which we will refer to as a
volley, a counsellor or client may express multi-
ple utterances in sequence. Thus it is important to
first parse volleys into a set of utterances prior to
assigning behavioural codes.

We use the MISC framework (Houck et al.,
2010) because it was intended for research and
provides a comprehensive, mutually exclusive, fine-
grained taxonomy for both counsellor and client
codes. This contrasts with other frameworks such
as the MITI (Moyers et al., 2016) which was devel-
oped to assess only the integrity of MI counselling
by providers, and does not assess client language.

The MISC 2.5 framework defines 19 counsellor
codes and 17 client codes1. The basic counsellor

1Although not listed in the MISC 2.5, we include
"Activation+/-" in the client code set based on definitions
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strategies (questions and reflections), as well as
client codes (change and sustain talk) described
in Section 3 have several sub-types in MISC 2.5.
For example, counsellor reflections are further sub-
divided into Simple Reflection (SR) which simply
mirrors a client’s statement, and Complex Reflec-
tion (CR) in which the counsellor both mirrors and
adds meaning or insight. The full classification tax-
onomy is provided in Figure A.1 in Appendix A.1.

MISC also provides session-level summary
scores computed from frequency counts and ratios
of behavioural codes across the session, intended
as heuristic indicators of session quality in research
and training contexts. These include:

• Percentage MI-Consistent Responses
(%MIC): the proportion of counsellor
behaviours classified as MI-Consistent i.e.
directly prescribed in Miller and Rollnick
(2023). Higher values indicate greater
adherence to MI standards.

• Reflection-to-Question Ratio (R:Q): the ra-
tio of reflective statements to questions posed
by the counsellor. Values between 1 and 2 are
considered good (Moyers et al., 2016).

• Percentage Change Talk (%CT): the pro-
portion of client utterances coded as Change
Talk, with higher values associated with im-
proved behavioural outcomes (Apodaca and
Longabaugh, 2009).

4 AutoMISC System Design

Figure 1 illustrates the pipeline of the AutoMISC
system. First, volley is parsed into utterances, then
each utterance is annotated with a behavioural code.
The input to AutoMISC is a single volley-separated
file of a transcript which identifies the speaker as
either counsellor or client. The outputs from the
system are (1) the parsed and annotated corpus,
and (2) MISC session-level summary scores. The
following sections describe the core components
of AutoMISC in further detail.

4.1 Separation of Volleys into Utterances

The parser module separates each volley in a con-
versation into one or more utterances. This is not
simply separation into sentences as an utterance can
be expressed in multiple sentences or portions of a
single sentence. This makes the task semantically
complex, and so we use a prompted pre-trained
Large Language Model model to perform this task.

in Miller and Rollnick (2023).

The prompt begins with definitions of volley and
utterance from the MISC manual and then the gen-
eral task of separation of utterances. It includes
four few-shot example input-output pairs sourced
from the MISC manual. The full parser module
system prompt is provided in Appendix A.2.

4.2 Automated Coding

The classification of each utterance into a be-
havioural code is handled by the annotator module,
which is also a prompted large language model.

A key decision is whether to use a hierarchical
classification approach, or a flat one. This was moti-
vated by our manual coding work (described below
in section 4.3) where we found it very helpful to
decompose the task into two steps, first classifying
into a higher-level grouping of similar MISC codes
that we call Tier 1 codes, then to the fine-grained
MISC code (the Tier 2 codes). We hypothesized
that a language model might see performance gains
from this decomposition (at the cost of doubling
the number of inference calls). For client utter-
ances, the three Tier 1 categories are intuitively
Change Talk (C), Sustain Talk (S), and Neutral
Talk (N). For counsellor utterances, we grouped
the 19 fine-grained codes into six groupings based
on (human-perceived) semantic similarity and ease
of disambiguation. The full set of Tier 1 and Tier 2
codes is shown in Figure A.1 in Appendix A.1. We
compare this to a flat approach in which the model
selects directly from the full set of Tier 2 codes in
Section 5.2.2.

A second key parameter for the annotator mod-
ule is to decide how much prior conversation con-
text is needed for high classification accuracy. The
module takes in a parameter called number of con-
text volleys which sets how many volleys prior
to the one under consideration to include in the
prompt. We hypothesized that performance would
improve with additional context up to a point
of diminishing returns, discussed further in Sec-
tion 5.2.1.

Each prompt to the annotator module includes a
task description, the available label set, the context
window, and finally the target utterance for classifi-
cation. In the hierarchical mode, the Tier 2 prompt
is templated to include only the candidate codes
associated with the selected Tier 1 label. Prompt
templates are provided in Appendix A.3. Once an-
notation is complete, the summary scores described
in Section 3.1 are computed.
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4.3 Consensus Labels & Annotator Alignment
with Experts

To evaluate and refine AutoMISC, we created a ref-
erence dataset of known-good human annotations,
which we will refer to as the consensus labels. To
do so we used a combination of members of our
research team which includes both computer engi-
neers and experienced MI clinicians specializing
in smoking cessation. To produce reliable annota-
tions, we first trained a team of three undergraduate
research interns and one graduate student to anno-
tate transcripts from a public dataset (Mahmood
et al., 2025b) using the MISC 2.5 schema. We
used an iterative process in which the goal was
to achieve substantial inter-rater reliability, com-
monly quantified as Fleiss’ Kappa κ ≥ 0.6 (Cic-
chetti et al., 1992). The iterative process was as
follows:

1. The four annotators independently label five
transcripts.

2. The inter-rater reliability (IRR) is computed
using Fleiss’ κ across all codes, counsellor
and client.

3. If κ < 0.6 for any category, an alignment
meeting is held, together with expert MI clini-
cians to resolve discrepancies.

We completed two iterations: In the first round, an-
notators labelled the first five transcripts from the
dataset (a total of n = 367 utterances) but did not
meet the IRR threshold for all codes. A two-hour
alignment meeting was held, during which consen-
sus labels were produced for that sample. In the sec-
ond round, annotators labelled a new set of five tran-
scripts (n = 454 utterances), after which the IRR
target was reached. Training was deemed complete,
and consensus labels were consolidated across both
sets, yielding a reference set of n = 821 utterances
(580 from the counsellor, 241 from clients). Fig-
ure C.2 in Appendix C gives the pairwise Cohen’s
Kappa matrices between raters before and after
training.

4.4 Classification Prompt Evolution

The initial classification prompts for the annotator
module were derived directly from the definitions
of behavioural codes in the MISC 2.5 manual and
Miller and Rollnick (2023). These were evolved
based on classification performance against the con-
sensus labels of the reference dataset, using Ope-

nAI’s GPT-4o 2. There were two key issues found
with the prompts: The first concerned Open versus
Closed Questions (OQ vs CQ): AutoMISC initially
overused the OQ label. This was resolved by im-
proving the prompt so that questions answerable
with a "yes", "no", or short factual response should
be coded as CQ in the Tier 2 counsellor classifica-
tion prompt, as shown in Appendix A.3.

The second issue concerned Imperative-MI-
Inconsistent vs Imperative-MI-Consistent (IMI vs
IMC). Here the issue is that an imperative/directive
statement is only MI-Consistent if permission was
granted to do so, and that permission may be one
or more volleys prior to the utterance being coded.
It was observed that these permissions could be
delivered in subtle ways, which were hard to detect.
This was addressed by adding a Chain of Thought
reasoning process around permission to the end of
the T1 counsellor classification prompt, as shown
in Appendix A.3.

5 Validation of Automatic Coding

The system is validated primarily via macro F1
score and accuracy, measured on the first 10 con-
versations (a total of n = 821 utterances) from the
MI transcript dataset (Mahmood et al., 2025b), us-
ing the consensus labels described in Section 4.3
as ground truth . We also validate against the labels
of the AnnoMI dataset (Wu et al., 2023), and we
show that the annotations can predict counselling
quality in the HLQC dataset (Pérez-Rosas et al.,
2019).

5.1 Experimental setup
AutoMISC is configured with three input parame-
ters: (1) the language model used for annotation,
(2) the classification structure (hierarchical vs. flat),
and (3) the number of prior volleys provided as
context to the model (the latter two introduced in
Section 4.2). The models chosen were selected for
diversity both in model provider, using both open-
and closed-source, and a range of model sizes, as
follows: OpenAI’s GPT-4o 2 and GPT-4.13, Al-
ibaba’s Qwen3-30b-a3b4, and Google’s Gemma-3-
12b4. The OpenAI models were accessed through
the company’s for-pay APIs, and the other mod-
els were run on an M3 Macbook Pro with 32GB
of RAM and makes use of the native GPU accel-
eration. Wall-clock inference times per utterance

2gpt-4o-2024-08-06
3gpt-4.1-2025-04-14
4Quantized to 4-bit parameters
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were approximately 2 seconds for the OpenAI mod-
els, 7 seconds on the Qwen model and 16 seconds
on the Gemma model. The utterance parsing step
was done by GPT-4o in all cases, to enable direct
comparison of classification/coding/annotation ac-
curacy between the different models.

5.2 Parameter tuning

Figure 2 gives the classification performance
(macro F1 score and accuracy) versus the num-
ber of context volleys for GPT-4.1, separated into
different plots by speaker (counsellor/client) and
classification approach (hierarchical vs. flat). Re-
sults for the other three models are given in Ap-
pendix D. The accuracy is greater than F1 because
the most common behavioural codes achieve good
accuracy across the 19 counsellor codes and the 17
client codes.

5.2.1 Number of Context Volleys

For counsellor codes, Figure 2 (top row) shows
that performances improves with additional con-
text up until 2-3 volleys, after which it plateaus or
declines. The initial increase is likely due to the
fact that all the “IMC” codes require permission to
be granted in a preceding volley. The degraded per-
formance with longer contexts might be attributed
to the model attending to less relevant context in
the earlier volleys.

The client coding performance appears to sim-
ply plateau or degrade with added context. This
is likely because change and sustain talk is self-
evident within an utterance and may even shift
rapidly between change talk and sustain talk within
the same volley (Miller and Rollnick, 2023), mak-
ing additional context less informative.

5.2.2 Hierarchical vs. Flat Classification
Approach

Figure 2 shows that the hierarchical classifica-
tion approach is almost uniformly better across
all tested models and context window sizes, but the
flat approach achieves similar or even higher macro
F1 scores in a few configurations, mostly on the
client codes.

5.3 Validation Results

Table 1 gives the F1 and accuracy scores for the
model and parameter settings that achieved the
highest macro F1 score. Complete numerical re-
sults across all configurations are in Appendix D.

The highest-performing model and configuration
overall was GPT-4.1 using 3 prior volleys as con-
text and the hierarchical classification structure. It
achieves a macro F1 score of 0.42 and 68% accu-
racy on the full set of 19 MISC counsellor codes.
On the 17 client codes it achieves an F1 score of
0.41 and 76% accuracy. The smaller open-source
models achieved competitive results on both coun-
sellor and client coding. For instance, Gemma-3-
12b reached 0.40 Macro F1 on client codes, outper-
forming the larger Qwen3-30b-a3b model.

Table 2 compares AutoMISC’s classification per-
formance to prior work reported in the original
publications introducing the (Sun et al., 2024) and
MI-TAGS (Cohen et al., 2024) datasets. In spite of
the larger label spaces covered, our results meet or
exceed these results across both speaker roles.

Confusion matrices for the best performing mod-
els/configurations are included in Appendix C.

5.4 Supplementary Validation Experiments

As supplementary measures of validation, we com-
pare AutoMISC’s output to existing datasets. In
Appendix D.1 we compare directly to AnnoMI’s an-
notations (Wu et al., 2023) by mapping to their cus-
tom volley-level scheme, achieving 65% accuracy
(n = 4882) on counsellor codes and 77% accuracy
(n = 4817) on client codes. In Appendix D.2 we
show that AutoMISC’s outputs can predict the bi-
nary session quality rating in the HLQC dataset
(Pérez-Rosas et al., 2019) at 87% accuracy.

Since the consensus set from our experiment was
small (n = 821 utterances) and imbalanced (Ap-
pendix C), we manually annotated a larger, more
balanced subset of the HLQC dataset (n = 1924
utterances) to use as ground truth for evaluating
AutoMISC. Sweeping across the same parameters
described in Section 5.1, the best-performing con-
figuration was GPT-4.1 with 5 prior volleys of con-
text and the hierarchical classification structure.
This achieved a macro F1 score of 0.35 and 46%
accuracy on counsellor codes and a macro F1 score
of 0.32 and 80% accuracy on client codes. Further
discussion and experimental results are provided
in Appendix E. We release this manually anno-
tated HLQC subset along with the one from the
chatbot study as its larger sizer and more realistic
conversations may be valuable for future research
in automated MI behavioural coding.
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Figure 2: Effect of context size and classification approach (hierarchical/flat) on counsellor and client classification
performance (GPT-4.1, n = 821 utterances)

Model Class.
Structure

Context
Volleys

T1 Couns. T1 Client T2 Couns. T2 Client T2 Overall

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

GPT-4.1 hierarchical 3 0.80 82 0.87 88 0.42 68 0.41 76 0.42 70

GPT-4o flat 2 – – – – 0.41 61 0.41 65 0.41 62

Qwen3-30b-a3b hierarchical 0 0.61 69 0.77 78 0.28 55 0.35 63 0.30 57

Gemma-3-12b hierarchical 1 0.60 70 0.80 81 0.30 54 0.40 59 0.33 56

Table 1: Best accuracy (%) and macro F1 scores with consensus labels across models, classification approach and
context window sizes for each speaker and code tier (n = 821 utterances).

Work T2 Couns. T1 Client T2 Client

BiMISC 0.31 (16) 0.68 (3) 0.32 (10)
MI-TAGS 0.42 (10) 0.72 (3) –
AutoMISC 0.42 (19) 0.88 (3) 0.41 (17)

Table 2: Reported macro F1 scores from prior work
compared to AutoMISC. Values in parentheses indicate
the number of classes.

6 Applications: Visualization of Client
Trajectories and Correlation with
Post-Therapy Outcome

A core assumption in MI is that client language
influences and shapes downstream behavioural out-
comes. This MISC 2.5 summary scores such as
percent change talk offer a coarse measure of client
motivation but they obscure the progression of mo-
tivation through a session. Amrhein et al. (2003)
showed that the change in strength of client com-
mitment language (a subset of change talk) over a
session is a good predictor of drug use outcomes at
follow-up. This motivates the idea to visualize MI

transcripts by plotting utterance behavioural codes
over time, an idea common in talk therapy research
(Horton et al., 2021).

6.1 Visualization of Client Motivation
Trajectories

Figure 3 shows an example conversational trajec-
tory which is derived from AutoMISC codes of
counselor and client speech in a session from the
dataset used above in validation. The x-axis shows
progression along the session in two ways: the thin
vertical lines delineate an utterance, while the solid
blue or pink colour delineates a complete volley
composed of one or more utterances. The left Y-
axis shows the Tier 1 categories of the counsellor
speech that were determined by AutoMISC. The
right Y-axis gives the Tier 2 categories of client
speech ordered from the bottom as the strongest
sustain talk, and at the top to be the strongest
change talk, with neutral talk in the middle. Fig-
ure 3 shows a trajectory for a session in which the
client’s talk shows a somewhat upward trend from
sustain talk to strong change talk. It also gives a
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Figure 3: Example Visualization of MI session. Red: Client Speech codes. Blue bars: Counsellor Speech T1 codes

sense of the kinds of MI skills that the counsellor
was employing. We feel that this level of detail
could play a useful role in the evaluation of the
skills of the counsellor and the impact of the ses-
sion on the client. In the next section we illustrate
the latter with a metric computed from the client
speech (red line) trajectory.
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Figure 4: Two sample client motivation trajectories from
the smoking cessation study.

6.2 Correlation of Client Code Sequence to
Therapy Outcome

In this section we show how the sequence of client
codes can be used to create a metric which corre-
lates with a therapy outcome. The metric, which is
called the motivation slope is computed as the slope
of a linear regression on the red line in Figure 3.

The dataset used for validation labels in Sec-
tion 4.3 also contained a client-reported confidence
to quit smoking, reported on a scale of 0-10 prior to
the session and one week later. We use the change
in confidence (prior to week later) as the outcome
measure (Gwaltney et al., 2009; Abar et al., 2013),
and compute the Spearman’s correlation between
several session-level features including the moti-
vation slope, and the change in confidence, for all
106 transcript/outcomes in the dataset. The GPT-
4.1 model was used for these codes, with three
context volleys and the hierarchical classification

approach.

Feature Spearman r p-value

Pre-confidence -0.11 0.26
Motivation Slope 0.28 < 0.005
% MIC 0.01 0.07
R:Q 0.10 0.32
% CT 0.17 0.08

Table 3: Spearman correlations between session fea-
tures and the week-later change in client self-reported
confidence to quit smoking (n = 106).

Table 3 shows that the motivation slope is sig-
nificantly correlated with client change in confi-
dence (r = 0.28, p < 0.005) and is superior to
all the other MISC summary scores (and the pre-
conversation confidence) none of which have statis-
tically significant correlation. This result shows
that significant information is contained in the
codes produced by AutoMISC, and in so doing
gives a form of validation of the quality of the
codes produced.

Figure 4 shows two sample client motivation
trajectories: one in which the client confidence
change was +5 a week later and trajectory is rising
(orange), and one with a change of -2 and a falling
trajectory (blue). Finally, Figure F.1 in Appendix F
gives a scatterplot of motivation slope values vs.
change in confidence for all 106 clients.

7 Software & Dataset Release

The source code and three annotated datasets are
released publicly along with this paper totalling
506 transcripts. These include the first MISC-
labelled releases of the AnnoMI (n = 133) and
HLQC (n = 258) corpora, as well as the smok-
ing cessation transcript dataset (n = 115) (Mah-
mood et al., 2025b), all parsed and annotated at
the utterance level. We also release the manual
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annotations for the subsets of the smoking cessa-
tion study (n = 821 utterances) and the HLQC
dataset (n = 1924 utterances). The source code
and data are available at: https://github.com/
cimhasgithub/AutoMISC.

8 Conclusions

We introduce an LLM-based system for fully auto-
mated utterance-level annotation of counsellor and
client speech in Motivational Interviewing (MI)
transcripts under the MISC 2.5 framework. Au-
toMISC achieves classification performance equal
to or exceeding prior approaches on expert-aligned
annotations, and aligns with annotations in existing
datasets like AnnoMI.

We also demonstrate how to use the annotations
to predict MI quality in the HLQC dataset. We
introduce a novel metric, the motivation slope, that
correlates significantly with client-reported confi-
dence to quit smoking, a short-term proxy for ac-
tual behaviour change. Future work should explore
the direct predictive capability when more data is
available.

We have shown that AutoMISC works both with
state-of-the-art APIs and locally hosted models,
making it suitable for use in privacy-sensitive set-
tings such talk therapy. In the future, we plan to
use these classification tools within fully automated
MI systems to track client state change and coun-
sellor adherence to MI. We also plan to employ
the tools on evaluation and training of human MI
counsellors.

9 Limitations

While AutoMISC delivers promising results in au-
tomating MI behavior coding, several limitations
should be noted. First, the consensus labels we
used as ground truths were not directly labeled by
MI experts, but instead by annotators aligned by
experts. Despite our effort in iteratively refining the
labels to meet the IRR threshold, one could argue
that such indirect supervision may introduce dis-
crepancies and limit the fidelity of our consensus
labels. Second, while our system is grounded in
the MISC 2.5 framework (Houck et al., 2010), it
does not strictly follow all recommended coding
procedures, such as doing a first pass and providing
global scores before parsing and assigning behav-
ior codes, nor does it rely on modalities beyond
text, such as vocal and visual cues that are essential
for accurate interpretation and coding. Our pro-

posed two-tiered coding flow was also designed
heuristically and not grounded in MISC 2.5 or any
other prior MI literature, whose validity and utility
need to be confirmed by future research. Third,
our validation experiments are imperfect due to
limitations and constraints from the datasets used.
For the AnnoMI (Wu et al., 2023) dataset, there
might be inconsistencies in the mapping between
the MISC labels and their custom volley-level cod-
ing scheme; for the HLQC (Pérez-Rosas et al.,
2019) dataset, the high and low quality labels for
transcripts are provided using their own custom cri-
teria, thus may not always reflect the true quality of
the transcripts; for the MI transcript dataset (Mah-
mood et al., 2025b), the participants were paid and
therefore might have had an incentive to report in-
flated post-therapy outcomes. Finally, while we
demonstrate AutoMISC ’s ability to run on local
models to address privacy concerns, our best re-
sults are still achieved using proprietary models
such as GPT-4.1, leaving room for future work to
improve open-source models further and provide
better guarantees in regards to privacy.
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A AutoMISC System Design
Supplementary Material

Figure A.1 shows the full classification taxon-
omy of AutoMISC. Appendices A.2 and A.3 show

the prompts for each of the core components of the
AutoMISC system.

A.1 Classification Taxonomy

Simple-Reflective
(SRL)

Counsellor Utterance Client Utterance

Imperative MI-
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Other
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Codes
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Figure A.1: AutoMISC utterance classification taxonomy.

A.2 Parser Module Prompt

The Parser module is fed a system prompt, fol-
lowed by several input-output pairs from the MISC
manual ("few-shots"), and finally the target vol-
ley for parsing. It is constrained to return a list

of strings using a structured output schema (de-
fined using Pydantic). The prompt and few-shot
examples are as follows:

A.2.1 Parser Prompt

You are a highly accurate Motivational Interviewing (MI) counselling session annotator. Your task is to segment the
given volley into utterances.

Definitions:

• Volley: An uninterrupted utterance or sequence of utterances spoken by one party before the other party responds.
• Utterance: A complete thought or thought unit expressed by a speaker. This could be a single sentence, phrase, or

even a word if it conveys a standalone idea. Multiple utterances often run together without interruption in a volley.

Output Format:

• Return the segmented utterances as a Python list of strings.

Input: "Why haven't you quit smoking - are you ever gonna quit?"
Output: ["Why haven't you quit smoking - are you ever gonna quit?"]

Input: "How long since your last drink? Do you feel ok?"
Output: ["How long since your last drink?", "Do you feel ok?"]

Input: "I can't quit. I just can't do it. I don't have what it takes. I just cannot stop."
Output: ["I can't quit.", "I just can't do it.", "I don't have what it takes.", "I just cannot stop

."]

Input: "I don't want to go to the bars every day. I don't want my kids to see that. I want my kids
to have a better life than that."

Output: ["I don't want to go to the bars every day.", "I don't want my kids to see that.", "I want my
kids to have a better life than that."]
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A.3 Annotator Module Classification Prompts

The annotator module uses either a hierarchical
or flat classification approach. In the hierarchical
approach, the model first chooses a Tier 1 code,
then selects a Tier 2 code from the subset associ-
ated with that Tier 1 category. Following the clas-
sification prompt, the annotator module is given a
configurable number of volleys prior to the target
utterances as context for classification, then the tar-

get utterance itself, templated in another prompt
we call the "User Prompt". The model output is
constrained using a structured output schema (Py-
dantic) to return only an explanation string and
one code abbreviation from either the T1 or T2
grouping. Below we list out the Tier 1, Tier 2 and
Flat classification prompts for both counsellor and
client, as well as the user prompt.

A.3.1 Tier 1 Counsellor Prompt

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to classify the
counsellor’s final utterance in a given session excerpt into one of the following groupings of MISC 2.5 behavioural codes:

**Classification Categories**:

1. **C-Reflective (CRL)** - Deeply engages with or affirms the client’s perspective.
• *Behavioural Codes*: Affirm (AF), Support (SU), Complex Reflection (CR), Reframe (RF), Emphasize

Control (EC)
• **Affirm (AF)**: Communicates something positive or complimentary about the client’s strengths or

efforts.
• **Support (SU)**: Sympathetic, compassionate, or understanding comments, which agree or side with the

client.
• **Complex Reflection (CR)**: A reflective listening statement that adds significant meaning or emphasis

to what the client said, conveying a deeper or richer picture of the client’s statement.
• **Reframe (RF)**: Suggests a different meaning for an experience expressed by the client, usually changing

the emotional valence of meaning but not the depth.
• **Emphasize Control (EC)**: Acknowledges, honours, or emphasizes the client’s autonomy and freedom

of choice.
2. **S-Reflective (SRL)** - Mirrors or paraphrases the client’s statement without adding extra insight (includes

summarizing statements).
• *Behavioural Codes*: Simple Reflection (SR)
• **Simple Reflection (SR)**: A reflective listening statement which simply repeats or paraphrases the

client’s words or meaning, often with a slight change in wording or emphasis.
3. **Imperative-MICO (IMC)** - **With client permission**, provides advice, raises a concern, or gives informa-

tion.
• *Behavioural Codes*: Advise with Permission (ADP), Raise Concern with Permission (RCP), Give

Information (GI)
• **Advise With Permission (ADP)**: After receiving permission, gives advice, makes a suggestion, or

offers a solution or possible action.
• **Raise Concern With Permission (RCP)**: After getting permission, points out a possible problem with a

client’s goal, plan, or intention. Always phrased as the counsellor’s concern.
• **Giving Information (GI)**: Provides information to the client, explains something, educates or provides

feedback, or discloses personal information.
4. **Imperative-MIIN (IMI)** - **Without client permission**, provides advice, raises a concern, warns, directs, or

confronts the client.
• *Behavioural Codes*: Advise Without Permission (ADW), Raise Concern Without Permission (RCW),

Warn (WA), Direct (DI), Confront (CO)
• **Advise Without Permission (ADW)**: Offers suggestions or guidance WITHOUT asking or receiving

permission.
• **Raise Concern Without Permission (RCW)**: Without getting permission, points out a possible problem

with a client’s goal, plan, or intention.
• **Warn (WA)**: Provides a warning or threat, implying negative consequences unless the client takes a

certain action.
• **Direct (DI)**: Gives an order, command, or direction. The language is imperative.
• **Confront (CO)**: Directly disagrees, argues, corrects, shames, blames, seeks to persuade, criticizes,

judges, labels, moralizes, ridicules, or questions the client’s honesty.
5. **Question (Q)** - Asks a question in order to gather information, understand, or elicit the client’s story.

• *Behavioural Codes*: Open Question (OQ), Closed Question (CQ)
• **Open Question (OQ)**: A question is open only if it cannot be answered with “yes” or “no” in any

grammatically valid or logically plausible way. The question must structurally require an elaboration,
explanation, or descriptive narrative that goes beyond a binary or fixed-option response.
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• **Closed Question (CQ)**: A question is closed if it is about confirmation, factual information-seeking,
curiosity about presence/absence of something, request for specific information or choices, or *it can be
answered with “yes” or “no” under any grammatically valid interpretation, even if that answer is awkward,
contextually unhelpful, or unlikely.*

6. **Other/Neutral (O)** - Structural or facilitative utterances that do not engage in MI techniques.
• *Behavioural Codes*: Filler (FI), Facilitate (FA), Structure (ST)
• **Filler (FI)**: Pleasantries such as "good morning", "nice weather we’re having", etc.
• **Facilitate (FA)**: Simple utterance that functions as a "keep-going" acknowledgement e.g. "Mm-hmm",

"I see", "Go on"
• **Structure (ST)**: Used to make a transition from one topic or part of a session to another. Also used

to give information about will happen directly to the client throughout the course of treatment or within a
study format, in this or subsequent sessions.

**Category assignment instructions**

1. **General instructions**
(a) Analyze the given context and counsellor’s final utterance.
(b) Identify its primary function.
(c) If the utterance involves **advice, suggestions, or information**, follow the **Permission Chain of Thought

Guide** below before choosing between **IMC** and **IMI**.
(d) For other types of utterances, assign the category directly.
(e) Justify your choice in 1-2 sentences for category assignment except IMI and IMC.

2. **Permission Chain of Thought (Only when assigning IMC or IMI)**
When the utterance involves **giving advice, suggestions, guidance, or information** (when deciding between
**IMC** or **IMI**), you **must first apply this step-by-step reasoning** to determine if permission is given:

(a) Check for Client Permission or Interest Expression: Examine the recent client utterances in the provided
context. Has the client given permission—either explicitly by directly asking for advice, suggestions, or
ideas or implicitly by showing openness, curiosity, or requesting information in a way that reasonably
invites guidance. Both explicit and implicit permission are equally valid—there is no difference in weight
between them. If either is present, permission is considered granted.

(b) Check for Counsellor’s Prior Permission-Seeking: Has the counsellor previously asked for permission
to give advice, suggestions, or information and received agreement? If so, permission is also considered
granted.

(c) If Yes (to 1 or 2): Classify the utterance as IMC (permission has been granted).
(d) If No: Classify the utterance as IMI (no permission has been granted).
(e) **Carry Permission Forward:** Once permission—explicit or implicit—is granted, it remains **active**

for all **topically related** suggestions, guidance, or information, **even if the counsellor’s next utterance
introduces a shift in topic or phrasing**. **Do NOT revoke permission just because the surface topic
evolves naturally**, as long as the advice remains part of the **same overarching discussion or client goal**.
**Permission only expires** if there is a **clear and substantive topic shift**, or if the client **disengages**
or **withdraws interest**. In most cases, permission is granted in **recent client utterances**, but
**prior permissions—especially implicit ones—can remain valid across multiple counsellor turns** if the
conversation stays aligned with the client’s intent or focus. You should **assume permission is still valid**
unless there is strong evidence that the advice no longer relates to the client’s earlier request, concern, or
area of engagement.
**Apply this permission reasoning chain ONLY when the utterance’s function is to provide advice, sugges-
tions, guidance, or information.**
For all other categories (**CRL, SRL, Q, O**), permission is **not relevant**. Assign these categories
based on their definitions without using this permission reasoning.

**Output Format**

• **explanation**: Use brief reasoning for all category assignments expect IMC and IMC. When the category is
IMC or IMI, use the full chain of thought for determining permission as the justification.

• **label**: Provide only "CRL", "SRL", "IMC", "IMI", "Q", or "O".

A.3.2 Tier 2 Counsellor Prompt Template

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to assign a category
label to the counsellor’s final utterance in a given session excerpt.
**Classification Categories**
The utterance must be assigned one of the following labels:

{{spec}}

**Output Format**
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• **explanation**: Briefly justify your choice in 1-2 sentences.
• **label**: Provide only the appropriate label.

**Final instructions**

1. Analyze the counsellor’s final utterance.
2. Identify its primary function and intent.
3. Provide a brief explanation for your choice.
4. Assign the appropriate label based on the categories provided above.

The {{spec}} parameter is replaced by one of the following depending on what the Tier 1 code was:

CRL: |
- **Complex Reflection (CR)**: A reflective listening statement that adds significant meaning or

emphasis to what the client said, conveying a deeper or richer picture of the client's
statement.

- **Affirm (AF)**: Communicates something positive or complimentary about the client's strengths
or efforts.

- **Support (SU)**: Sympathetic, compassionate, or understanding comments, which agree or side
with the client.

- **Reframe (RF)**: Suggests a different meaning for an experience expressed by the client,
usually changing the emotional valence of meaning but not the depth.

- **Emphasize Control (EC)**: Acknowledges, honours, or emphasizes the client's autonomy and
freedom of choice.

SRL: |
- **Simple Reflection (SR)**: A reflective listening statement which simply repeats or paraphrases

the client's words or meaning, often with a slight change in wording or emphasis.
IMC: |

- **Advise With Permission (ADP)**: After receiving permission, gives advice, makes a suggestion,
or offers a solution or possible action.

- **Raise Concern With Permission (RCP)**: After getting permission, points out a possible problem
with a client's goal, plan, or intention. Always phrased as the counsellor's concern.

- **Giving Information (GI)**: Provides information to the client, explains something, educates or
provides feedback, or discloses personal information.

IMI: |
- **Advise Without Permission (ADWP)**: Offers suggestions or guidance WITHOUT asking or receiving

permission.
- **Confront (CON)**: Directly disagrees, argues, corrects, shames, blames, seeks to persuade,

criticizes, judges, labels, moralizes, ridicules, or questions the client's honesty.
- **Direct (DIR)**: Gives an order, command, or direction. The language is imperative.
- **Raise Concern Without Permission (RCWP)**: Without getting permission, points out a possible

problem with a client's goal, plan, or intention.
- **Warn (WA)**: Provides a warning or threat, implying negative consequences unless the client

takes a certain action
Q: |

- **Closed Question (CQ)**: A question is closed if it can be answered with ``yes'' or ``no''
under any grammatically valid interpretation, even if that answer is awkward, contextually
unhelpful, or unlikely.
To determine is a question is CQ, always check for its grammatical structure first. If the

utterance can be interpreted in a way that permits a yes/no response, you must classify
it as CQ.

This includes any form of:
- any utterance containing or beginning with grammatical constructions that use auxiliary

or modal verbs, existence/presence checks, or binary/framed prompts must be labeled
as CQ. These include, but are not limited to, questions that:

- Begin with or contain modal/auxiliary verbs such as:
Can, Could, Do, Does, Did, Are, Is, Was, Were, Will, Would, Have, Has, Had, Might,

May, Should, Shall, Must followed by a subject and verb/complement.
- Ask about existence, availability, or presence using forms like:

Is there, Are there, Do you have, Have you got, Would it be, Could it be, Might it
be, Is it possible that...

- Implicitly or explicitly present binary choices or confirmatory framing, including
structures like:

Do you ever, Would you say, Are you thinking about, Would you like, Is this
something you, Have you thought about, Do you feel like, Do you think, Does it
feel like, Do you notice...

If the utterance contains any clause that permits a grammatically valid yes/no or short
factual response, even if additional elaboration is possible, it must be labeled
CQ.
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- even if it appears to invite elaboration.
- confirmation or factual information-seeking
- curiosity about presence/absence of something
- request for specific information or choices

If there is any ambiguity between CQ and OQ, always label it as CQ.
- **Open Question (OQ)**:

A question is open only if it cannot be answered with ``yes'' or ``no'' in any grammatically
valid or logically plausible way.

The question must structurally require an elaboration, explanation, or descriptive narrative
that goes beyond a binary or fixed-option response.

Questions that seem to encourage elaboration but could be reduced to a yes/no response are
still CQ, not OQ.

Use this label only when there is no grammatical path to yes/no answers -- no exceptions.
O: |

- **Facilitate (FA)**: Simple utterance that functions as a "keep-going" acknowledgement e.g. ``Mm
-hmm'', ``I see'', ``Go on''

- **Filler (FI)**: Pleasantries such as "good morning", "nice weather we're having", etc.
- **Structure (ST)**: Gives information about will happen directly to the client throughout the

course of treatment or within a study format, in this or subsequent sessions.

A.3.3 Tier 1 Client Prompt

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to assign a category
label to the client’s final utterance in a given session excerpt.
**Classification Categories**
The utterance must be assigned one of the following labels:

1. **Change Talk (C)** - The client expresses a stance toward **changing** the target behavior.
• **Commitment** to change (e.g., stating/implying an intention to change, considering alternatives, making

plans to change).
• **Reasons** for change (including personal, health, or emotional factors).
• **Desire** to change (e.g., "I really want to quit.").
• **Optimism** about their ability to change (e.g., "I think I can do it.").
• **Need** to change (e.g., "I have to stop before it gets worse.").
• **Recent steps** toward change (e.g., "I cut back this week.").

2. **Sustain Talk (S)** - The client expresses a stance toward **maintaining** the target behavior.
• **Commitment** to maintaining the target behaviour (e.g., stating/implying an intention to continue,

dismissing alternatives, making plans to continue).
• **Reasons** for maintaining the target behaviour (e.g., stress relief, social reasons).
• **Desire** to continue the target behaviour (e.g., "I enjoy it too much to quit.").
• **Pessimism** about their ability to change (e.g., "I don’t think I can quit.").
• **Need** to maintain the target behaviour (e.g., "I need cigarettes to cope.").
• **Recent steps** reinforcing the target behaviour (e.g., "I bought another pack today.").

3. **Neutral (N)** - The utterance does not clearly support or oppose change.
• Following along with the counsellor without expressing a stance.
• Asking questions (e.g., "What are the benefits of quitting?").
• Providing factual or general statements about the behaviour.

**Output Format**

• **explanation**: Briefly justify your choice in 1-2 sentences.
• **label**: Provide only "C", "S", or "N".

A.3.4 Tier 2 Client Prompt Template

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to assign a category
label to the client’s final utterance in a given session excerpt.
**Classification Categories**
The utterance must be assigned one of the following labels:

{{spec}}

**Output Format**

• **explanation**: Briefly justify your choice in 1-2 sentences.
• **label**: Provide only the appropriate label.
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**Final instructions**

1. Analyze the client’s final utterance.
2. Identify its primary function and intent.
3. Provide a brief explanation for your choice.
4. Assign the appropriate label based on the categories provided above.

The {{spec}} parameter is replaced by one of the following depending on what the Tier 1 code was:

C: |
- **Desire (D+)**: The client expresses a desire to change the target behaviour, e.g. "I want to

quit smoking".
- **Ability (AB+)**: The client expresses optimism about their ability to change, e.g. "I think it

's possible for me to quit".
- **Reasons (R+)**: The client provides reasons for changing the target behaviour, e.g. "My

children are begging me to quit".
- **Need (N+)**: The client expresses a need to change the target behaviour, e.g. "I've got to

quit before it gets worse".
- **Commitment (C+)**: The client expresses a commitment to change, e.g. "I'm going to quit

smoking".
- **Activation (AC+)**: The client leans towards action, e.g. "I'm willing to give it another try".

This includes suggestions of alternatives to the target behaviour.
- **Taking Steps (TS+)**: The client mentions recent steps towards change, e.g. "I cut back on

smoking this week".
- **Other (O+)**: The client makes a statement that supports change but does not fit into the

other categories. This usually includes problem recognition or hypotheticals.
S: |

- **Desire (D-)**: The client expresses a desire to maintain the target behaviour, e.g. "I enjoy
smoking too much to quit".

- **Ability (AB-)**: The client expresses pessimism about their ability to change, e.g. "I don't
think I can quit".

- **Reasons (R-)**: The client provides reasons for maintaining the target behaviour, e.g. "
Smoking is the only way I can relax".

- **Need (N-)**: The client expresses a need to maintain the target behaviour, e.g. "I need to
have my morning cigarettes".

- **Commitment (C-)**: The client expresses a commitment to maintain the target behaviour, e.g. "I
'm not going to quit smoking".

- **Activation (AC-)**: The client leans towards inaction, e.g. "I'm not ready to quit yet". This
includes suggestions of maintaining the target behaviour.

- **Taking Steps (TS-)**: The client mentions recent steps reinforcing the target behaviour, e.g.
"I bought two packs today".

- **Other (O-)**: The client makes a statement that supports maintaining the target behaviour but
does not fit into the other categories. This usually includes problem recognition or
hypotheticals.

N: |
- The utterance does not clearly support or oppose change. There is no further categorization, so

just use "N".

A.3.5 Flat Counsellor Prompt

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to classify the
counsellor’s final utterance in a given session excerpt into one of the following groupings of MISC 2.5 behavioural codes:

**Classification Categories**:
The utterance must be assigned one of the following labels:

• **Affirm (AF)**: Communicates something positive or complimentary about the client’s strengths or efforts.
• **Support (SU)**: Sympathetic, compassionate, or understanding comments, which agree or side with the client.
• **Complex Reflection (CR)**: A reflective listening statement that adds significant meaning or emphasis to what

the client said, conveying a deeper or richer picture of the client’s statement.
• **Reframe (RF)**: Suggests a different meaning for an experience expressed by the client, usually changing the

emotional valence of meaning but not the depth.
• **Emphasize Control (EC)**: Acknowledges, honours, or emphasizes the client’s autonomy and freedom of

choice.
• **Simple Reflection (SR)**: A reflective listening statement which simply repeats or paraphrases the client’s

words or meaning, often with a slight change in wording or emphasis.
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• **Advise With Permission (ADP)**: After receiving permission, gives advice, makes a suggestion, or offers a
solution or possible action.

• **Raise Concern With Permission (RCP)**: After getting permission, points out a possible problem with a
client’s goal, plan, or intention. Always phrased as the counsellor’s concern.

• **Giving Information (GI)**: Provides information to the client, explains something, educates or provides
feedback, or discloses personal information.

• **Advise Without Permission (ADW)**: Offers suggestions or guidance WITHOUT asking or receiving permis-
sion.

• **Raise Concern Without Permission (RCW)**: Without getting permission, points out a possible problem with a
client’s goal, plan, or intention.

• **Warn (WA)**: Provides a warning or threat, implying negative consequences unless the client takes a certain
action.

• **Direct (DI)**: Gives an order, command, or direction. The language is imperative.
• **Confront (CO)**: Directly disagrees, argues, corrects, shames, blames, seeks to persuade, criticizes, judges,

labels, moralizes, ridicules, or questions the client’s honesty.
• **Open Question (OQ)**: A question is open only if it cannot be answered with “yes” or “no” in any grammatically

valid or logically plausible way. The question must structurally require an elaboration, explanation, or descriptive
narrative that goes beyond a binary or fixed-option response.

• **Closed Question (CQ)**: A question is closed if it is about confirmation, factual information-seeking, curiosity
about presence/absence of something, request for specific information or choices, or *it can be answered with
“yes” or “no” under any grammatically valid interpretation, even if that answer is awkward, contextually unhelpful,
or unlikely.*

• **Filler (FI)**: Pleasantries such as "good morning", "nice weather we’re having", etc.
• **Facilitate (FA)**: Simple utterance that functions as a "keep-going" acknowledgement e.g. "Mm-hmm", "I

see", "Go on"
• **Structure (ST)**: Used to make a transition from one topic or part of a session to another. Also used to give

information about will happen directly to the client throughout the course of treatment or within a study format,
in this or subsequent sessions.

**Category assignment instructions**

1. **General instructions**

(a) Analyze the given context and counsellor’s final utterance.
(b) Identify its primary function.
(c) If the utterance involves **advice, suggestions, or information**, follow the **Permission Chain of Thought

Guide** below before choosing ADP, ADW, RCP, or RCW.
(d) For other types of utterances, assign the category directly.
(e) Justify your choice in 1-2 sentences for category assignment except ADP, ADW, RCP, or RCW.

2. **Permission Chain of Thought (Only when assigning IMC or IMI)**
When the utterance involves **giving advice, suggestions, guidance, or information** , you **must first apply
this step-by-step reasoning** to determine if permission is given:

(a) Check for Client Permission or Interest Expression: Examine the recent client utterances in the provided
context. Has the client given permission—either explicitly by directly asking for advice, suggestions, or
ideas or implicitly by showing openness, curiosity, or requesting information in a way that reasonably
invites guidance. Both explicit and implicit permission are equally valid—there is no difference in weight
between them. If either is present, permission is considered granted.

(b) Check for Counsellor’s Prior Permission-Seeking: Has the counsellor previously asked for permission
to give advice, suggestions, or information and received agreement? If so, permission is also considered
granted.

(c) If Yes (to 1 or 2): You may classify the utterance as ADP/RCP (permission has been granted).
(d) If No: Classify the utterance as ADW/RCW (no permission has been granted).
(e) **Carry Permission Forward:** Once permission—explicit or implicit—is granted, it remains **active**

for all **topically related** suggestions, guidance, or information, **even if the counsellor’s next utterance
introduces a shift in topic or phrasing**. **Do NOT revoke permission just because the surface topic
evolves naturally**, as long as the advice remains part of the **same overarching discussion or client goal**.
**Permission only expires** if there is a **clear and substantive topic shift**, or if the client **disengages**
or **withdraws interest**. In most cases, permission is granted in **recent client utterances**, but
**prior permissions—especially implicit ones—can remain valid across multiple counsellor turns** if the
conversation stays aligned with the client’s intent or focus. You should **assume permission is still valid**
unless there is strong evidence that the advice no longer relates to the client’s earlier request, concern, or
area of engagement.
**Apply this permission reasoning chain ONLY when the utterance’s function is to provide advice, sugges-
tions, guidance, or information.**

**Output Format**

• **explanation**: Use brief reasoning for all category assignments except ADP/ADW/RCP/RCW. When the
category is one of these, use the full chain of thought for determining permission as the justification.

• **label**: Provide only the appropriate label abbreviation.
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A.3.6 Flat Client Prompt

You are an expert annotator of Motivational Interviewing (MI) counselling sessions. Your task is to classify the client’s
final utterance in a given session excerpt into one of the following groupings of MISC 2.5 behavioural codes:

**Classification Categories**:
The utterance must be assigned one of the following labels:

• **Desire+ (D+)**: The client expresses a desire to change the target behaviour, e.g. "I want to quit smoking".
• **Ability+ (AB+)**: The client expresses optimism about their ability to change, e.g. "I think it’s possible for me

to quit".
• **Reasons+ (R+)**: The client provides reasons for changing the target behaviour, e.g. "My children are begging

me to quit".
• **Need+ (N+)**: The client expresses a need to change the target behaviour, e.g. "I’ve got to quit before it gets

worse".
• **Commitment+ (C+)**: The client expresses a commitment to change, e.g. "I’m going to quit smoking".
• **Activation+ (AC+)**: The client leans towards action, e.g. "I’m willing to give it another try". This includes

suggestions of alternatives to the target behaviour.
• **Taking Steps+ (TS+)**: The client mentions recent steps towards change, e.g. "I cut back on smoking this

week".
• **Other+ (O+)**: The client makes a statement that supports change but does not fit into the other categories.

This usually includes problem recognition or hypotheticals.
• **Desire- (D-)**: The client expresses a desire to maintain the target behaviour, e.g. "I enjoy smoking too much

to quit".
• **Ability- (AB-)**: The client expresses pessimism about their ability to change, e.g. "I don’t think I can quit".
• **Reasons- (R-)**: The client provides reasons for maintaining the target behaviour, e.g. "Smoking is the only

way I can relax".
• **Need- (N-)**: The client expresses a need to maintain the target behaviour, e.g. "I need to have my morning

cigarettes".
• **Commitment- (C-)**: The client expresses a commitment to maintain the target behaviour, e.g. "I’m not going

to quit smoking".
• **Activation- (AC-)**: The client leans towards inaction, e.g. "I’m not ready to quit yet". This includes

suggestions of maintaining the target behaviour.
• **Taking Steps- (TS-)**: The client mentions recent steps reinforcing the target behaviour, e.g. "I bought two

packs today".
• **Other- (O-)**: The client makes a statement that supports maintaining the target behaviour but does not fit into

the other categories. This usually includes problem recognition or hypotheticals.
• **Neutral (N)**: The utterance does not clearly support or oppose change. This can include following along

with the counsellor without expressing a stance, asking questions (e.g., "What are the benefits of quitting?"), or
providing factual or general statements about the behaviour.

**Output Format**

• **explanation**: Briefly justify your choice in 1-2 sentences.
• **label**: Provide only the appropriate label abbreviation.

**Final Instructions**

1. Analyze the counsellor’s final utterance.
2. Identify its primary function and intent.
3. Provide a brief explanation for your choice.
4. Assign the appropriate label based on the categories provided above.

A.3.7 User Prompt

**Session Transcript**
The following is an excerpt of a MI counselling session transcript:

{{ transcript }}

**Target Utterance for Classification**
Below is the target {{ speaker }} utterance in the session excerpt:

{{ utterance }}
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B Expert Alignment of Annotations

B.1 Inter-rater reliability before vs. after
alignment

Figures B.1 and B.2 show the Cohen’s Kappa be-
tween each pair of manual annotators before and
after alignment, respectively. The process is de-
scribed in full in Section 4.3.

B.2 Annotator and MI Expert demographics

Table B.1 lists the demographic information of both
the manual annotators and the expert MI clinicians
who participated in the transcript labelling align-
ment meeting described in Section 4.3.
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Figure B.1: Pairwise Cohen’s Kappa (and Fleiss’ Kappa between all annotators) before alignment (n = 367).
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Figure B.2: Pairwise Cohen’s (and Fleiss’ Kappa between all annotators) after alignment (n = 454).

Anno. 11 Anno. 22 Anno. 32 Anno. 42 Expert 13 Expert 24 Expert 35

Sex Male Female Male Male Female Female Male
Age Group (years) 20-29 20-29 20-29 20-29 60-69 40-49 60-69
Race/ Ethnicity Mixed Asian Asian Asian White White South

Asian
Native Language English Cantonese English Mandarin English English English
Student Status Yes Yes Yes Yes No No No
Employment Status N/A N/A N/A N/A Full-Time Full-Time Self
Highest Education Undergrad. Secondary Secondary Secondary Graduate Graduate Graduate
Country of Residence Canada Canada Canada China Canada Canada Canada
Country of Birth Canada China Canada China Canada Canada India
Training in Linguistics No No No No No No No
Training in MI No No No No Yes Yes Yes

1 Engineering graduate student with no formal training in MI.
2 Engineering undergraduate student with no formal training in MI.
3 Motivational Interviewing Network of Trainers (MINT) member since 2009; Motivational Interviewing Treatment Integrity

(MITI) coding trained; extensive training and coaching experience.
4 Introductory-Intermediate-Advance MI training; MINT member since 2014; MI supervision; MITI training.
4 Clinician-scientist and educator; extensive MI training and supervision experience; MINT member.

Table B.1: Demographic Information of Annotators and MI Experts
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C Comparison to Consensus Labels: All
Results

This section contains the complete results from the
experiments described in Section 4.3. Table C.1
lists the numerical classification performance re-
sults for all models across all classification ap-

proaches and all context window sizes. Figure C.1
plots all macro F1 and accuracy scores for them.
Figure C.2 show the confusion matrices of Au-
toMISC’s best performing configuration, GPT-4.1
with three context volleys, using the hierarchical
classification approach.
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Figure C.1: Accuracy and F1 score across all configurations on consensus labels (n = 821).
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Figure C.2: Confusion matrices for each speaker and tier, comparing AutoMISC’s predictions to the consensus
annotations on ten transcripts from the smoking cessation study (n = 821).
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Model Class.
Structure

Context
Volleys

T1 Couns. T1 Client T2 Couns. T2 Client T2 Overall
F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

GPT-4.1

hier.

0 0.54 70 0.82 83 0.36 64 0.44 73 0.39 67
1 0.63 76 0.85 86 0.38 66 0.41 73 0.39 68
2 0.78 82 0.83 85 0.39 70 0.40 71 0.39 70
3 0.80 82 0.87 88 0.42 68 0.41 76 0.42 70
4 0.77 81 0.86 87 0.38 67 0.39 72 0.39 69
5 0.77 81 0.89 90 0.38 67 0.41 75 0.39 69
10 0.79 81 0.86 88 0.37 66 0.38 73 0.37 68
20 0.83 79 0.86 88 0.37 64 0.40 74 0.38 67

flat

0 – – – – 0.32 56 0.40 66 0.34 59
1 – – – – 0.34 57 0.40 68 0.36 60
2 – – – – 0.38 62 0.41 68 0.39 63
3 – – – – 0.37 60 0.40 70 0.38 63
4 – – – – 0.38 60 0.41 68 0.39 62
5 – – – – 0.38 60 0.41 69 0.39 63
10 – – – – 0.38 61 0.41 69 0.39 63
20 – – – – 0.37 58 0.41 69 0.38 62

GPT-4o

hier.

0 0.54 69 0.83 84 0.36 61 0.42 71 0.38 64
1 0.62 75 0.85 86 0.39 65 0.41 69 0.39 66
2 0.76 81 0.85 85 0.37 66 0.41 69 0.38 67
3 0.76 80 0.85 86 0.39 66 0.42 70 0.40 67
4 0.76 80 0.85 85 0.36 64 0.43 69 0.38 66
5 0.78 81 0.84 84 0.36 64 0.38 66 0.37 65
10 0.77 81 0.85 85 0.38 64 0.39 67 0.38 65
20 0.74 79 0.85 85 0.38 63 0.39 66 0.38 64

flat

0 – – – – 0.38 57 0.40 64 0.39 59
1 – – – – 0.41 57 0.42 65 0.41 60
2 – – – – 0.41 61 0.41 65 0.41 62
3 – – – – 0.39 62 0.41 63 0.40 62
4 – – – – 0.38 61 0.43 65 0.39 62
5 – – – – 0.39 61 0.41 60 0.39 61
10 – – – – 0.39 60 0.39 59 0.39 60
20 – – – – 0.36 58 0.39 59 0.37 58

Qwen3-30b-a3b

hier.

0 0.54 69 0.77 78 0.28 55 0.35 63 0.30 57
1 0.56 71 0.79 79 0.27 55 0.35 63 0.29 57
2 0.62 73 0.73 73 0.27 55 0.32 56 0.28 55
3 0.59 73 0.73 73 0.26 56 0.28 58 0.27 56
4 0.61 71 0.77 77 0.26 51 0.32 59 0.28 53
5 0.57 68 0.76 76 0.26 50 0.32 56 0.28 52
10 0.59 69 0.78 78 0.25 48 0.34 59 0.28 51
20 0.58 68 0.77 78 0.25 48 0.34 59 0.28 51

flat

0 – – – – 0.29 53 0.31 55 0.29 53
1 – – – – 0.31 52 0.33 52 0.31 52
2 – – – – 0.29 51 0.32 49 0.30 50
3 – – – – 0.28 50 0.31 47 0.29 49
4 – – – – 0.29 50 0.32 48 0.30 50
5 – – – – 0.30 51 0.32 50 0.30 51
10 – – – – 0.29 52 0.31 50 0.30 51
20 – – – – 0.29 52 0.30 50 0.29 51

Gemma-3-12b

hier.

0 0.54 65 0.73 76 0.29 52 0.41 60 0.32 54
1 0.60 71 0.80 81 0.30 54 0.40 59 0.33 56
2 0.62 72 0.77 78 0.28 52 0.38 57 0.31 53
3 0.60 69 0.77 78 0.27 50 0.39 58 0.30 52
4 0.60 68 0.76 76 0.27 48 0.34 54 0.29 50
5 0.58 67 0.76 76 0.26 48 0.35 54 0.29 50
10 0.55 61 0.75 76 0.23 41 0.34 54 0.26 45
20 0.57 66 0.73 72 0.23 43 0.34 50 0.27 45

flat

0 – – – – 0.28 50 0.37 53 0.31 51
1 – – – – 0.27 51 0.40 52 0.30 51
2 – – – – 0.28 54 0.37 46 0.31 51
3 – – – – 0.29 53 0.35 46 0.31 51
4 – – – – 0.29 55 0.34 45 0.30 52
5 – – – – 0.28 53 0.31 42 0.29 50
10 – – – – 0.27 52 0.29 40 0.28 49
20 – – – – 0.28 52 0.30 39 0.28 48

Table C.1: Macro F1 score and accuracy (%) across all models and configurations (n = 821 consensus labels).
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D Supplementary Validation
Experiments

D.1 Comparison to AnnoMI
As a secondary form of validation, we compare
AutoMISC’s labels (using our best-performing con-
figuration) against those from the AnnoMI dataset
(Wu et al., 2023). This dataset contains 133 MI
conversations professionally transcribed and coded
under a custom volley-level coding scheme by ex-
perienced MI practitioners. Each volley in the
dataset has up to three counsellor codes (drawn
from questions, reflections, and therapist input cat-
egories) and a single client code indicating Change
Talk (C), Sustain Talk (S), or Neutral Talk (N).
Although inspired by MITI/MISC, it differs signif-
icantly from the MISC coding used in this work.
To make a direct comparison between AutoMISC
and the AnnoMI codes, the AnnoMI codes were
transformed in the following ways:

1. AutoMISC Tier 1 utterance-level client codes
are aggregated across each volley through a
majority vote. Ties are broken using the hier-
archy C>S>N. The resulting aggregated labels
are compared to AnnoMI’s single client label
per volley using Cohen’s κ, accuracy, and a
confusion matrix.

2. For counsellor codes, an AnnoMI volley-
level label is considered matched if for each
counsellor code there exists at least one corre-
sponding utterance-level code in AutoMISC’s
annotations for that volley, according to the
mapping shown in Table D.1. A volley-level
match occurs only if all AnnoMI codes are
covered.

AnnoMI Code Mapped MISC 2.5 Codes

Question: open {OQ}
Question: closed {CQ}
Reflection: simple {SR}
Reflection: complex {CR, RF, AF}
Therapist input: information {GI}
Therapist input: advice {ADP, ADW}
Therapist input: options {ADP, ADW, EC, ST}
Therapist input: negotiation {ADP, ADW, EC, ST, RCP,

RCW, WA, CO, DI}
None of the above {FA, FI, SU}

Table D.1: Mapping from AnnoMI counsellor labels to
MISC 2.5 codes used by AutoMISC.

With this mapping the AutoMISC client coding
achieves a Cohen’s κ = 0.51 (which is consid-
ered ‘moderate’ agreement) and an accuracy of
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Figure D.1: Confusion matrix comparing AutoMISC
and AnnoMI client codes (aggregated to volley-level
C/S/N).

77% over n = 4817 volleys. Figure C.2 gives
the confusion matrix betwen the C, S, and N codes
between AutoMISC and AnnoMI.

The counsellor code accuracy is 65% over n =
4882 volleys.

D.2 Distinguishing High/Low Quality on the
HLQC Dataset

The High Low Quality Counselling (HLQC)
dataset (Pérez-Rosas et al., 2019) contains 258
transcribed MI sessions rated as either high or low
quality by expert MI practitioners. HLQC does
not include fine-grained behavioural codes for a
direct comparison with AutoMISC. However, the
binary quality rating offers an opportunity to assess
whether AutoMISC ’s outputs align with expert
judgments at the session level, using the following
process: AutoMISC is run on the HLQC dataset us-
ing the best-performing configuration, and the three
MISC summary scores described in subsection 3.1
are produced. These are used to predict binary
counselling quality by training a logistic regres-
sion classifier using leave-one-out cross-validation
(LOOCV).

Predictor(s) Acc. (%) F1 AUC

%MIC 87 0.90 0.933
R:Q 70 0.79 0.741
%CT 75 0.80 0.729
All Combined 86 0.89 0.940

Table D.2: LOOCV classification performance for pre-
dicting binary session-level MI quality on HLQC using
summary scores derived from AutoMISC (n = 258).

As shown in Table D.2, the %MIC summary
score is the most predictive individual feature,
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achieving 87% accuracy and an AUC of 0.93. Com-
bining all three summary scores yields the an over-
all accuracy of 86% accuracy and an AUC of 0.94.
These results are consistent with those reported
in the original HLQC study, where handcrafted
MITI-derived features achieved 83–87% accuracy
(Pérez-Rosas et al., 2019).

These results demonstrate that AutoMISC’s sum-
mary scores can serve as evaluators of counselling
quality. This highlights the potential for applica-
tions of automated coding in MI quality assess-
ment.
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E Comparison to Consensus Labels:
HLQC Subset

This section contains the complete results from the
experiments described in Section 5.4. Based on
the label distribution in the HLQC dataset from
our experiment in Appendix D.2, we selected a
larger and more balanced subset of 10 conversa-
tions (n = 1924 utterances) for manual annotation
to perform this additional validation experiment.
Figure E.1 shows the pairwise Cohen’s Kappa be-
tween annotators and overall Fleiss’ Kappa. We
then repeated the automated annotation experi-
ments described in Section 5.1 across all models
and configuration parameters. The full numeri-
cal results are listed in Table E.1, with all macro
F1 and accuracy scores visualized in Figure E.2.
Figure E.3 show the confusion matrices for Au-
toMISC’s best performing configuration, GPT-4.1
with five context volleys, using the hierarchical
classification approach.

We note that, unlike the smoking cessation chat-
bot transcripts, HLQC is comprised of audio tran-
scriptions of live MI sessions. These include
frequent interruptions, filler words, overlapping
speech, and transcription errors, such as swapped
speaker roles, resulting in a more “noisy” dataset
that was more difficult to annotate (we tried to cor-

rect these errors to the best of our ability). This
was reflected in the lower Fleiss’ Kappas: the target
of 0.6 was not met for either T2 counsellor codes
(κ = 0.47) or T2 client codes (κ = 0.3), as shown
in Figure E.1.

The automated annotation performance also dif-
fered from the chatbot study. The best counsellor
accuracy is 14% lower (56% vs 70%), whereas the
client accuracy is 5% higher. The macro F1 scores
decreased by 0.07 on T2 counsellor codes (0.42 to
0.35) and 0.09 on T2 client codes (0.41 vs 0.32).
The decrease in counsellor accuracy is expected,
as the HLQC subset contains a more balanced
distribution of MI-consistent and MI-inconsistent
behaviours, in contrast to the chatbot transcripts
which rarely contained MI-inconsistent utterances.
The higher client accuracy can be attributed to the
substantial increase in filler speech and small talk
which is inherent to real speech. The reductions in
macro F1 score are consistent with the increased
noise and transcription artifacts discussed above.
We observe similar trends to those in Section 5.2.1:
counsellor accuracy/F1 score generally improves
as the number of context volleys increases, up to
a point of diminishing returns. Unlike in the chat-
bot study, this trend also appeared for client codes,
likely due to the greater variability and noise in
spoken dialogue.
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Figure E.1: Pairwise Cohen’s Kappa (and Fleiss’ Kappa between all annotators) on HLQC subset (n = 1924).
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Figure E.2: Accuracy and F1 score across all configurations on HLQC subset (n = 1924).
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Figure E.3: Confusion matrices for each speaker and tier, comparing AutoMISC’s predictions to the consensus
annotations on the subset of HLQC (n = 1924).
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Model Class.
Structure

Context
Volleys

T1 Couns. T1 Client T2 Couns. T2 Client T2 Overall
F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

GPT-4.1

hier.

0 0.54 65 0.64 82 0.30 42 0.27 78 0.29 53
1 0.63 68 0.67 84 0.32 44 0.32 81 0.32 55
2 0.64 68 0.70 86 0.33 45 0.32 81 0.33 56
3 0.65 69 0.70 86 0.32 45 0.32 81 0.32 55
4 0.65 69 0.71 86 0.33 46 0.31 81 0.33 56
5 0.67 70 0.70 85 0.35 46 0.32 80 0.34 56
10 0.68 71 0.71 85 0.34 45 0.32 79 0.33 55
20 0.68 71 0.68 83 0.35 45 0.30 77 0.33 55

flat

0 – – – – 0.27 40 0.27 73 0.27 50
1 – – – – 0.31 43 0.31 74 0.31 53
2 – – – – 0.28 41 0.32 74 0.29 51
3 – – – – 0.27 42 0.29 74 0.28 51
4 – – – – 0.31 44 0.30 74 0.31 53
5 – – – – 0.31 43 0.31 74 0.31 52
10 – – – – 0.29 42 0.28 72 0.29 51
20 – – – – 0.30 43 0.31 72 0.30 52

GPT-4o

hier.

0 0.54 64 0.62 81 0.29 41 0.26 77 0.28 51
1 0.63 68 0.66 83 0.31 43 0.32 79 0.32 53
2 0.64 68 0.67 84 0.31 43 0.28 78 0.30 54
3 0.65 69 0.67 83 0.33 45 0.30 78 0.32 55
4 0.65 70 0.67 83 0.32 45 0.30 78 0.32 55
5 0.67 71 0.67 83 0.35 46 0.29 77 0.33 55
10 0.64 68 0.65 81 0.32 44 0.29 76 0.31 54
20 0.62 68 0.61 78 0.31 45 0.26 73 0.29 53

flat

0 – – – – 0.30 43 0.24 69 0.28 50
1 – – – – 0.33 46 0.30 71 0.32 53
2 – – – – 0.31 44 0.31 69 0.31 51
3 – – – – 0.33 45 0.30 69 0.32 52
4 – – – – 0.32 45 0.28 69 0.31 52
5 – – – – 0.33 46 0.29 68 0.32 52
10 – – – – 0.31 45 0.27 67 0.30 51
20 – – – – 0.30 43 0.27 66 0.29 50

Qwen3-30b-a3b

hier.

0 0.50 59 0.51 71 0.24 39 0.18 65 0.22 47
1 0.51 59 0.53 73 0.24 38 0.20 68 0.23 47
2 0.52 60 0.51 69 0.27 38 0.18 63 0.24 45
3 0.54 59 0.49 64 0.25 38 0.19 58 0.23 44
4 0.54 60 0.50 64 0.27 40 0.20 58 0.25 45
5 0.55 60 0.50 65 0.28 39 0.19 59 0.25 45
10 0.57 63 0.51 66 0.28 41 0.19 60 0.25 46
20 0.58 64 0.49 65 0.28 41 0.19 59 0.26 46

flat

0 – – – – 0.24 35 0.17 54 0.22 40
1 – – – – 0.23 35 0.22 58 0.23 42
2 – – – – 0.23 35 0.20 53 0.22 40
3 – – – – 0.24 35 0.20 53 0.23 41
4 – – – – 0.25 35 0.19 52 0.23 40
5 – – – – 0.25 35 0.18 49 0.23 39
10 – – – – 0.25 36 0.17 45 0.23 39
20 – – – – 0.27 37 0.17 45 0.24 39

Gemma-3-12b

hier.

0 0.55 61 0.54 74 0.24 35 0.21 65 0.23 43
1 0.62 67 0.56 73 0.28 39 0.25 64 0.27 46
2 0.55 57 0.56 72 0.25 35 0.26 60 0.26 42
3 0.59 64 0.54 69 0.25 37 0.24 60 0.25 44
4 0.55 57 0.54 69 0.24 33 0.23 56 0.24 40
5 0.53 55 0.54 68 0.23 32 0.25 56 0.23 39
10 0.58 62 0.51 63 0.23 32 0.22 56 0.23 39
20 0.57 61 0.47 58 0.25 34 0.20 52 0.23 39

flat

0 – – – – 0.20 32 0.19 48 0.20 37
1 – – – – 0.23 35 0.25 50 0.24 40
2 – – – – 0.24 36 0.23 43 0.24 38
3 – – – – 0.23 35 0.23 42 0.23 37
4 – – – – 0.24 36 0.22 38 0.24 37
5 – – – – 0.24 35 0.24 37 0.24 36
10 – – – – 0.27 37 0.22 32 0.26 35
20 – – – – 0.25 34 0.17 37 0.23 35

Table E.1: Macro F1 score and accuracy (%) across all configurations on the HLQC subset (n = 1924 utterances).
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F Correlation Experiment Supplementary Material
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Figure F.1: Client motivation trajectory slope vs. change in client self-reported confidence to quit smoking one
week after the session (n = 106).
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Abstract

This paper presents an overview of the Shared
Task on Patient-Centric Question Answering,
organized as part of the NLP-AI4Health work-
shop at IJCNLP. The task aims to bridge the
digital divide in healthcare by developing inclu-
sive systems for two critical domains: Head and
Neck Cancer (HNC) and Cystic Fibrosis (CF).
We introduce the NLP4Health-2025 Dataset,
a novel, large-scale multilingual corpus con-
sisting of more than 45,000 validated multi-
turn dialogues between patients and health-
care providers across 10 languages: Assamese,
Bangla, Dogri, English, Gujarati, Hindi, Kan-
nada, Marathi, Tamil, and Telugu. Participants
were challenged to develop lightweight mod-
els (< 3 billion parameters) to perform two
core activities: (1) Clinical Summarization, en-
compassing both abstractive summaries and
structured clinical extraction (SCE), and (2)
Patient-Centric QA, generating empathetic, fac-
tually accurate answers in the dialogue’s native
language. This paper details the hybrid human-
agent dataset construction pipeline, task def-
initions, evaluation metrics, and analyzes the
performance of 9 submissions from 6 teams.
The results demonstrate the viability of small
language models (SLMs) in low-resource medi-
cal settings when optimized via techniques like
LoRA and RAG.

1 Introduction

The proliferation of Large Language Models
(LLMs) has catalyzed a paradigm shift in health-

**Corresponding author:
vandan.mu@research.iiit.ac.in. Authors are listed
in alphabetical order.

care informatics, offering transformative potential
for Clinical Decision Support Systems (CDSS)
(Singhal et al., 2023; Thirunavukarasu et al., 2023).
However, the benefits of this "AI revolution" re-
main unevenly distributed. While models like Med-
PaLM (Singhal et al., 2023) demonstrate expert-
level performance on US Medical Licensing Ex-
ams (USMLE), they predominantly rely on English-
centric biomedical corpora such as PubMed and
MIMIC-III (Johnson et al., 2016). This creates a
substantial "linguistic barrier" in the Global South,
particularly in India, where the digital divide often
mirrors socio-economic disparities (Arora et al.,
2019).

India presents a unique challenge for healthcare
NLP. It is home to over 1.4 billion people speaking
121 languages and thousands of dialects (Kakwani
et al., 2020). Yet, clinical documentation, guide-
lines, and digital health interfaces exist almost ex-
clusively in English. This disconnect results in poor
health literacy, where patients struggle to compre-
hend diagnoses or adhere to treatment plans deliv-
ered in a language they do not speak fluently (Rajan
et al., 2019).

The Necessity of Synthetic Data Generation:
Developing multilingual healthcare AI is hindered
by a severe scarcity of high-quality training data.
Unlike general domain NLP, healthcare data is
strictly siloed due to privacy regulations, such as
India’s Digital Personal Data Protection (DPDP)
Act (Ministry of Electronics and Information Tech-
nology, 2023). Collecting real-world, multi-turn
dialogues between doctors and patients in vernacu-
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lar languages is logistically complex and ethically
sensitive. Consequently, there is an urgent require-
ment for High-Fidelity Synthetic Data Generation;
leveraging the reasoning capabilities of LLMs to
create realistic clinical scenarios that are subse-
quently validated by human experts (Chen et al.,
2021).

Defining Patient-Centricity in the Era of LLMs:
Existing benchmarks like MedQA or PubMedQA
(Jin et al.) focus on physician-centric fact retrieval.
However, effective healthcare delivery requires
patient-centricity, the ability of an AI to interpret
colloquial descriptions of symptoms (e.g., "my
chest feels heavy" vs. "angina"), manage patient
anxiety, and provide culturally grounded advice
(Zhang et al., 2023). An LLM must do more than
translate; it must act as an empathetic intermediary
between complex medical jargon and the patient’s
lived reality.

To address these lacunae, we organized the
"Shared Task on Patient-Centric Question An-
swering," focusing on two critical domains: Head
and Neck Cancer (HNC), which has a high preva-
lence in India due to smokeless tobacco usage, and
Cystic Fibrosis (CF), a genetic disorder. This task
challenges the NLP community to move beyond
translation and focus on semantic comprehension
in low-resource settings.

The salient contributions of this work are as fol-
lows:

• The NLP4Health-2025 Dataset: We release
a robust corpus of more than 45,000 validated
dialogues across 10 languages (Assamese,
Bangla, Dogri, English, Gujarati, Hindi, Kan-
nada, Marathi, Tamil, Telugu), addressing the
scarcity of Indic healthcare data.

• Task Formulation for Clinical Workflows:
We define two realistic sub-tasks: (A) Clini-
cal Documentation (Summarization and Struc-
tured Extraction) to reduce physician burnout,
and (B) Patient Interaction (QA) to empower
patients with vernacular health information.

• Benchmarking Lightweight Models: Rec-
ognizing the infrastructural constraints of In-
dian public healthcare, we focus on optimiz-
ing Small Language Models (SLMs) (<3B pa-
rameters) via techniques like Low-Rank Adap-
tation (LoRA) and Retrieval-Augmented Gen-
eration (RAG), proving that high performance

does not always require massive compute re-
sources.

2 Task Description

The shared task consists of two sub-tasks designed
to simulate an end-to-end clinical workflow:

Sub-task A: Clinical Summarization & Extrac-
tion Given a multi-turn patient-doctor dialogue
in any of the target languages, the system must
generate:

1. An Abstractive Summary (Free-text) sum-
marizing the clinical encounter.

2. A Structured Clinical Extraction (SCE) ob-
ject (JSON) capturing key entities such as
symptoms, diagnosis, and treatment plan.

Sub-task B: Patient-Centric QA Given the di-
alogue history and a follow-up user query (repre-
senting a patient’s "afterthought"), the system must
generate a factually accurate, empathetic, and cul-
turally coherent answer in the same language.

3 Dataset Construction

The core novelty lies in our construction pipeline.
Unlike web-scraping, which yields noisy data, we
employed a Human-Guided Agentic Generation
pipeline to ensure clinical accuracy and cultural
relevance.

3.1 Phase 1: Curated Clinical Curriculum

We collaborated with oncologists and pulmonolo-
gists from Christian Medical Hospital (CMC), Vel-
lore, India, to develop the structured Scenario
Themes that served as a clinical curriculum for
the generative models.

Head and Neck Cancer (HNC): Scenarios re-
flect the high prevalence of smokeless tobacco in
India. The curriculum follows the patient journey:

• Initial Consultation: Identification of risk
factors (e.g., gutkha, khaini, beedis).

• Diagnosis: Explaining procedures like FNAC
Biopsy and TNM Staging using simple analo-
gies.

• Survivorship: Post-treatment rehabilitation
and diet (e.g., soft, high-protein Indian diets).
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Cystic Fibrosis (CF): Tailored to public health-
care settings, distinguishing CF from Tuberculosis
(TB) and emphasizing affordable home-care solu-
tions (e.g., using generic enzymes and indigenous
high-calorie foods like ghee).

3.2 Phase 2: Agentic Iterative Generation

We leveraged an autonomous agentic framework
powered by gpt-5-nano-2025-08-07* to synthe-
size longitudinal dialogues based on the scenarios
defined in Phase 1.

3.2.1 Generation Methodology
To ensure the synthetic interactions achieved high
fidelity and temporal consistency, we implemented
the following architectural constraints:

Longitudinal Coherence via Recursive Injection:
We addressed the challenge of memory retention
across multi-visit timelines by implementing a re-
cursive context loop. The summarization of a “pre-
vious visit” (tn−1) was systematically injected into
the system prompt for the “current visit” (tn). This
mechanism ensured the synthetic health worker
retained critical context regarding the patient’s his-
tory, treatment adherence, and prior symptoms
across the generated timeline.

Persona and Sociolinguistic Constraints:
Agents were conditioned to simulate distinct
roles (Health Worker, Patient, Relative) with high
sociolinguistic realism. The prompts enforced
the use of colloquial English (Roman script)
characterized by natural disfluencies, code-mixing,
and cultural small talk (e.g., discussing weather,
transport costs). This approach mitigates the
sterility often found in synthetic medical corpora.

3.2.2 Domain-Specific Prompt Engineering
We designed specialized prompt architectures for
two critical medical domains namely Head and
Neck Cancer (HNC) and Cystic Fibrosis (CF) to
capture distinct epidemiological and cultural reali-
ties within the Indian healthcare context.

Domain 1: Head and Neck Cancer (HNC) The
HNC module was configured to address high-
prevalence risk factors specific to the Indian de-
mographic.
Instruction Architecture: The model was in-
structed to generate multi-turn dialogues (minimum
60 turns) with the following constraints:

*https://platform.openai.com/docs/overview

• Turn Granularity: Utterances were capped
at 25–40 words to enforce conversational pac-
ing.

• Information Revelation: A “gradual reve-
lation” constraint was applied, explicitly for-
bidding the immediate disclosure of all symp-
toms. The agent was forced to employ a step-
by-step inquiry method, requiring the Health
Worker to probe for details.

• Cultural Markers: Dialogues incorporated
references to region-specific carcinogens (e.g.,
khaini, gutkha, beedis) to enhance contextual
validity.

1. Risk Assessment: Identification of primary
risk factors, distinguishing between smoke-
less tobacco, smoked products (hookah), and
dual usage, while emphasizing the synergistic
toxicity of alcohol and tobacco.

2. Symptomatology: Application of the oncol-
ogy “Golden Rule” (symptoms persisting > 3
weeks). Red flags included painless neck
lumps, non-healing ulcers, and referred otal-
gia.

3. Diagnosis and Staging: Explanation of
biopsy (FNAC) and imaging (CT/MRI) proto-
cols. The agent simplified the TNM staging
system, contextualizing that 60–80% of In-
dian patients present at Stage III or IV.

4. Treatment Planning: A multidisciplinary
discussion covering surgery, radiation, and
chemotherapy (specifically Cisplatin-based
concurrent protocols).

5. Survivorship: Focus on post-treatment re-
alities, including dietary modifications (soft,
high-protein foods like khichdi), rehabilita-
tion, and absolute tobacco cessation.

Domain 2: Cystic Fibrosis (CF) The CF module
was tailored for low-resource settings, prioritizing
pediatric care and parental counseling strategies
suitable for the Indian healthcare infrastructure.
Instruction Architecture: The framework shifted
to a Triadic Interaction model (Doctor–Parent–
Child), characterized by:

• Role Dynamics: Parents were prompted to
provide vague initial history, necessitating ac-
tive probing by the clinician regarding stool
consistency and weight trajectories.
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• Environmental Realism: Inclusion of logisti-
cal dialogue (e.g., distance to tertiary centers,
cost of enzymes) to reflect socioeconomic con-
straints.

1. Initial Consultation: Differentiation of CF
from Tuberculosis (TB) and malnutrition.
Screening focused on meconium ileus, “salty
skin,” and failure to thrive.

2. Symptomatology: Highlighting the “Gold
Standard” triad: persistent wet cough, poor
weight gain, and steatorrhea (oily stools). The
agent addressed cultural misconceptions re-
garding “weak” children.

3. Resource-Aware Diagnosis: Prioritization of
the Sweat Test (referencing centers like CMC
Vellore/AIIMS) over cost-prohibitive genetic
panels.

4. Treatment Planning: Emphasis on afford-
able home-based management:

• Airway Clearance: Manual Chest Phys-
iotherapy (CPT) framed as a daily ritual.

• Nutrition: High-calorie indigenous diet
(ghee, jaggery, groundnuts).

• Pharmacotherapy: Utilization of generic
pancreatic enzymes (e.g., Panlipase).

5. Long-Term Management: Strategies to pre-
vent caregiver burnout and utilization of com-
munity support structures.

3.2.3 Schema Enforcement
To facilitate programmatic parsing and downstream
fine-tuning, the generation pipeline enforced a
strict JSONL schema for all outputs:

{" speaker ": "Patient/Parent", "date": "
YYYY -MM-DD", "dialogue ": "..."}

{" speaker ": "Health Worker", "date": "
YYYY -MM-DD", "dialogue ": "..."}

{" speaker ": "Patient 's Relative", "date
": "YYYY -MM-DD", "dialogue ": "..."}

3.3 Phase 3: Expansion & Human Validation
To mitigate hallucinations, we implemented a strict
Human-in-the-Loop (HITL) protocol (Wu et al.,
2022).

1. Multilingual Generation and Projection:
We executed the same generation prompts
across all considered languages to ensure lin-
guistic diversity and cultural consistency. In

addition, validated English and Hindi dia-
logues were translated into the remaining In-
dic languages (Telugu, Tamil, Bangla, Gu-
jarati, Kannada, Marathi, Dogri, and As-
samese) using the BhashaVerse framework†

(Mujadia and Sharma, 2025), followed by
native-speaker post-editing. This multilingual
projection not only enhanced dataset diver-
sity but also highlighted the limited generative
capabilities of existing language models for
low-resource Indic languages.

2. Expert Review: Dialogues were rated by
experts for cultural appropriateness, and
naturalness. Only samples with >80%
consensus were retained.

4 Task Data Formulation

Following the core dialogue generation, we synthe-
sized ground-truth data for the downstream tasks.
To ensure the reliability of this synthetic corpus, we
implemented a rigorous human validation protocol
before finalization.

4.1 Constructing Sub-task A
(Summarization/SCE)

Structured Clinical Extraction (SCE): We de-
fined a schema with 27 clinical fields as shown
in Appendix A. An extraction agent mapped dia-
logues to this JSON schema, capturing fields such
as chief_complaint, primary_diagnosis, and
management_plan.

Abstractive Summary: A separate agent gen-
erated concise text summaries to complement the
structured data, serving as a quick reference for
practitioners.

4.2 Constructing Sub-task B (QA)
We generated 12 distinct Question-Answer pairs
per dialogue, focusing on post-consultation af-
terthoughts.

• Content: Divided between Medical Clarifi-
cations (prognosis, risks) and Psycho-social
Concerns (financial impact, anxiety).

• Style: Questions mimic patient speech (collo-
quial, disfluent), while answers provide robust,
4-5 sentence explanations inferred from the
consultation logic.

†https://github.com/vmujadia/onemtbig

58

https://github.com/vmujadia/onemtbig


4.3 Human Validation and Filtering
To guarantee linguistic fidelity and clinical accu-
racy, we implemented a rigorous human valida-
tion protocol where every generated instance (men-
tioned above) was evaluated by three independent
language experts. Each expert assigned a quality
rating on a 0–100 scale; subsequently, a strict fil-
tering mechanism was applied to retain only those
data points achieving a mean score of ≥ 85, thereby
ensuring a high-quality benchmark free of halluci-
nations.

5 Dataset Statistics

The NLP4Health-2025 dataset is stratified by lan-
guage and task complexity. To simulate real-world
low-resource scenarios, the data distribution is
not uniform; high-resource Indic languages (e.g.,
Hindi, Tamil) have higher representation than low-
resource ones (e.g., Dogri, Assamese).

5.1 Data Partitioning
The dataset is partitioned into Training and Test-
ing sets. The Test set consists entirely of "held-
out" clinical scenarios; medical conditions and pa-
tient profiles that do not appear in the training set;
to evaluate the model’s generalization capabilities
rather than memorization.

5.1.1 Statistics for Sub-task A:
Summarization & Extraction

Table 1 details the distribution of dialogues avail-
able for the Clinical Summarization and Structured
Clinical Extraction (SCE) tasks. Each sample con-
sists of a Dialogue (Input), a Gold Summary (Out-
put), and a Gold JSON (Output).

5.1.2 Statistics for Sub-task B:
Patient-Centric QA

Table 2 presents the data for the Question Answer-
ing task. Unlike standard datasets, this includes
both medical fact retrieval and empathetic infer-
ence. Each dialogue in the training set is associated
with approximately 5 QA pairs.

6 Baselines and Results

To establish a performance benchmark, we evalu-
ated three state-of-the-art Instruction-Tuned (IT)
models in a Zero-Shot setting.

6.1 Model Descriptions
We selected models within the 1B to 3B parameter
range to align with the shared task’s goal of iden-

tifying resource-efficient solutions deployable on
consumer-grade hardware.

1. Gemma-3-1B-IT‡ (Team, 2025a) : A
decoder-only model from Google DeepMind.
It was selected for its large vocabulary size,
which provides superior coverage for Indic
scripts compared to Llama models.

2. Llama-3.2-1B-Instruct§ (Grattafiori et al.,
2024): A lightweight model optimized for
edge devices. This baseline tests the "Transfer
Learning" hypothesis—whether an English-
centric model can adapt to Indic languages
via few-shot prompting.

3. Qwen3-1.7B¶ (Team, 2025b) : A highly capa-
ble multilingual model from Alibaba Cloud,
known for its strong performance on bench-
marks like MMLU (Hendrycks et al., 2021)
and its ability to handle long contexts.

Table 3 presents the zero-shot performance of the
baseline models, averaged across all 10 languages.

6.2 Task Prompts

We designed specific system and user prompts to
strictly enforce output formats (JSON vs. Text) and
cross-lingual requirements (Indic Input → English
Output). The prompts utilize placeholder variables
(e.g., {lang}, {template}) which are dynamically
populated during inference.

6.2.1 Sub-task B: Question Answering
For the QA task, the model is instructed to act as
a strictly factual, multilingual assistant. Detailed
formats are shown in B

System Instruction:
You are a multilingual medical conver-
sation assistant. The following doc-
tor–patient dialogue and question are
written in {lang}. Read the conversa-
tion carefully and provide a precise, fac-
tual answer to the question based only on
the information present in the dialogue.
Respond only in {lang} and keep your
answer concise and clear. With format
Answer:

‡https://huggingface.co/google/gemma-3-1b-it
§https://huggingface.co/meta-llama/Llama-3.

2-1B-Instruct
¶https://huggingface.co/Qwen/Qwen3-1.7B
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Split English Marathi Kannada Gujarati Telugu Tamil Bangla Hindi Assamese Dogri

Dialogues (Train) 7106 3624 6629 6169 6629 5155 6153 6204 2200 2526
QnA (Train) 95696 8916 11496 5004 26352 9092 5064 13420 204 1548

Dialogues (Dev) 100 100 100 100 100 100 100 100 100 100
QnA (Dev) 1632 1200 1200 1200 1200 1200 1200 1232 1200 1200

Dialogues (Test) 87 85 28 52 68 64 78 86 65 82
QnA (Test) 2952 2040 672 1248 1632 1536 1872 2144 1560 1968

Table 1: Sub-task A Statistics. Distribution of doctor-patient dialogues and Question-Answer pairs across
languages.

Split English Marathi Kannada Gujarati Telugu Tamil Bangla Hindi Assamese Dogri

Dialogues (Train) 7106 3624 6629 6169 6629 5155 6153 6204 2200 2526
KnV (Train) 5808 2390 2774 3484 3759 2246 2503 5024 755 129
Text (Train) 7104 3624 6629 6168 6628 5155 6151 6201 2200 2397

Dialogues (Dev) 100 100 100 100 100 100 100 100 100 100
KnV (Dev) 100 100 100 100 100 100 100 100 100 100
Text (Dev) 100 100 100 100 100 100 100 100 100 0

Dialogues (Test) 87 85 28 52 68 64 78 86 65 82
KnV (Test) 87 85 28 52 68 64 78 86 65 82
Text (Test) 87 85 28 52 68 64 78 86 65 0

Table 2: Sub-task B Statistics. Distribution of Summary KnV and Text value pairs across languages.

Context: {dialogue_text}

User Input:
Question: {question}

6.2.2 Sub-task A: Summarization and
Extraction

We employed two distinct prompt strategies for
this sub-task to handle structured data extraction
and narrative summarization separately. Detailed
formats are shown in B

1. Key Notes & Values (KnV) Extraction (JSON)
This prompt enforces a strict schema adherence,
requiring the model to translate content from the
source language to English and map it to specific
JSON keys.

System Instruction:
You are a medical summarization as-
sistant. You will read a full doc-
tor–patient–family dialogue in {lang}
and generate a Key Notes & Values
(KnV) summary in English in JSON
format, strictly following the provided
JSON template {template}.

Instructions:

• Language Handling: Source dia-
logue is in {lang}. Output sum-
mary must be entirely in English.

• JSON Handling: Populate each
key with meaningful information
derived from the dialogue. If a
value cannot be found, assign it
null. Do not skip keys.

• Output Style: Valid JSON. Para-
phrase naturally; do not copy verba-
tim.

• Example: If patient’s age is men-
tioned: "Age": "45". If not:
"FinancialSupport": null.

User Input:
Conversation (in {lang}):
{dialogue_text}

2. Comprehensive Text Summarization This
prompt guides the model to generate a professional,
long-form ( 800 words) clinical summary in En-
glish, inferring headings dynamically based on the
conversation flow.

System Instruction:
You are a medical summarization as-
sistant. You will read a full doc-
tor–patient–family dialogue in {lang}
and produce a comprehensive summary
in English.

Instructions:

• Must include the medical condition,
patient name, gender, age, and na-
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tive place. (e.g., “ Throat Cancer,
Post Radiotherapy; Survivorship;
Rakesh Sharma, Male, 45, Mum-
bai”).

• Content Structure: Do not use
fixed headings. Infer headings natu-
rally from conversation themes. Un-
der each heading, list key points as
bullet points.

• Coverage Requirements:
– Follow-up schedules, monitor-

ing, and tests.
– Nutritional care (swallowing

care, feeding tubes)
– Oral hygiene
– Physical rehabilitation (trismus

management, swallowing exer-
cises)

– Emotional support (counseling,
family involvement).

– Medication adherence and
missed-dose guidance.

– Lifestyle modifications and
known side effects and approxi-
mate time of resolution.

– Financial support and govern-
ment schemes.

– Logistics (relocation, tele-
consultation).

• Tone & Length: Compassionate,
factual, patient-centered. Approxi-
mately 800 words.

User Input:
Conversation (in {lang}):
{dialogue_text}

Table 4 summarizes the performance of partici-
pating teams.

7 Evaluation Setup

7.1 Metrics
• Sub-task A (SCE): We used Key-Value F1

(KnV-F1) and Exact Match to evaluate JSON
field accuracy.

• Sub-task A (Summarization): Assessed via
ROUGE-L (Ganesan, 2018), BERTScore
(Zhang et al., 2020) (xlm-roberta-large)
(Conneau et al., 2019), and COMET.

• Sub-task B (QA): Evaluated using F1-score
and Semantic Similarity.

8 Participating Systems

We received 9 submissions from 6 teams. Key
methodologies included:

Team Zaid (TCS Research) (Zaid et al., 2025)
utilized Qwen-1.5B Instruct with 4-bit quantiza-
tion and LoRA (rank 8). They introduced a "Field-
by-Field Extraction" pipeline, treating JSON gener-
ation as a series of independent QA tasks to prevent
syntax errors, achieving a BERTScore-F1 of 0.83
in summarization.

Team C-DAC (Mumbai) (Shinde et al., 2025)
achieved the highest semantic scores (BERTScore
0.93) using Gemma2-2B with LoRA (rank 16).
Their "Token-Aware Chunking" strategy handled
long contexts effectively, and they employed Con-
strained Decoding to ensure strict JSON validity.

Team Samvad (Kumar et al., 2025) adopted a
hybrid approach: mT5 for summarization and a
RAG pipeline (using intfloat/e5-large + Sar-
vam 3B) for QA. Their "Query Validation Layer"
helped detect hallucinations, yielding the highest
QA F1 scores for Hindi (0.75) and Bangla (0.78).

Team KV (Ulli and Mondal, 2025) focused on
modularity with Qwen3-1.7B (QLoRA). They
used task-specific adapters for QA and Extraction.
By restructuring the dataset into context-question-
answer triples, they achieved a KnV-F1 of 0.93 in
Marathi.

Team Moutushi Roy (Roy and Das, 2025) pro-
posed a unified framework using mT5-base. While
their single-prompt approach for all tasks was effi-
cient, it struggled with the complex schema of the
SCE task compared to decoder-only models.

9 Results and Analysis

Analysis: The results indicate that decoder-only
models (Qwen, Gemma) significantly outperform
encoder-decoder architectures (mT5) on the Struc-
tured Clinical Extraction (SCE) task. However,
for open-ended Question Answering in native lan-
guages, Retrieval-Augmented Generation (RAG)
systems (Team Samvad) provided superior factual
grounding, reducing hallucinations compared to
pure parametric generation.

10 Conclusion

The Shared Task on Patient-Centric Question An-
swering has demonstrated that efficient, multilin-
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Model QA Task Summarization Task Clinical Extraction (KnV)

F1 BERTScore ROUGE-L BERTScore KnV F1 Exact Match

Gemma-2-2B-IT 0.52 0.84 0.15 0.81 0.28 0.03
Qwen2.5-1.5B-Instruct 0.45 0.84 0.13 0.78 0.29 0.04
Llama-3.2-1B-Instruct 0.43 0.84 0.06 0.73 0.13 0.00

Table 3: Zero-Shot Baseline Results. Scores are averaged across all 10 target languages. Gemma-2-2B demonstrates
the strongest overall performance, particularly in generation tasks (QA and Summarization), likely due to its superior
tokenizer support for Indic scripts. Qwen2.5 shows competitive performance in structured extraction (KnV), while
Llama-3.2 struggles with the multilingual generation requirements.

Team Model Architecture Summ. BERTScore QA F1 (Avg) KnV F1

Team C-DAC Gemma2-2B + LoRA 0.93 0.70 0.88
Team KV Qwen3-1.7B + QLoRA 0.80 0.65 0.93
Team Samvad mT5 / Sarvam 3B (RAG) 0.81 0.78 -
Team Zaid Qwen-1.5B + Pipeline 0.83 0.67 0.72
Team Moutushi Roy mT5-base 0.78 0.55 0.13

Table 4: Comparative performance of participating teams across key metrics. The results highlight a trade-off
between structured extraction capabilities (favored by decoder-only models like Qwen) and extractive QA (favored
by RAG pipelines).

gual AI is feasible for complex medical domains.
By releasing the NLP4Health-2025 Dataset and
benchmarking lightweight models, we highlight
the potential of SLMs to bridge the linguistic di-
vide. Future iterations will focus on expanding
the schema and incorporating direct feedback from
patient trials.
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A Appendix

B Formats of Dialogues, QnA, Summary Text and Summary KnV

Clinical Dialogue Data (JSON)

[
{

"speaker": "Patient",
"date": "",
"dialogue": "Hi doctor , I'm Rakesh Sharma , 48, from Bandra. I visited

today because a week of hoarseness with throat irritation and dry
throat. I smoke weekends , drink occasionally , and my dental hygiene 's
not great."

},
{

"speaker": "Health Worker",
"date": "",
"dialogue": "Nice to meet you , Rakesh. Could you confirm your age and

share details on tobacco , alcohol use , and current symptoms beyond
hoarseness and throat irritation ?"

},
{

"speaker": "Patient",
"date": "",
"dialogue": "Sure , I'm 48, active smoker on weekends , about two to three

sticks , maybe once a week. Alcohol twice a week , mostly beer. No fever
yet , no weight loss , no neck lump."

},
{

"speaker": "Health Worker",
"date": "",
"dialogue": "Thanks for sharing. This visit is exam -driven. If nothing

suspicious shows , we may monitor , but today we focus on side effects
from planned treatment , like mouth sores and fatigue , and how to
manage them."

},
{

"speaker": "Patient",
"date": "",
"dialogue": "I see. So if during radiotherapy my mouth gets very sore , or

I feel exhausted most days , what should I do now? I'm worried about
eating and keeping fluids going."

}
...
...
...
{

"speaker": "Health Worker",
"date": "",
"dialogue": "You 're welcome. Take care , and if anything changes , call or

message. We'll keep the plan flexible and patient -centered; good luck
for your treatment journey ahead."

}
]

Patient Centric Question Answering (QnA)

{
"questions": [

{
"question": "Doc , you mentioned ulcers usually peak around weeks 2 to 3,

um, what happens if they don 't get better after that? do you ever
pause or change radiotherapy then?",

"answer": "Usually we don 't pause radiotherapy just because of mouth
ulcers , we try to manage them with better pain control , mouth care ,
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and nutrition. If the ulcers are severe or you can 't swallow or keep
fluids down , we'll bring you into the MDT to adjust the plan or

offer temporary supportive measures. The goal is to keep treatment
going safely while you heal as much as possible. We'd also bring in
dental and nutrition input to prevent malnutrition ."

},
{

"question": "What about foods and m e a l s are there specific textures or
recipes that are easiest to swallow and still keep up the protein

?",
"answer": "Yes , soft stuff like mashed potatoes , yogurt , smoothies , and

porridge are good , and you can add protein shakes between meals. If
you don 't like one option , we can mix it with others so it's easier
to swallow. We'll also tailor textures to your mouth comfort as the
treatment goes on. If you need , we can hook you up with a
nutritionist for a personalized plan."

},
{

"question": "If my mouth pain makes swallowing pills hard , can I always
use liquids or dissolvable meds , and are there downsides?",

"answer": "We can switch to liquid forms or dissolvable meds and use
topical gels to numb the area when needed. Acetaminophen remains
okay as needed for pain. We'll adjust dosages to fit your kidney
function and other meds you 're taking. The main aim is to keep you
comfortable and hydrated without causing more irritation ."

},
{

"question": "With fatigue , can I actually do light activity , like a
short walk , and how should I balance rest and activity?",

"answer": "Yeah , light activity is usually fine if you feel up to it,
like 10-15 minutes of walking. Start slow and stop if you get dizzy
or short of breath , and listen to your body. Try to rest before
fatigue peaks and spread activities through the day. We can tailor
the plan with a rehab or nutritionist if you want."

},
{

"question": "For the neck skin , should I avoid certain fabrics or
barrier creams before sessions , and what if it starts itching?",

"answer": "Keep it simple: loose cotton clothing is best , avoid metal
jewelry and rough fabrics. We can use barrier creams if redness
develops , but don 't apply strong creams right before a session
unless we say so. Avoid fragrances and harsh soaps that irritate the
skin. If itching starts , tell us early so we can adjust care."

}
...
...
...
{

"question": "What are the long -term risks after finishing radiotherapy ,
like thyroid issues or swallowing changes , and how will we monitor
them?",

"answer": "There can be late effects like dry mouth , swallowing changes ,
or thyroid problems. W e ll schedule follow -ups to watch for these
and test thyroid function when needed. If new symptoms pop up , tell
us right away so we can adjust care. Ongoing surveillance is part

of the plan after treatment ends."
}

]
}

Summary Text

Presenting symptoms and risk factors
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• About one week of hoarseness with throat irritation, dry throat, and intermittent odynophagia
to solids.

• No fever, weight loss, night sweats, or neck lump.

• Risk factors: weekends-smoking beedi, alcohol 2–3 times weekly, poor dental hygiene,
spicy foods, sugary drinks; father with oral cancer; HPV vaccination status unclear; two
sexual partners in the past year.

Initial assessment, diagnostic approach, and planning

• Exam-driven approach: imaging or biopsy reserved only if the exam reveals suspicious
findings.

• HPV testing discussed but not performed today; emphasis on tobacco/alcohol risk.

• Imaging: MRI preferred to minimize radiation; CT if MRI not feasible or urgent.

• Biopsy: possible under local anesthesia if lesion accessible; HPV testing timing discussed
separately.

• If exam is non-suspicious: no immediate imaging/biopsy; pathology results expected in 3–5
days to guide next steps.

...

...

...

Multidisciplinary team and planning process

• MDT involvement to finalize a written plan, MRI/biopsy timelines, and a coordinated
treatment schedule (TNM staging guiding surgery, radiotherapy, and/or chemotherapy).

• Written plan with timelines and direct contact details to be shared with patient and spouse;
MDT discussions to determine precise sequencing.

Patient and family perspective

• Patient feels relieved by a clear plan; wife will support quitting, reduce home cues, arrange
transport, and attend appointments.

• Telehealth and transport support anticipated for monsoon travel; NGO/government subsidies
discussed.

• Written plan and imaging dates to be shared; diaries encouraged; MDT to determine
steps/sequencing.

• Navigator explains subsidies; insurance questions addressed.

...

...

...

Key takeaways
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• Core focus: tobacco/alcohol cessation, dental care, and nutrition with navigator-led support.

• Diagnostic pathway is exam-driven; MRI if suspicion arises; biopsy and HPV testing guided
by exam findings.

• Staging and treatment planning depend on pathology/imaging (TNM), guiding surgery,
radiotherapy, and chemotherapy decisions.

• If cancer is confirmed, sequencing typically involves surgery then radiotherapy (with possible
concurrent chemotherapy); early rehabilitation for speech/swallowing planned.

• MDT will finalize timelines; written plan and family involvement emphasized; ongoing
support, reminders, and teleconsult options arranged to accommodate travel and monsoon
conditions.

• Red flags for home: fever >100.4 F, increasing neck pain/swelling, vision changes, uncon-
trolled vomiting, or inability to swallow liquids for >1 day—seek urgent help.

Summary Key-Value (KnV)

[
{

"patient_identifiers": null ,
"demographics": {

"age": 48,
"sex": "Male"

},
"visit": {

"date_time": null ,
"type": "outpatient exam -driven radiotherapy planning consultation"

},
"chief_complaint": "Week -long hoarseness with throat irritation and dry

throat.",
"onset_duration": "1 week",
"symptom_description": "Hoarseness with throat irritation and dry throat; no

fever , no weight loss , no neck lump.",
"aggravating_factors": "Tobacco smoking on weekends; smoking may worsen

symptoms.",
"relieving_factors": null ,
"associated_symptoms": "No fever; no weight loss; no neck lump.",
"past_medical_history": null ,
"past_surgical_history": null ,
"family_history": null ,
"current_medications": null ,
"allergies": null ,
"social_history": "Active weekend smoker (~2 3 cigarettes per session ,

about once a week). Alcohol twice a week (beer). Poor dental hygiene.",
"functional_status": null ,
"vital_signs": null ,
"examination_findings": null ,
"investigations": null ,
"assessment_primary_diagnosis": null ,
"differential_diagnoses": null ,
"management_plan": "Mouth care: gentle care , salt -water rinses , bland soft

foods , hydration; topical anesthetics if needed; dental clearance as
required. Pain management with liquid/dissolving meds or topical gels;
acetaminophen as needed with dose adjustments for kidneys. Nutrition
support: protein -rich soft foods , smoothies , protein shakes between
meals; avoid very hot or citrus foods; nutritionist guidance; gentle
exercise as tolerated. Radiation dermatitis: loose cotton clothes , mild
soaps , pat -dry , fragrance -free; barrier creams if redness develops;
contact if blisters/oozing. Swallowing support: monitor swallowing;
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consider speech/swallowing therapy if needed. Travel considerations:
plan short , frequent trips; teleconsults on non -visit days. Hydration
reminders with navigator/spouse; saliva substitutes if needed. Feeding
plan or thickened fluids if liquids difficult; coordinate with nutrition
services. Regular MDT planning; written plan with imaging/biopsy

schedule; telecon with wife included. Education on potential side
effects: ulcers peak weeks 2 3 ; maintain nutrition; adjust plan if
eating becomes difficult. Warn about self -prescribing antibiotics;
inform team of meds.",

"tests_referrals_planned": "MRI or biopsy if exam raises suspicion;
scheduled within about 1 week.",

"follow_up_plan": "Written plan provided; MDT follow -up; teleconsults
available; next imaging/biopsy dates after MDT decision; caregiver plan
with wife included.",

"chronology_response_to_treatment": "Ulcers usually worsen mid -treatment ,
peak around weeks 2 3 , then improve; adequate nutrition and pain
control help prevention .",

"patient_concerns_preferences_consent": "Wants practical guidance to manage
side effects , hydration , nutrition; consent to teleconsults with wife;
prefers written plan and caregiver involvement .",

"safety_issues_red_flags": "Urgent care if fever >100.4 F, new neck swelling
, severe breathing difficulty , or inability to drink liquids for >1 day
.",

"coding_terms": null ,
"conversation_metadata": {

"timestamps": null ,
"speaker_labels": null

}
}
]
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Abstract
This paper describes our submission to the
NLP-AI4Health 2025 Shared Task on multi-
lingual clinical dialogue summarization and
structured information extraction. Our system
is based on Qwen-1.5B Instruct fine-tuned with
LoRA adapters for parameter-efficient adapta-
tion. The pipeline produces (i) concise English
summaries, (ii) schema-aligned JSON outputs,
and (iii) multilingual Q&A responses. The
Qwen-based approach substantially improves
summary fluency, factual completeness, and
JSON field coverage while maintaining effi-
ciency within constrained GPU resources.

1 Introduction

The Shared Task on multilingual clinical dialogue
summarization challenges systems to process doc-
tor–patient conversations across ten languages and
output three modalities: concise English sum-
maries, structured clinical records in JSON, and
multilingual Q&A responses. 1 This task com-
bines the difficulties of cross-lingual understand-
ing, clinical reasoning, and controlled generation
under strict factual constraints.

Large language models (LLMs) have shown
remarkable progress in summarization and ques-
tion answering; however, their direct application
to multilingual and domain-specific clinical data
remains challenging due to limited coverage of
low-resource Indic languages and high computa-
tional costs. To address these issues, we present
a LoRA-adapted Qwen-1.5B (Hu et al., 2022;
Alibaba Cloud, 2024) pipeline optimized for fac-
tual summarization and schema-based information
extraction. LoRA fine-tuning enables parameter-
efficient adaptation to the clinical domain while
preserving multilingual capabilities. Our design
emphasizes factual precision, cross-lingual gener-
alization, and resource efficiency, making it well-
suited for constrained GPU environments.

1https://nlpai4health.com/

Unlike end-to-end systems, our modular infer-
ence pipeline explicitly separates summarization,
structured extraction, and multilingual question an-
swering. This design improves controllability, out-
put validity, and interpretability — essential aspects
for real-world healthcare NLP applications where
faithfulness and consistency are critical.

2 Related Work

Multilingual Clinical NLP. Research on multi-
lingual clinical text processing has expanded with
initiatives such as the MEDIQA and AI4Health
shared tasks (Abacha et al., 2023), focusing on
summarization and clinical question answering.
While models like mT5 (Xue et al., 2021) and
BLOOMZ (Muennighoff et al., 2023) have demon-
strated strong multilingual transfer, their large size
poses practical limitations for domain-specific fine-
tuning. Prior work in clinical summarization pri-
marily targets English datasets, leaving a gap in
low-resource language coverage.

Parameter-efficient Fine-tuning. LoRA (Low-
Rank Adaptation) (Hu et al., 2022) and related
methods such as adapters and prefix-tuning have
emerged as efficient alternatives to full model
training. These approaches reduce memory and
compute requirements while achieving near-parity
with full fine-tuning. In multilingual and clinical
contexts, LoRA-based tuning has been shown to
retain linguistic diversity and factual grounding
(Dettmers et al., 2023).

Model Choice: Qwen-1.5B. The Qwen family
of models (Alibaba Cloud, 2024) is trained on a
diverse multilingual corpus covering more than 25
languages, including several Indic scripts, which
makes it well suited for cross-lingual healthcare ap-
plications. Additionally, the shared task imposed a
constraint prohibiting the use of models larger than
3B parameters, ruling out more resource-intensive
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multilingual architectures such as mT5-XL, GPT-
style models, or clinical foundation models exceed-
ing that limit. Under these restrictions, Qwen-1.5B
offered an advantageous balance between multilin-
gual coverage, parameter efficiency, and practical
fine-tuning feasibility—allowing full participation
in all subtasks while remaining computationally
affordable and within competition rules.

3 System Architecture and Approach

Figure 1: Overview of the multilingual summarization
and extraction pipeline. The pipeline includes English
summarization, structured information extraction, and
multilingual Q&A generation.

Figure 1 illustrates the modular inference design.
Each dialogue passes through sequential stages:
English summarization, structured field extraction,
and multilingual Q&A generation.

3.1 Model Configuration
We used Qwen-1.5B Instruct quantized to 4-bit
NF4 precision via BitsAndBytes (Dettmers et al.,
2023). LoRA adapters were trained with rank
r = 8, α = 32, dropout 0.05, and target modules
q_proj and v_proj. Training used the AdamW op-
timizer (2×10−4 learning rate, cosine decay). Gra-
dient checkpointing and mixed precision allowed
training within 60GB RAM and 32 V100 GPUs.

Training Details. Fine-tuning was conducted for
one epoch due to strict time and hardware con-
straints. Despite this, validation showed rapid con-
vergence, indicating effective domain adaptation.

3.2 Inference Pipeline
Each language’s dialogues were processed indepen-
dently with checkpoint resumption support. The
inference proceeds through:

1. Summary Generation: Produce an English
summary ending with sentinel token «END».

2. Structured Extraction: Populate each JSON
field by querying the model separately.

3. Multilingual Q&A: Generate answers in the
dialogue’s original language.

Greedy decoding (do_sample=False) ensures sta-
ble, deterministic outputs across runs.

3.3 Prompt Design for Inference

The system employs role-based prompts to en-
sure consistency and interpretability across all sub-
tasks. Each subtask—summary generation, struc-
tured JSON extraction, and multilingual Q&A—
uses a distinct prompt template that follows a clear
System–User dialogue structure. This approach im-
proves controllability, reduces hallucination, and
enables multilingual conditioning during inference.

Summary Prompt

Task Objective: Generate a concise English sum-
mary highlighting the main clinical findings.
System:
You are a clinical summarization assistant.
Write a fluent English summary focusing
on diagnosis, symptoms, investigations, and
management plan. Write 6–10 sentences. End your
summary with the token «END».

User:
Dialogue: [doctor–patient conversation]
Write the summary and end with «END».

JSON Extraction Prompt

Task Objective: Extract structured clinical infor-
mation field-by-field in English while maintaining
schema validity.
System:
You are a concise clinical information
extraction assistant. Answer in English only. If
the information is not present, answer exactly
“N/A”. Do not add explanations.

User:
Summary: [summary]
Dialogue: [conversation]
Question: [specific field]
Answer concisely.

Multilingual Q&A Prompt

Task Objective: Generate factual, context-aware
answers in the same language as the user’s ques-
tion.
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System:
You are a multilingual clinical assistant.
Answer in the same language as the user’s
question. Be concise, factual, and helpful.

User:
Dialogue: [doctor–patient conversation]
Question ([language]): [user query text]

Example Multilingual Q&A Outputs:

Language Example Q–A Pair

English Q: What is the diagnosis?
A: Throat infection with mild laryngitis.

Hindi Q: Rogi ki mukhya shikayat kya hai?
A: Pichhle do mahine se gale mein kharash
aur jalan.

Tamil Q: Noyaliyin parisothanai mudivugal enna?
A: CT scan kural kuruthil veekkam kaattugi-
rathu.

Table 1: Examples of multilingual Q&A outputs pro-
duced by the model.

3.4 Field-by-Field JSON Extraction

Early experiments with single-shot JSON genera-
tion—where the model was prompted to fill the en-
tire schema in one response—consistently failed to
produce usable outputs. Most fields were returned
as null or empty strings, and the overall structure
often violated JSON syntax. This occurred because
large language models tend to lose schema consis-
tency across multiple nested fields when generating
long structured outputs.

To address this issue, we adopted a field-by-field
extraction strategy. Each JSON field was refor-
mulated as an independent question–answer task,
allowing the model to focus on one piece of infor-
mation at a time. For example:

Q: What is the patient’s chief complaint?
A: Persistent throat discomfort and hoarseness for
two months.

Once the model generated an answer for each
field, a lightweight Python post-processing script
automatically reconstructed the full JSON object.
Each field’s text response was inserted into its cor-
responding key, ensuring schema validity and non-
null entries. If the answer contained phrases such
as “N/A,” “not mentioned,” or was empty, the script
defaulted that field to null.

This modular approach improved the complete-
ness and consistency of structured outputs, en-
abling selective regeneration of missing or low-
confidence fields without re-running the entire in-
ference pipeline. By decoupling schema adherence

from natural language reasoning, the system pro-
duced well-formed, information-rich JSON records
across all ten languages.

Field Example Q-A Pair (≤12 words)

Chief Complaint Q: What is the patient’s chief
complaint?
A: Persistent throat discomfort
and hoarseness for two months.

Past Medical History Q: Summarize past medical his-
tory.
A: No major illnesses reported
previously.

Management Plan Q: Summarize management plan.
A: Schedule biopsy and CT scan;
smoking cessation counselling.

Table 2: Example question–answer pairs used for field-
level JSON extraction.

4 Dataset and Preprocessing

The shared task organisers provided the official
multilingual clinical dialogue dataset, which in-
cludes training, development, and test splits for
all ten languages: English, Hindi, Gujarati, Tamil,
Telugu, Marathi, Kannada, Bangla, Assamese, and
Dogri.2 Each instance consists of: (i) a multi-turn
doctor–patient conversation in the native language,
(ii) an English summary, and (iii) a structured
key–value JSON record aligned with the shared
task schema.

The organisers released predefined splits, and no
external data sources were used. Since the task is
structured as a closed evaluation, the exact com-
position of each split (e.g., number of dialogues
per language, token counts, and proportion of long
vs. short conversations) was not publicly disclosed.
We therefore report results directly on the official
test set provided.

Preprocessing. Dialogues were normalised by
removing extraneous whitespace and resolving en-
coding inconsistencies. No translation, romani-
sation, or synthetic augmentation was applied to
preserve original linguistic structure across all In-
dic scripts. The JSON annotations were left un-
changed, and summaries were retained verbatim.
All inputs were passed to the model using task-
specific prompts described in Section 3.3.

2https://www.codabench.org/competitions/10527/
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5 Experimental Setup and Results

The system was evaluated on the official NLP-
AI4Health 2025 multilingual clinical dialogue test
set across three subtasks: (i) Question Answering
(QnA), (ii) Text Summarization (Summary_Text),
and (iii) Key–Value Information Extraction (Sum-
mary_KNV). Performance was assessed using task-
appropriate metrics as specified by the organizers.

5.1 Evaluation Metrics

• QnA: Evaluated using macro F1 score, mea-
suring overlap between predicted and gold-
standard answers.

• Summarization: Evaluated with both
ROUGE-L (lexical overlap) (Lin, 2004) and
BERTScore-F1 (semantic similarity) (Devlin
et al., 2019), capturing fluency and factual
alignment.

• Structured Extraction: Evaluated using
field-level F1 (KNV F1), reflecting accuracy
of key–value pairs in the generated JSON
schema.

5.2 Quantitative Results

Figure 2: Average task-wise scores (F1, BERT-F1,
COMET) across subtasks.

Figure 2 provides a comparative overview of
task-level performance. Overall, the system
achieves strong semantic and factual consistency,
particularly in summarization, despite being trained
for a single epoch under hardware constraints.

5.3 Result Interpretation

The results in Table 3 reveal several consistent
trends across subtasks:

Language QnA F1 ROUGE-L BERT-F1 KNV F1

Marathi 0.23 0.17 0.81 0.30
Kannada 0.47 0.17 0.83 0.27
Gujarati 0.50 0.17 0.84 0.27
English 0.67 0.19 0.84 0.34
Assamese 0.53 0.18 0.83 0.29
Telugu 0.35 0.18 0.83 0.26
Tamil 0.44 0.18 0.84 0.30
Bangla 0.33 0.19 0.82 0.29
Hindi 0.62 0.18 0.84 0.34

Macro Avg. 0.460 0.178 0.830 0.296

Table 3: Evaluation results across languages and sub-
tasks.

(i) QnA Performance. Macro F1 of 0.46 demon-
strates that the model effectively interprets clini-
cal dialogues to answer factual questions. Perfor-
mance is highest in English (0.67) and Hindi (0.62),
where both training coverage and lexical similarity
with the base model’s pretraining data are greater.
Lower F1 in Marathi and Bangla reflects limited
exposure to these scripts and domain-specific vo-
cabulary.

(ii) Summarization. ROUGE-L (0.178 macro)
is modest due to lexical variation between gener-
ated and reference summaries. However, BERT-F1
(0.83) shows strong semantic alignment, indicating
that generated summaries convey equivalent mean-
ing despite phrasing differences. This demonstrates
that LoRA fine-tuning improved factual retention
even within a single training epoch.

(iii) Structured JSON Extraction. The field-
wise extraction framework achieved an F1 of 0.296.
Although numerically lower, it produced valid,
schema-compliant JSONs—something that single-
shot generation failed to achieve. Errors primar-
ily arose from implicit answers or non-explicit
mentions in dialogues (e.g., inferred symptoms).
Nonetheless, modular regeneration allowed selec-
tive re-runs for incomplete fields, improving robust-
ness.

(iv) Language Variability. Languages with
higher representation in Qwen’s pretraining cor-
pus (e.g., English, Hindi) showed superior per-
formance, whereas low-resource languages, such
as Assamese and Bangla, exhibited reduced accu-
racy. Still, performance degradation is moderate,
confirming strong multilingual generalization from
Qwen’s tokenizer and LoRA’s efficient parameter
sharing.
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(v) Cross-Task Insights. Semantic metrics
(BERT-F1, COMET) are consistently higher than
lexical ones (ROUGE-L), suggesting that the model
captures meaning more reliably than exact phras-
ing. This aligns with the system’s design objec-
tive—favoring factual and conceptual correctness
over surface-form overlap.

Despite being trained for only one epoch, the
model maintained factual consistency and struc-
tural completeness across multiple languages and
subtasks.

6 Discussion

The main challenges included limited GPU avail-
ability, frequent checkpoint interruptions, and im-
balanced data across low-resource languages (Do-
gri, Assamese). The modular field-by-field ap-
proach significantly improved schema coverage
and recoverability. Despite training for only one
epoch, the system demonstrated strong multilin-
gual generalization and stable performance across
subtasks.

Limitations

While the proposed system demonstrates strong
multilingual generalization and stable performance
across subtasks, several limitations remain. First,
due to the shared task constraints, our fine-tuning
was restricted to the Qwen-1.5B model, which is
significantly smaller than other state-of-the-art mul-
tilingual LLMs. Larger models may provide im-
proved contextual reasoning, but were not permit-
ted by the organizers.

Second, the model was trained for only a single
epoch because of time and hardware constraints,
limiting its ability to fully learn domain-specific
patterns present in the clinical dialogues. Addi-
tional epochs or curriculum-based training could
further improve robustness, especially for rare
symptoms and long-context dependencies.

Third, although the field-by-field JSON extrac-
tion strategy improved schema adherence, it also
introduced dependency on handcrafted prompts
and increased inference time. The method strug-
gles when the dialogue contains implicit informa-
tion not explicitly stated in the text. A more ad-
vanced reasoning-aware extractor could further re-
duce these errors.

Fourth, performance varies substantially across
languages. High-resource languages (e.g., English,
Hindi) benefit from strong tokenizer support and

pretraining coverage, while low-resource scripts
(e.g., Assamese, Bangla, Dogri) experience re-
duced F1 scores. We did not deploy additional
techniques such as adapter fusion, multilingual
alignment training, or cross-lingual consistency ob-
jectives, which could mitigate this gap.

Finally, our quantitative evaluation is limited to
the official shared task metrics. Zero-shot and few-
shot baselines were not included due to time con-
straints, preventing a broader comparison against
alternative prompting strategies.

7 Conclusion

This work presented a multilingual clinical dia-
logue summarization and structured information ex-
traction system built on Qwen-1.5B with parameter-
efficient LoRA fine-tuning. The system was de-
signed to operate under constrained computational
resources while maintaining high factual precision
and multilingual consistency across ten Indic and
non-Indic languages.

Through modular task decomposi-
tion—summary generation, field-wise JSON
extraction, and multilingual question answer-
ing—the approach demonstrated strong generaliza-
tion across diverse scripts and linguistic structures.
The role-based prompting framework ensured
consistent output formats, while the field-by-field
extraction strategy provided resilience against
schema violations that typically hinder end-to-end
structured generation.

Quantitative evaluation confirmed the effective-
ness of this design: summarization achieved high
semantic alignment (BERT-F1 ≈ 0.83), QnA ex-
hibited competitive factual accuracy (macro F1
= 0.46), and JSON extraction maintained struc-
tural validity with balanced key–value F1 (0.296).
Despite limited fine-tuning time and single-epoch
training, the model achieved robust multilingual
behavior and stable inference quality.
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Abstract

This paper describes a production minded mul-
tilingual system built for the NLP-AI4Health
shared task, designed to produce concise, med-
ically accurate summaries and patient friendly
answers for Head and Neck Cancer (HNC) and
Blood Donation. We finetuned Gemma2-2B
under a strict model size constraint (<3B pa-
rameters) using parameter efficient adaptation
(LoRA) and practical engineering to handle
long dialogues, code mixing, and multilingual
scripts. The pipeline couples careful prepro-
cessing, token aware chunking, and constrained
decoding with lightweight retrieval and verifi-
cation steps. We report per language quantita-
tive metrics and provide an analysis of design
choices and operational considerations for real
world deployment.

1 Introduction

Effective patient centered healthcare communica-
tion requires language technologies that are accu-
rate, easy to use, and understand the context. These
systems must work well across different languages
and regional varieties, including many low resource
languages. Real clinical conversations are often
multi-turn, mix different languages, are brief or
telegraphic, and include medical terms and numeric
values. All these factors make automatic summa-
rization and question answering challenging. The
NLP-AI4Health 2025 shared task (NLP-AI4Health,
2025) focuses on generating patient-friendly sum-
maries and answers from multi turn dialogues in
ten languages. This task not only tests language un-
derstanding but also the ability to convey technical
information clearly and appropriately for patients.

Our system uses Gemma2-2B (Gemma Team
et al., 2024) as a multilingual backbone and focuses

on three main goals: (1) stay within the model
size limit of 3B parameters using efficient tuning
methods, (2) reduce factual errors through careful
preprocessing, constrained decoding, and filtering,
and (3) handle long multi turn dialogues effectively
using token aware chunking and smart merging
strategies.

We selected Gemma2-2B (Gemma Team et al.,
2024) because it delivers strong multilingual, multi-
turn performance. Compared to other lightweight
models such as Qwen 2.5-3B (Hui et al., 2024), Phi-
2 (2.7 B) (Javaheripi et al., 2023), and Llama 3.2-
3B (Kostiuk et al., 2025), Gemma2-2B stands out
for its readiness in multilingual and low-resource
settings. Recent documentation of Qwen2.5-3B
shows broad multilingual support but lacks demon-
strated fine-tuning evidence in low resource clinical
dialogues. Likewise, while Phi-2 (2.7 B) achieves
very strong reasoning and language performance,
its evaluation is less focussed on multi-turn, multi-
lingual dialogue summarisation in clinical settings.
Together with Gemma2’s multilingual pre-training
regime and instruction-tuning, these comparisons
reinforce why Gemma2-2B is a better fit for our
clinical, multilingual multi-turn dialogue summari-
sation and QA task.

2 Related Work

Recent advances in clinical NLP have focused on
improving factual grounding, controllability, and
multilingual reliability in patient-facing text gen-
eration. Models adapted for medical communica-
tion, including BioGPT (Luo et al., 2022) and Med-
Gemini (Saab et al., 2024), demonstrate the value
of domain-specific tuning for reducing clinical er-
rors in generated outputs. Multilingual benchmarks
such as MultiMedQA (Singhal et al., 2023) and
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recent work on cross-lingual dialogue summariza-
tion (Zhang et al., 2024) highlight persistent chal-
lenges in handling diverse linguistic structures and
technical terminology. Efforts toward parameter-
efficient adaptation, including LoRA and related
approaches (Hu et al., 2022; Sinha et al., 2025),
show that compact models can perform competi-
tively when supported by targeted training strate-
gies. Despite these developments, generating reli-
able and patient-appropriate summaries from long,
multi-turn dialogues in low-resource settings re-
mains underexplored, motivating continued work
in this direction.

3 Task and Dataset

The shared task dataset consists of around 50,000
training dialogues and 5,000 test dialogues, cover-
ing ten languages: English, Hindi, Marathi, Telugu,
Tamil, Bangla, Gujarati, Kannada, Assamese, and
Dogri. Each dialogue is structured with speaker
tags and clearly segmented turns, and comes with
corresponding annotations, including summaries
and question answer pairs.

The dataset reflects real world conversations,
which often include code mixing between lan-
guages, use of multiple scripts, and informal or
varied phrasing. To handle this complexity, the
data requires careful preprocessing. This includes
normalizing text to a consistent format, transliterat-
ing scripts when necessary, and carefully managing
named entities, numbers, and medical measure-
ments. These steps ensure that both the summariza-
tion and question-answering models can accurately
understand and process the dialogues.

4 System Overview

The system has three main stages: (i) preprocess-
ing and dataset consolidation, (ii) parameter ef-
ficient finetuning and training, and (iii) post pro-
cessing, constrained decoding, and verification dur-
ing inference. Preprocessing converts heteroge-
neous inputs (JSONL, text) into a instruction / In-
put / Output schema, applies language/script de-
tection, and falls back to regex based extraction
when JSON parsing fails. During model training
we operate under strict memory and size constraints
by using a 4-bit quantized representation (LoRA)
adapters. The inference pipeline, as shown in figure
1, supports three modes: structured JSON summary,
plain text summary and short QA. All three modes
include chunk selection for long inputs and a fi-

nal merge/validation step to produce well formed
JSON summaries.

Figure 1: Inference Pipeline Architecture

4.1 Preprocessing and Dataset
We cleaned and prepared the data as follows:

• Combined all files for each language and con-
verted them into a single Instruction / Input / Out-
put format to keep the training data consistent
and easy to reproduce.

• Carefully parsed dialogue JSONL files, and for
any lines that could not be read properly, we used
regular expressions to extract the content. All
such cases were logged for reference.

• Rebuilt dialogues in a clear speaker: utterance
format and applied transliteration where needed
to ensure consistent scripts across languages.

• Matched QA pairs and summaries: for QA, we
created instructions like “Answer the patient
question based on the dialogue below, ensur-
ing accuracy and clarity.” For summaries, we
provided a JSON-only instruction to generate a
structured summary.

4.2 Handling Long Dialogues (Chunking and
Merging)

Long inputs are handled by token aware chunking
with overlap to preserve context. Key settings and
rationale:

• Token window for training: 2048 tokens, practi-
cal inference contexts up to 8192 tokens when
the runtime supports it.

• Chunk overlap: 256 tokens to avoid cutting enti-
ties across boundaries.

• Chunk margin: reserve 50 tokens for prompt
pieces and output safety.

• For summarization, partial JSON summaries are
produced per chunk and then merged by a second
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prompt that requests a single valid JSON object,
regex based extraction verifies JSON validity.

• For QA, the chunk containing the patient ques-
tion is prioritized, if not found, the last chunk is
used as a fallback.

5 Modeling, Training and Pipeline Details

We finetuned Gemma2-2B with parameter efficient
adaptation. The following numerical choices were
used consistently across experiments:

• Backbone model: Gemma2-2B (multilingual
encoder-decoder, <3B parameters).

• Quantization: 4-bit BitsAndBytes configuration
using NF4 and double quantization; compute
dtype bfloat16 where supported.

• LoRA adapter configuration: rank r = 16, α =
32, dropout = 0.1, targeted modules = attention
projections (q, k, v, o).

• Batch configuration: per device batch size = 1,
gradient accumulation steps = 2 (effective batch
size tuned for memory constraints).

• Context windows: training max tokens = 2048,
evaluation max tokens = 1024.

• Chunking parameters: overlap = 256, chunk
margin = 50.

• Optimizer and schedule: AdamW with learning
rate 2×10−4, training for 3 epochs, save strategy
= epoch.

• Inference generation parameters: low tempera-
ture sampling for summaries (0.1) and conser-
vative sampling for QA (temperature 0.7, top_p
0.9).

Hyperparameter Value

Backbone Gemma2-2B (multilingual)
Quantization 4-bit (NF4), bfloat16 compute
LoRA rank (r) 16
LoRA α 32
LoRA dropout 0.1
Per device batch size 1
Gradient accumulation 2
Training epochs 3
Learning rate 2× 10−4

Train max tokens 2048
Eval max tokens 1024
Chunk overlap 256 tokens
Chunk margin 50 tokens

Table 1: Key training and model hyperparameters

6 Evaluation Protocol

We evaluated using standard automatic metrics ap-
propriate for both QA and summarization:

• QA: Exact Match (EM) and token-level F1 (Pow-
ers, 2011).

• Summarization: ROUGE-1/2/L, BERTScore F1,
and COMET for overall quality and faithfulness.
(Chin-Yew, 2004; Zhang et al.; Rei et al., 2020)

• Human expert assessments. We conducted man-
ual evaluations of factuality, usefulness, and pa-
tient readability on a random subset of 100 test
dialogues (10 per language). Each sample was
independently reviewed by three clinical experts.
For QA span answers, we additionally assessed
the presence of any clinically harmful misinfor-
mation.

7 Evaluation Summary

The system outputs were evaluated using four
complementary metrics: F1, ROUGE_L F1,
BERTScore F1, and COMET (Powers, 2011; Chin-
Yew, 2004; Zhang et al.; Rei et al., 2020). These
metrics were chosen to provide a correct assess-
ment of the model’s performance for patient cen-
tric question answering and summarization. Each
metric captures a different aspect of quality:

• F1 score: Measures the overall correctness of
the model’s outputs.(Powers, 2011)

• ROUGE_L F1: Evaluates lexical overlap and
structural similarity with reference summaries.
(Chin-Yew, 2004)

• BERTScore F1: Assesses semantic similarity,
ensuring the generated content preserves the
meaning of the reference. (Zhang et al.)

• COMET: Provides a holistic evaluation of over-
all quality and factual consistency, aligning
closely with human judgment. (Rei et al., 2020)

Together, these metrics offer a clear and practi-
cal framework for analyzing system performance
across multiple languages and tasks.

Language F1 ROUGE_L F1 BERTScore F1 COMET
Marathi 0.5885 0.2018 0.9255 0.6545
Kannada 0.6630 0.2337 0.9276 0.7222
Gujarati 0.7000 0.2243 0.9272 0.7249
English 0.6846 0.2504 0.9321 0.7344
Telugu 0.6948 0.2072 0.9258 0.7197
Tamil 0.7029 0.2336 0.9321 0.7458
Bangla 0.6205 0.2261 0.9196 0.6903
Hindi 0.6505 0.2329 0.9222 0.7281
Assamese 0.7072 0.2081 0.9276 0.7197
Dogri 0.7072 0.2081 0.9276 0.7197

Table 2: Evaluation metrics per language. These metrics
capture correctness, lexical overlap, semantic similarity,
and overall output quality.
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8 Experimentation

8.1 Experiment 1: Low parameter model and
long context handling

In the first experiment, we used a lower-parameter
version of our model without any chunking mech-
anism. This setup struggled to process long dia-
logues effectively. As a result, the outputs often
missed important context, leading to incomplete or
inaccurate summaries and answers. To address this,
we introduced token aware chunking, which di-
vides long dialogues into overlapping segments that
preserve context. This approach significantly im-
proved the quality of both summaries and QA out-
puts by ensuring that important information from
all parts of the dialogue was considered.

8.2 Experiment 2: Training data scope
Initially, we trained the model using only the sum-
mary portion of the dataset. While this yielded
reasonable summaries, the QA performance was
poor because the model had limited exposure to
question-answer pairs. Expanding the training to
include the full dataset, which contained both sum-
maries and QA examples, resulted in substantial
improvements in both tasks. This experiment high-
lighted the importance of balanced multi task train-
ing and showed that including diverse data types
enables the model to perform consistently across
different outputs.

8.3 Experiment 3: LoRA adaptation
Finally, we explored parameter efficient adaptation
by incorporating LoRA adapters while training on
the full dataset. This method allowed the model to
maintain a small memory footprint and train effi-
ciently without losing performance. The resulting
outputs for both QA and summarization were satis-
factory, confirming that LoRA provides a practical
way to fine-tune large models under tight resource
constraints while still achieving high quality re-
sults.

9 Analysis and Studies

• Adapter vs full finetuning: Using LoRA
adapters preserved most of the model’s perfor-
mance while drastically reducing the number of
trainable parameters. This made training faster
and more memory-efficient, without a noticeable
loss in output quality.

• Synthetic data filtering: We removed synthetic
examples with inconsistencies, dosage errors, or

contradictory facts. This led to a measurable
reduction in hallucinations and improved factual
correctness in both summaries and QA outputs.

• Chunk overlap and margin: Setting a chunk
overlap of 256 tokens ensured that entities and
context were preserved across chunk boundaries.
This avoided truncation errors and maintained
coherence, while keeping computation manage-
able.

• Constrained decoding: Enforcing JSON-only
outputs for summaries and span verification for
QA reduced structural errors. While this slightly
limited lexical diversity, it significantly improved
output reliability and readability.

10 Operational Considerations

We ensured proper logging and audit trails for all
processing steps and training examples to maintain
transparency and reproducibility. All experiments
were run on GPU with mixed precision (bfloat16
where available), and adapter weights along with
tokenizer files were saved to allow future repro-
duction of the results. Practical deployment also
requires attention to privacy, reliability, and human
oversight for any patient facing outputs.

11 Limitations and Ethical
Considerations

While our system provides helpful summaries and
answers, it can still produce incorrect or incomplete
information in some cases, especially when the
input is unclear or ambiguous. Therefore, outputs
should always be reviewed by a qualified clinician
before being shared with patients. Additionally,
handling of patient data must follow strict privacy
and security guidelines to ensure confidentiality.

12 Conclusion

In this work, we presented a reproducible system
for patient centric multilingual question answering
and summarization. By combining LoRA adapters,
along with token aware chunking and constrained
decoding, the system efficiently handles long, multi
turn dialogues in multiple languages while stay-
ing within strict model size limits. Our approach
demonstrates that careful model adaptation and
structured processing can produce accurate, coher-
ent, and patient-friendly outputs across diverse lan-
guages, providing a reliable foundation for real
world healthcare applications.
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Abstract

This paper deals with the dual task of
developing a medical question answering (QA)
system and generating concise summaries of
medical dialogue data across nine languages
(English and eight Indian languages). The
medical dialogue data focuses on two
critical health issues: Head and Neck
Cancer (HNC) and Cystic Fibrosis (NLP
AI4health shared task). The proposed
framework utilises a dual approach: a
fine-tuned small Multilingual Text-to-Text
Transfer Transformer (mT5) model for the
conversational summarisation component and
a fine-tuned Retrieval Augmented Generation
(RAG) system integrating the dense intfloat/e5-
large language model for the language-
independent QA component. The efficacy
of the proposed approaches is demonstrated
by achieving promising precision in the QA
task. Our framework achieved the highest F1
scores in QA for the three Indian languages,
with F1 score of 0.3995 in Marathi, 0.7803
in Bangla, and 0.74759 in Hindi, respectively.
We achieved the highest cometscore of 0.5626
on the Gujarati QA test set. For the dialogue
summarisation task, our model registered the
highest ROUGE-2 and ROUGE-L precision
across all eight Indian languages, with English
being the sole exception. These results
confirm our approach potential to improve e-
health in dialogue data for low-resource Indian
languages.

1 Introduction

Understanding patient-centric medical dialogue
systems is challenging due to multi-turn
complexity, intent capture, cross-lingual semantics,
and domain-specific terminologies (23; 10). The
2025 NLP-AI4Health shared task focuses on
developing systems that can generate concise
summaries and relevant responses to questions
based on real-world medical conversations
related to Head and Neck Cancer (HNC) and

Cystic Fibrosis across 9 languages (8 Indian and
English) (1). These data include multilingual and
code-mixed interactions, emphasising the need for
models that can generalise across languages. A
significant dearth of high-quality annotated data
for most Indian languages severely impedes the
training and development of effective Indic medical
dialogue understanding models. Addressing the
need for understanding multilingual interactions
and the high computational costs associated with
developing such a system from scratch, we propose
a framework to tackle such tasks effectively.
For dialogue summarisation, we fine-tuned the
Multilingual Text-to-Text Transfer Transformer
(mT5) model (27) to generate coherent, domain-
relevant summaries from patient-doctor dialogues.
For question answering (QA), we designed a
fined-tuned Retrieval-Augmented Generation
(RAG) with given QA data pipeline that integrates
a dense multilingual retriever based on the fine-
tuned intfloat/e5-large model (16; 31), enabling
language-independent and precise response
generation. Our approach achieved promising
results on both dialogue summarisation and QA
tasks (see section 5). The paper is organised as
follows: The following section highlights the
existing work in QA and summarisation of medical
dialogue data. Section 3 provides a detailed
description of the proposed methodology. The
results and discussion of the proposed approach
are delineated in Section 5. Conclusion is present
in Section 6 with some future points of action in
Section 7.

2 Related Work
Medical dialogue summarisation and QA is a
challenging task. In the Multi-turn conversational
nature of patient–clinician interactions, extractive
approaches often fail to capture relevant summaries
(23; 10). Automatic evaluation is a major challenge
in generative tasks such as dialogue response
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and summarisation. Traditional generation tasks
evaluation metrics like ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) (2) frequently
fall short in capturing semantic fluency and
adequacy. To address this, newer metrics like
BERTScore (19) and COMETscore (20), have been
used for the evaluation of both tasks. Abstractive
summarisation capable of paraphrasing content
in its own words has gained prominence (17; 7;
8). The advent of pre-trained language models
(PLMs) such as BioBERT (18) and ClinicalBERT
(9) is a game-changer in the medical field
(15). For generative tasks, sequence-to-sequence
architectures, BART (17) and T5 (21) have become
the standard choices. To mitigate hallucinations in
PLMs, RAG (16) is introduced. The performance
of the RAG pipeline depends heavily on the
quality of its retriever. Our pipeline employs
the multilingual model intfloat/e5-large (28). To
address large-scale retrieval efficiently, we use
Facebook AI Similarity Search (FAISS) (14).

3 Proposed Methodology

This section details the proposed architecture for
the medical QA and dialogue summarisation task.

3.1 Dataset Overview
The text box below provides a snippet of a dialogue
from the training dataset. Table 1 and Table 2 show
the data statistcs.
{

"speaker": "Health Worker",
"date": "2025−10−05",
"dialogue": "I'm Dr. Sen. I want to hear about your 2−month−old boy, his cough since

birth, slow weight gain, and the oily stools you mentioned. Where are you
traveling from today?"

},
{

"speaker": "Patient",
"date": "2025−10−05",
"dialogue": "Navi Mumbai, actually. Hes been coughing since birth, mother says, and he

seems to get tired after feeds. Weight isnt climbing fast, and stools look greasy
."

}

Each QA file has pairs as follows:
{

"questions": [
{

"question": "Can you explain what the sweat test is and how reliable it is for cystic
fibrosis?",

"answer": "The sweat test measures chloride levels in sweat and is the primary
diagnostic test for cystic fibrosis. High chloride levels support a CF
diagnosis, normal levels rule it out, and borderline results may require
repeated or genetic testing."

}
]

}

3.2 Preprocessing
The initial pre-processing steps included
language detection (4), text normalisation (6),
sentence segmentation (5), stopword removal,

Table 1: QnA task dataset statistics

Language Train_QnA Dev_QnA Test_QnA
Assamese 204 1200 65

Bangla 5064 1200 78
Dogri 1548 1200 82

English 95696 1632 87
Gujarati 5004 1200 52
Hindi 13420 1232 86

Kannada 11496 1200 28
Marathi 8916 1200 85
Tamil 9092 1200 64
Telugu 26352 1200 68

Table 2: Dialogues for Summarisation data statistics

Language train_dialogues dev_dialogues test_dialogues
Assamese 112,338 4372 4337

Bangla 433,832 6794 6365
Dogri 197,816 9448 9448

English 693,122 8655 9929
Gujarati 183,190 3028 2327
Hindi 531,513 3301 1819

Kannada 165,493 9760 8206
Marathi 312,808 9760 8206
Tamil 245,861 3885 4341
Telugu 274,927 3766 3474

All Languages 3,150,900 61562 57041

and multilingual encoding (22), and duplicate
dialogues deletion(11). We claim novelty in adding
a query validation layer that checks the retrieved
content. If similarity is below threshold, the system
returns a safe fallback, preventing hallucination:
"The system does not have sufficient information
to answer this question. Please consult a certified
medical professional.”. All processed data and
responses are cached for faster retrieval during
evaluation. Metadata such as source, retrieval
confidence, and language tags are stored with each
instance. The final pre-processing steps included:
Parsing and aligning dialogue–summary pairs
using unique identifiers, removing null entries,
normalising inconsistent speaker tags, spaces,
and punctuation. The data is structured into the
following fields: id, dialogue, and summary,
stored as Hugging Face Dataset objects for efficient
loading (29). The cleaned dataset is then cached to
optimise runtime efficiency during fine-tuning.

3.3 Proposed architecture

Figure 1 outlines the proposed methodology
for building a language-independent dialogue
summarisation and medical QA system.

3.4 Question and Answer architecture

The retrieval system uses a knowledge base
consisting of: Medical literature & health forums
(10; 23), Condition-specific documents, and
translated multilingual knowledge bases (22; 30).
Each document chunk is embedded and stored
in the FAISS index for similarity-based retrieval
(14). To strengthen factual grounding, a cross-
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Figure 1: Block Diagram for the medical QA and
dialogue summarisation

lingual fined-tuned RAG layer is integrated as
shown in Figure 1 (16). This module retrieved the
semantically relevant passages from a multilingual
FAISS-based vector store before generating the
final response to a user query. The retrieval
setup included the Embeddings Model (intfloat/e5
model) (33), Vector Index (FAISS Flat Index),
Similarity Metric (Cosine Similarity), and Top-
K Retrieved Passages (5). The retrieved chunks
are concatenated with the input query to create
an enriched prompt, then processed through fined-
tuned Sarvam 3B Model on QnA to generate the
answer based on it (32).

3.5 Summarisation Architecture
As shown in Figure 1, the fine-tuned small-mT5
model is employed for the summarisation of the
dialogues (27). The mT5 model generalises well
across languages while maintaining contextual

coherence. Key implementation details include
a shared embedding layer for multilingual
adaptability, 12 encoder and 12 decoder layers
equipped with multi-head attention, a sequence-
to-sequence design that encodes the dialogue and
autoregressively decodes a summary, and the use
of the prefix “summarise:” before each dialogue
to guide task conditioning (21). The generated
outputs are compared with the retrieved context
using semantic similarity scoring (11) to ensure
content alignment, language consistency checks,
and redundancy removal (2; 19).

4 Experimental Setup

Table 3 delineates the parameters used for
developing a model for dialogue summarisation
and the QA task, along with the evaluation metrics
used.

Table 3: Training configurations of the proposed RAG
architecture for QA and fine-tuned mT5 model for
dialogue summarisation.

Category + Parameter Summarisation Model RAG Model
Task Summarisation QnA Answering
Generation Model mT5 (Multilingual T5) Sarvam 3B
Embedding Model T5 Embeddings intfloat/e5-large
Base Model google/mt5-small Sarvam 3B
Pretraining Corpus 3.15M Dialogues 176k QA pairs
Supported Languages 101+ Languages 10 Indian Languages
Hardware A100 GPU (Google Colab) A100 GPU (Google Colab)
Optimizer AdaFactor AdamW
Learning Rate Inverse square root decay 2.0e–05
Epochs/Steps Many (pre-training) 1 (baseline, extendable)
Tokenizer SentencePiece SentencePiece
Training Objective Span Corruption Sequence-to-sequence
Pretraining Framework TensorFlow + T5X Hugging Face Transformers
Loss Function Cross-Entropy Cross-Entropy
Metrics ROUGE, BLEU, BERTScore Exact Match (EM), F1 Score

5 Results and Discussion

5.1 Results

This section presents the evaluation results
and in-depth analysis of the Team Samvad
multilingual system developed for the NLP4Health
Shared Task (1) on Multilingual Health Dialogue
Summarisation and Question Answering (23; 10).
Our analysis spans QA, Summarisation (Text)
across nine languages: Hindi, Bangla, Tamil,
Telugu, Kannada, Gujarati, Marathi, Assamese,
and English.

5.2 Discussion

As shown in figure 2, high F1 scores in Bangla
(0.7803), Hindi (0.7479) and Marathi (0.39) reflect
strong retrieval and semantic understanding of
the proposed system (3), and low F1 scores in
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Table 4: Test results on the QA task

Language f1 bertscore_f1 cometscore

Marathi 0.3995 0.8392 0.3593
Kannada 0.2469 0.8375 0.4287
Gujarati 0.4235 0.8435 0.5626
English 0.2947 0.7960 0.5725
Telugu 0.2553 0.8416 0.4582
Tamil 0.2970 0.8299 0.4789
Bangla 0.7803 0.8144 0.4915
Hindi 0.7479 0.8376 0.4839
Assamese 0.4847 0.8055 0.4596

Table 5: Test results on the dialogue summarisation task

Language ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1 BERTScore F1 COMETScore
Marathi 0.2077 0.0597 0.1458 0.7766 0.4566
Kannada 0.1737 0.0511 0.1196 0.7875 0.4771
Gujarati 0.1664 0.0553 0.1170 0.7861 0.4586
English 0.1538 0.0535 0.1023 0.7952 0.4693
Telugu 0.1768 0.0593 0.1208 0.7934 0.4705
Tamil 0.1952 0.0574 0.1351 0.7927 0.4833
Bangla 0.2074 0.0588 0.1415 0.7824 0.4844
Hindi 0.1877 0.0518 0.1218 0.7939 0.4933
Assamese 0.1814 0.0576 0.1250 0.7939 0.4678

Figure 2: F1 score comparison for Q&A task on medical
dialogue data.

Figure 3: COMET score comparison for Q&A task on
medical dialogue data.

Figure 4: ROUGE-2 Precision comparison for
summarisation task.

Figure 5: ROUGE-L Precision comparison for
summarisation task.

Table 6: BERT F1 Scores comparison for the dialogue
summarisation task

Language Highest BERT F1 Our team BERT F1
Marathi 0.811 0.7766
Kannada 0.8247 0.7875
Gujarati 0.831 0.7861
English 0.8353 0.7952
Telugu 0.8344 0.7934
Tamil 0.8382 0.7927
Bangla 0.822 0.7824
Hindi 0.8364 0.7939
Assamese 0.8341 0.7939

Tamil, Telugu, and Kannada (<0.30). However,
cometscore for the QA task in the Dravidian
language was high, as shown in figure 3 (20). For
the summarisation task as shown in figure 4, 5, the
proposed model achieved the highest ROGUE2 and
ROGUEL precision scores in all Indian languages
(2). Comparable BERTScore values (0.77–0.79) to
the highest results as shown in Table 6 indicate the
model produces meaning-preserving paraphrases
suitable for patient communication (19; 13).

Manual inspection of the QA and summarisation
outputs revealed that the proposed model
consistently preserved medical intent even
when surface wording differed, often employing
paraphrasing (e.g., “blocked nose” for “nasal
obstruction”) (11). Responses were sometimes
over-generated, providing explanatory answers
rather than strictly extractive ones (16). Overall,
the system delivers accurate patient-centered
answers in multiple languages (10; 23).
Limitations include lower performance in
Dravidian languages, a need for structured
generation in summary KnV outputs, and potential
gaps in cultural or idiomatic understanding.

6 Conclusion

The results verified that integrating RAG with
fine-tuned pre-trained language models (16; 21)
can enhance the semantic understanding of the
medical data without developing NLP systems
from scratch. The proposed models achieved
promising results as reflected in high BERTScore,
F1 score, COMETScore and ROUGE precision
(19; 3; 20; 2). The RAG architecture proved
effective across all indic languages. (25). The
Dravidian languages, such as Tamil, Telugu,
and Kannada, still require improvisation (24).
Team Samvad demonstrates the feasibility of
a multilingual RAG-based system for medical
dialogue understanding (23; 10).

7 Future Work

Future work’s primary focus will be on enhancing
performance for languages such as Dogri and
Assamese, including code-mixed inputs (25). To
address this, we plan to target fine-tuning on
medical datasets (e.g., PubMedQA (12) and
MIMIC-III (26)) to improve factual accuracy,
lexical precision, and overall summarisation
performance. Optimisation of RAG thresholds and
prompt design will be explored to enhance both
summary fluency and coherence (16; 21).
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Abstract
This study addresses the Shared Task on
Patient-Centric Multilingual Question Answer-
ing, which focuses on generating summaries
and patient-oriented answers from multi-turn
medical dialogues related to Head and Neck
Cancer and Cystic Fibrosis across ten lan-
guages. The Qwen3-1.7B model is fine-tuned
using QLoRA for three tasks—Summarization,
Question Answering, and Information Extrac-
tion—while updating only approximately 1.6%
of parameters through task-specific adapter
layers. The resulting system demonstrates
strong semantic fidelity, as evidenced by high
BERTScore and COMET scores, particularly
for Kannada, English, Telugu, and Tamil, with
comparatively lower performance in Assamese,
Bangla, Gujarati, and Marathi. The modular
fine-tuning design enables efficient task adapta-
tion while satisfying the constraints on model
size and computational resources.

1 Introduction

In recent years, patient-centric natural language
processing (NLP) has gained increasing attention
for its potential to improve access to medical infor-
mation and empower patients in clinical decision-
making (Jerfy et al., 2024; Takale, 2024; Zhou et al.,
2024; Rojas-Carabali et al., 2024). Multi-turn med-
ical dialogues, especially for complex conditions
such as Head and Neck Cancer and Cystic Fibrosis,
are often difficult for non-experts to interpret, creat-
ing a need for automated systems that can generate
summaries and answer patient-oriented questions.
Recent advances in large language models (Singhal
et al., 2023; Maity and Saikia, 2025; Meng et al.,
2024) provide a robust foundation to address these
challenges, offering multilingual and long-context
capabilities suitable for summarization, question
answering, and information extraction. The Qwen
family of models exemplifies this evolution: Qwen
1 (Bai et al., 2023) introduced the transformer de-
coder architecture with causal language modeling,

while Qwen 2 (Yang et al., 2024a) expanded scale
(0.5–72 B parameters), adopted Mixture-of-Experts
designs for efficiency, and demonstrated strong
multilingual proficiency with extended context sup-
port of up to 128 K tokens, making it particularly
effective for complex patient-centric healthcare di-
alogues.

The next generation, Qwen 2.5 (Yang et al.,
2024b), refined the architecture and training
pipeline to push performance boundaries even fur-
ther. Trained on an expanded corpus of over 18
trillion tokens and enhanced through multistage
post-training with more than one million super-
vised samples, Qwen 2.5 achieved gains in rea-
soning, factual grounding, and multilingual under-
standing. The Qwen3-1.7B (Yang et al., 2025)
model is a causal language model, designed pri-
marily for generative language tasks such as text
completion, summarization, question answering,
and dialogue generation. As a causal model, it
predicts the next token in a sequence based on all
previous tokens, making it particularly effective for
autoregressive text generation and understanding
long-form context. The model has undergone both
pretraining and post-training stages to enhance its
linguistic and reasoning capabilities.

The Shared Task on Patient-Centric Question
Answering focuses on multilingual health dialogue
understanding, summarization, and question an-
swering. The dataset, released as part of the
NLP4Health initiative, consists of validated dia-
logues between patients and healthcare profession-
als across multiple Indian languages where each
dialogue is accompanied by a structured summary
and multiple patient-centric question–answer pairs.
The aim is to develop models with fewer than 3
billion parameters capable of generating concise
summaries of multi-turn medical dialogues and
answering patient-oriented questions. The multi-
lingual dataset is partitioned by task and each sub-
set is used to fine-tune a separate Qwen3-1.7B in-
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stance via QLoRA (Dettmers et al., 2023), enabling
parameter-efficient adaptation with only 1.6% train-
able parameters. The resulting task-specific LoRA
(Hu et al., 2022) adapters form a modular system
that supports scalable extension to additional do-
mains. System performance is evaluated using auto-
matic metrics such as ROUGE (Lin, 2004), BLEU
(Papineni et al., 2002), BERTScore (Zhang* et al.,
2020) for summarization, and Exact Match and F1
score for question answering, complemented by
human expert evaluation for medical correctness
and clinical usefulness. Our results show strong se-
mantic fidelity across tasks, with consistently high
BERTScore and COMET (Rei et al., 2020) values,
although lexical overlap remains moderate. Per-
formance varies by language, with notably better
results in Kannada, English, Telugu, and Tamil, and
lower performance for Assamese, Bangla, Gujarati,
and Marathi.

2 Proposed Approach

The objective of this work is to employ a language
model capable of performing multilingual summa-
rization, information extraction, and question an-
swering. Considering the high computational and
data requirements associated with training a large
model from scratch, we opted to fine-tune an exist-
ing pretrained model using the task-specific dataset
provided for this study. To ensure the suitability
of the base model, several selection criteria were
established in accordance with the shared task re-
quirements :

1. Contain fewer than 3 billion parameters, en-
suring computational efficiency and compati-
bility with limited hardware resources.

2. Exhibit multilingual capabilities, allowing ef-
fective processing and understanding of con-
tent across multiple languages.

3. Demonstrate strong reasoning and comprehen-
sion abilities, enabling robust performance on
complex linguistic and contextual tasks.

4. Support a context window of at least 32k to-
kens, facilitating the handling of long docu-
ments and maintaining coherence across ex-
tended text sequences.

5. Achieve competitive performance on standard
language understanding benchmarks, reflect-
ing its generalization and robustness.

After a comprehensive evaluation of available
open-source models under these constraints, we
identified Qwen3-1.7B (Yang et al., 2025) as the
most suitable base model for our purpose. It strikes
an effective balance between model size, multilin-
gual coverage, contextual reasoning, and computa-
tional efficiency, making it an ideal choice. With
1.7 billion parameters, the model achieves a bal-
ance between performance and efficiency, making
it suitable for resource-constrained environments
while maintaining strong generalization abilities.
It comprises of 28 transformer layers, enabling
it to capture deep hierarchical representations of
text. The attention mechanism is configured with
16 query heads and 8 key-value heads, allowing
the model to process complex contextual relation-
ships across tokens efficiently. A notable feature
of Qwen3-1.7B is its extended context length of
32,768 tokens, which allows it to process and rea-
son over long documents without losing coherence.
This extended context window makes it particularly
suitable for tasks such as document summarization,
information extraction, and long-form question an-
swering.

2.1 System Architecture

Figure 1: Training–inference pipeline for QLoRA.

As illustrated in Figure 1, the architecture com-
prises three main stages: 1) data preprocess-
ing, 2) task-specific fine-tuning, and 3)deploy-
ment/inference. The process begins preprocessing
the multilingual training corpus which is divided
into three subsets corresponding to the target tasks:
Summarization, Question Answering, and Informa-
tion Extraction. Each subset is used to fine-tune
a separate instance of the Qwen3-1.7B model us-
ing Supervised Fine-Tuning (SFT) with QLoRA.
This design allows the system to learn task-specific
representations while maintaining the efficiency
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Table 1: Example dialogues which are incorrect

Language Dialogue ID Dialogue text

Assamese scenario_10_984a19c41d17469c
b941bc9904c637a1_IDX_05_2

I can create this long 60+ turn Assamese dialogue in JSONL, but it’s best
done in batches to keep it natural and accurate. Would you like me to start
with Batch 1 (20 lines) now and then continue in subsequent messages?

Telugu scenario_15_e39e255060f347e3
80994a0a33f6015d_IDX_04_0

Yes

of parameter-efficient fine-tuning. The QLoRA
adapters are injected into the attention and MLP
layers so that only a small fraction ( ≈ 1.6% ) of
the total parameters are trainable. The fine-tuning
phase produces three independent LoRA check-
points—one for each task—which are subsequently
used for inference on the shared-task test datasets.
This modular setup facilitates easy extension to new
domains by re-training only the relevant adapter
weights rather than the full model.

2.2 Dataset Setup and Preprocessing

It was observed that a small portion of the training
corpus contained non-conversational or incomplete
dialogue structures as shown in Table 1. To im-
prove data consistency, we applied a single-stage
filtering criterion based on the number of speaker
turns. Specifically, dialogues containing fewer than
four occurrences of the token “speaker” were ex-
cluded, as such samples did not represent mean-
ingful multi-turn exchanges. This preprocessing
step effectively removed noisy or improperly for-
matted instances while preserving the linguistic
diversity of the corpus. Table 2 summarizes the
dataset statistics before and after preprocessing for
all three tasks—Summarization, Question Answer-
ing, and Information Extraction—across ten Indic
languages. Overall, the filtering step reduced the
dataset size by approximately 12% for summariza-
tion, 8.6% for QA, and 10% for information ex-
traction, resulting in 45,885, 11,463, and 25,967
high-quality samples respectively.

For the Question Answering (QnA) task, each
training instance was derived from the correspond-
ing dialogue and QnA files provided in the shared
dataset. The original QnA files contained multi-
ple question–answer pairs associated with a single
dialogue. Instead of treating all questions and an-
swers together as a single training sample, we de-
composed each dialogue into multiple independent
training examples—each consisting of the dialogue
context, one question, and its corresponding an-

swer. This restructuring allowed the model to learn
fine-grained contextual alignment between individ-
ual questions and relevant dialogue segments. Af-
ter this transformation, the QnA dataset expanded
to over 164,000 training samples, substantially in-
creasing the number of supervised examples avail-
able for fine-tuning.

2.3 Supervised Finetuning using QLoRA

To adapt the pretrained Qwen3-1.7B model to
the requirements of the shared task, we em-
ployed QLoRA (Quantized Low-Rank Adaptation)
(Dettmers et al., 2023) for fine-tuning. QLoRA is a
parameter-efficient fine-tuning (PEFT) technique
that builds upon the LoRA (Low-Rank Adapta-
tion) (Hu et al., 2022) framework, which avoids
full model retraining by freezing the pretrained
weights and introducing a small number of train-
able low-rank matrices within selected layers of
the model. In the present work, the LoRA adapters
were applied to both the attention and feed-forward
(MLP) components of the transformer architecture.
Specifically, the fine-tuning was performed on the
following projection layers: q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj, and down_proj. The
chosen LoRA hyperparameters were as follows:
rank = 16, lora_alpha = 32, and lora_dropout =
0.1. These settings were selected to provide a
balance between adaptation flexibility and regu-
larization, ensuring stable convergence during fine-
tuning while minimizing overfitting.

The base model comprises an embedding dimen-
sion of 2048 and 28 transformer layers, resulting
in a total of 1,749,017,600 parameters. Through
QLoRA, only a small subset of parameters was
made trainable—specifically 28,442,624 parame-
ters, which accounts for approximately 1.63% of
the total model parameters. This configuration
allowed fine-tuning without significant computa-
tional overhead, while maintaining the expressive
capacity of the model. The use of QLoRA thus
enabled the model to adapt to task-specific data
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Table 2: Dataset sizes before/after preprocessing.

Language Summarization QnA Information Extraction
# Samples # After Preproc. # Samples # After Preproc. # Samples # After Preproc.

Assamese 2,200 1,900 17 13 755 646
Bangla 6,153 6,037 423 418 2,503 2,461
Dogri 2,526 2,376 129 120 129 120

English 7,106 6,954 5,808 5,664 5,808 5,664
Gujarati 6,169 4,517 417 319 3,484 2,714
Hindi 6,204 6,181 1,093 1,092 5,024 5,014

Kannada 6,629 3,807 958 501 2,774 1,459
Marathi 3,624 3,547 743 726 2,390 2,343
Tamil 5,155 4,802 755 674 2,246 2,147
Telugu 6,629 5,764 2,196 1,936 3,759 3,399
Total 52,395 45,885 12,539 11,463 28,872 25,967

while remaining resource-efficient and scalable for
multilingual applications.

3 Experimental Results

We evaluated the results on test set for three sub-
tasks: Question Answering (QnA), Summariza-
tion, and Information Extraction (IE). The evalua-
tion metrics are F1, Exact Match, ROUGE-1/2/L,
BERTScore, and COMET Score, presented in Ta-
bles 3, 4, and 5 (Appendices A.1,A.2 and A.3). Ex-
emplary outputs obtained using the models along
with ground truth are available here1.

In the QnA evaluations, the model achieved
higher BERTScore and COMET scores for Kan-
nada, English, Telugu, and Tamil, indicating strong
performance in these languages. In contrast, the
performance for Assamese, Bangla, Gujarati, and
Marathi was considerably lower. This trend was
consistent across the remaining evaluation metrics
as well.

In Summarization Task, summaries are semanti-
cally aligned with the reference texts, as reflected
by high BERTScore and COMET values. While
the lexical overlap, measured by ROUGE-L F1,
remains moderate, the COMET scores (0.6–0.7) in-
dicate that the generated summaries maintain good
semantic fidelity. Similarly, BERTScore F1 values
of approximately 0.8 across languages suggest that
the summaries are informative and meaningfully
capture the core content.

In Information Extraction Task, the model
achieves BERTScore F1 values above 0.85 for
all languages, indicating strong semantic corre-

1https://huggingface.co/datasets/vinaybabu/NLPSharedTask-
QnA-Before-After-Finetuning

spondence between the predicted and reference
outputs. The results show a consistent pattern of
strong semantic adequacy but modest lexical over-
lap: BERTScore/COMET are comparatively high
across tasks, whereas ROUGE lag—indicative of
paraphrastic correctness and formatting sensitiv-
ity in multilingual, free-form outputs. The widest
dispersion appears in QnA, suggesting room for
language-aware adaptation (e.g., tokenizer merges,
transliteration normalization, in-language augmen-
tation) to narrow gaps for lower-resource lan-
guages.

4 Conclusion

This work presents a parameter-efficient approach
for multilingual patient-centric dialogue under-
standing, summarization, and question answer-
ing using the Qwen3-1.7B model. By employ-
ing QLoRA for task-specific fine-tuning, only a
small fraction of model parameters ( 1.6%) were
updated, enabling efficient adaptation under com-
putational constraints. Experimental results demon-
strate strong semantic fidelity as reflected by high
BERTScore and COMET values, particularly for
Kannada, English, Telugu, and Tamil, while high-
lighting performance gaps in lower-resource lan-
guages. The modular design of task-specific LoRA
adapters allows for scalable extension to new do-
mains without retraining the full model. Overall,
this approach provides an effective and resource-
efficient framework for multilingual patient-centric
NLP, supporting accurate and informative dialogue
summarization and question answering.
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5 Limitations

The Qwen3-1.7B model appears to have a stronger
representation for Kannada, Tamil, Telugu, Hindi
and English during pretraining relative to As-
samese, Bangla, Gujarati, and Marathi. This imbal-
ance likely contributes to the lower performance
observed in the latter set of languages, particu-
larly in the QnA task. We observed specific fail-
ure modes—repetitions, copying of question text,
and irrelevant expansions particularly in Assamese,
Marathi, Bangla, and Gujarati for the QnA task,
with representative error cases provided in the ac-
companying footnote2. Also, we provide links 3

to the fine-tuned models for Summarization, QnA,
and Information Extraction, all publicly released
on Hugging Face. Our fine-tuning data is also lim-
ited to provided training data which is not enough
for language understanding.

Metrics such as SummaC (Laban et al., 2022)
and QAFactEval (Fabbri et al., 2022), which rely
on ground truth outputs, could not be computed
due to the lack of ground truth data for Question
Answering (QnA), Summarization, and Informa-
tion Extraction (IE) tasks within the test set. Future
work includes integrating large-scale Indic corpora
during fine-tuning to improve language understand-
ing, and exploring advanced alignment methods
such as Reinforcement Learning from Human Feed-
back(RLHF) to further refine output quality and
reduce errors.
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A Evaluation Metrics

A.1 Question Answering

Table 3: QA metrics by language (higher is better).

Language F1 Exact Match ROUGE-1 ROUGE-2 ROUGE-L BERTScore COMET
ScorePrec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Marathi 0.284 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.508 0.503 0.505 0.278
Kannada 0.492 0.000 0.012 0.010 0.011 0.000 0.000 0.000 0.012 0.010 0.011 0.855 0.835 0.845 0.475
Gujarati 0.364 0.000 0.003 0.003 0.003 0.002 0.002 0.002 0.003 0.003 0.003 0.408 0.403 0.405 0.358
English 0.623 0.000 0.329 0.390 0.343 0.064 0.076 0.067 0.194 0.229 0.202 0.857 0.857 0.857 0.703
Telugu 0.656 0.000 0.084 0.058 0.064 0.009 0.005 0.006 0.084 0.058 0.064 0.853 0.837 0.845 0.507
Tamil 0.514 0.000 0.005 0.004 0.004 0.000 0.000 0.000 0.005 0.004 0.004 0.847 0.830 0.838 0.529
Bangla 0.203 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.217 0.213 0.215 0.285
Hindi 0.462 0.000 0.007 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.007 0.656 0.651 0.653 0.370
Assamese 0.124 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.309 0.303 0.306 0.302

A.2 Summarization
Table 4: Summarization metrics by language (higher is better).

Language F1 Exact Match ROUGE-1 ROUGE-2 ROUGE-L BERTScore COMET
ScorePrec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Marathi 0.562 0.000 0.491 0.343 0.357 0.110 0.075 0.079 0.227 0.171 0.162 0.795 0.782 0.788 0.640
Kannada 0.622 0.000 0.557 0.285 0.354 0.120 0.060 0.076 0.260 0.127 0.158 0.783 0.785 0.783 0.661
Gujarati 0.322 0.000 0.546 0.269 0.320 0.132 0.062 0.074 0.273 0.124 0.145 0.769 0.785 0.776 0.624
English 0.239 0.000 0.446 0.414 0.356 0.116 0.104 0.092 0.192 0.200 0.152 0.819 0.812 0.815 0.707
Telugu 0.355 0.000 0.454 0.231 0.264 0.103 0.051 0.057 0.233 0.111 0.123 0.681 0.710 0.694 0.575
Tamil 0.416 0.000 0.523 0.224 0.283 0.119 0.050 0.063 0.271 0.107 0.137 0.710 0.771 0.738 0.590
Bangla 0.277 0.000 0.462 0.276 0.300 0.101 0.061 0.066 0.224 0.141 0.141 0.778 0.781 0.778 0.638
Hindi 0.412 0.000 0.539 0.310 0.373 0.118 0.066 0.081 0.234 0.134 0.158 0.806 0.802 0.803 0.701
Assamese 0.451 0.000 0.514 0.308 0.357 0.115 0.068 0.079 0.242 0.139 0.160 0.774 0.795 0.783 0.639

A.3 Information Extraction
Table 5: Information Extraction metrics by language (higher is better).

Language F1 Exact Match ROUGE-1 ROUGE-2 ROUGE-L BERTScore COMET
ScorePrec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Marathi 0.180 0.002 0.010 0.006 0.007 0.003 0.001 0.001 0.009 0.006 0.006 0.931 0.899 0.914 0.519
Kannada 0.279 0.041 0.145 0.096 0.103 0.036 0.014 0.018 0.138 0.092 0.098 0.856 0.851 0.852 0.546
Gujarati 0.190 0.014 0.030 0.026 0.025 0.004 0.003 0.003 0.028 0.025 0.024 0.908 0.879 0.892 0.525
English 0.258 0.039 0.130 0.088 0.096 0.046 0.028 0.030 0.120 0.083 0.090 0.886 0.867 0.876 0.535
Telugu 0.212 0.024 0.061 0.047 0.048 0.008 0.004 0.004 0.058 0.045 0.046 0.881 0.865 0.871 0.534
Tamil 0.196 0.010 0.049 0.024 0.028 0.022 0.005 0.007 0.047 0.023 0.027 0.903 0.880 0.890 0.529
Bangla 0.173 0.001 0.005 0.002 0.003 0.001 0.000 0.000 0.004 0.002 0.003 0.935 0.895 0.913 0.516
Hindi 0.252 0.033 0.122 0.078 0.084 0.037 0.015 0.017 0.113 0.073 0.078 0.868 0.854 0.860 0.531
Assamese 0.213 0.019 0.047 0.036 0.037 0.008 0.006 0.006 0.044 0.034 0.035 0.906 0.884 0.894 0.531
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Abstract
In the present work, we reported the framework
NLP4Health, a unified and reproducible pipeline
to accomplish the tasks of multilingual clinical dia-
logue summarization and question answering (QA).
Our system fine-tunes the multilingual sequence-
to-sequence model google/mt5-base along with
parameter-efficient Low-Rank Adaptation (LoRA)
module to support the tasks for ten different Indian
languages. For each of the clinical dialogues, the
model produces (1) a free-text English summary, (2)
an English structured key–value (KnV) JSON sum-
mary, and (3) QA responses in the original source
language of the dialogues. We report preprocessing,
fine-tuning, inference, and evaluation across QA,
textual, and structured metrics. The adapter weights,
tokenizer, and inference scripts have publicly been
released to promote transparency and reproducibil-
ity.

1 Introduction

Clinical conversations between patients and health-
care professionals are an abundant yet underuti-
lized source of medical knowledge that can have
diverse potentials starting from decision-making,
documentation, therapy and referral workflows.
These dialogues often include crucial information
about symptoms, medications, and lifestyle factors,
but are typically unstructured, conversational, and
linguistically diverse. In multilingual country such
as India, patient–doctor interactions frequently ex-
hibit code-mixing—a combination of English and
local languages imposing challenges for existing
natural language processing (NLP) systems that
are usually trained on monolingual or formal clini-
cal texts.

For instance, consider the following real-world
example a Hindi–English consultation:

Patient’s Relative: "बǴे के मल कʏ गंध
अभी भी तेज है; CF के ɡलए pancreatic
enzyme supplements कʏ जरूरत होती है
क्या?" (Translation:) “The child’s stool
still has a strong smell; are pancreatic
enzyme supplements needed for CF?”

Health Worker: "ज्यादातर CF में पाचक
enzyme supplements बनाए जाते हैं; पर सही
ɟनणर्य Sweat Test के पɝरणाम के बाद होगा;
अभी hydration और calories पर ध्यान दें।"
(Translation:)“In most CF cases, diges-
tive enzyme supplements are given; but
the correct decision will be made after
the Sweat Test results. For now, focus on
hydration and calories.”

This above example illustrates both the com-
plexity and the potential of multilingual clinical
NLP: understanding long, code-mixed utterances
and generating coherent, clinically relevant an-
swers in native language and also generate English
summary from the consultation in same native lan-
guage.

It has been observed that the existing clinical
summarization systems focus primarily on English
or high-resource languages, limiting their utility
in diverse healthcare environments. Large trans-
former models such as mT5 (Xue et al., 2021)
have achieved remarkable progress in multilingual
text generation but require substantial computa-
tional and memory power for complete fine-tuning.
Such resource demands make them impractical for
smaller research groups or hospitals with limited
GPU capacity. Consequently, there is a growing
need for parameter-efficient multilingual NLP
models that can be adapted to domain-specific set-
tings such as healthcare.

Therefore, in the present work, we developed
a basic framework NLP4Health, a unified and
reproducible pipeline for conducting two differ-
ent tasks, 1) multilingual clinical dialogue sum-
marization and 2) Question Answering (QA).
The system fine-tunes google/mt5-base (Xue
et al., 2021) by employing Low-Rank Adaptation
(LoRA) (Hu et al., 2021), a lightweight method
that injects low-rank matrices into attention projec-
tions (q/k/v/o) to enable efficient adaptation with

93



less than 1% additional parameters. This approach
allows efficient scaling across ten Indian languages
without full model retraining. Given an input di-
alogue, NLP4Health produces three complemen-
tary outputs: (i) a fluent English summary, (ii) an
English structured key–value (KnV) JSON sum-
mary, and (iii) QA responses in the dialogue’s orig-
inal source language.

On the other hand, we evaluate our system
using automatic metrics such as ROUGE (Lin,
2004), BERTScore (Zhang et al., 2020), and
COMET (Rei et al., 2020), which capture both lex-
ical and semantic alignment. The results demon-
strate that our LoRA-based fine-tuning achieves
competitive multilingual performance with dramat-
ically fewer trainable parameters. Our model and
adapter weights, tokenizer artifacts, and inference
scripts are released publicly for research repro-
ducibility.

The major contributions are listed as follows:
1. We propose a parameter-efficient multilingual

pipeline for clinical dialogue summarization and
QA, leveraging mT5 and LoRA to support ten
different Indian languages.

2. We demonstrate high-quality summarization
and structured extraction on noisy, code-mixed
data, validated by automatic evaluation metrics.

3. We provide a publicly available set of LoRA
adapters and inference scripts to facilitate repro-
ducible research in multilingual healthcare NLP.

2 Related Work
Prior research on clinical dialogue summarization
and understanding has largely focused on English
datasets such as MIMIC-III (Johnson et al., 2016)
and automatic SOAP note generation (Finlayson
and et al., 2018). Multilingual text generation has
advanced through models such as mT5 (Xue et al.,
2021) and mBART (Liu and et al., 2020), while
parameter-efficient approaches including adapters
and LoRA (Hu et al., 2021) have enabled scalable
domain adaptation with reduced compute.

Closer to the Indian clinical context, recent
shared-task efforts led by Dipti Misra Sharma
and Parameswari Krishnamurthy introduced mul-
tilingual clinical dialogue resources and bench-
marks (Sharma et al., 2024; Krishnamurthy et al.,
2023), highlighting challenges such as code-
mixing, noisy transcripts, and schema-based key–
value extraction. These works emphasize the

Raw Data (10 languages)
Dialogues, QA blanks, references

Preprocessing: JSONL re-
pair, tokenization, normalization

Training: mT5 + LoRA adapters
(r=8, α=16, 2 epochs)

Inference: Generate Sum-
mary_Text, Summary_KnV, QnA

Postprocessing: JSON repair, format outputs

Figure 1: Pipeline architecture: modular stages for pre-
processing, fine-tuning, and inference.

need for robust, low-resource clinical NLP systems
across diverse Indian languages.

Our work builds on this line of research by devel-
oping a unified mT5–LoRA framework tailored to
multilingual clinical summarization and QA, aim-
ing to provide an efficient and reproducible so-
lution for low-resource, patient-centric healthcare
communication.

3 System Architecture
The pipeline has three modular stages: pre-
processing, fine-tuning, and multilingual inference.
Figure 1 shows the end-to-end architecture.

3.1 Dataset and Pre-processing
Dataset. The data was provided by the organiz-
ers of shared-task in train and development splits
across ten various Indian languages: Assamese,
Bangla, Dogri, English, Gujarati, Hindi, Kannada,
Marathi, Tamil, and Telugu. Main run counts:
Train Summaries: 52 225; Train QA: 176 647; Dev
Summaries: 900; Dev QA: 12 344. The test split
was also provided by the task organizers.

Preprocessing pipeline
• JSONL repair: detects and wraps malformed

lines into valid JSON objects.

• Dialogue assembly: concatenates speaker turns
with newline separators and annotate speaker
roles where available.

• Tokenization: adopts the supplied Sentence-
Piece model; sets the PAD token to EOS when
missing.

• Chunked processing: processes data into vari-
ous chunks (e.g., 2 000 examples) to limit mem-
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ory spikes.

• QA blanks ingestion: reads question templates
from <dialogue>_questions_blank.json
and attaches them to dialogue records for
inference.

3.2 Model, Training, and Inference
Our system adopts a unified prompt-driven multi-
lingual framework using google/mt5-base (Xue
et al., 2021) with parameter-efficient Low-Rank
Adaptation (LoRA) (Hu et al., 2021). This design
enables scalable fine-tuning across ten Indian lan-
guages while maintaining less than 1% additional
trainable parameters. The following subsections
describe the model, training configuration, infer-
ence strategy, and illustrative outputs.

2.2.1 Model and LoRA Configuration
LoRA adapters are applied to all attention pro-
jections (q/k/v/o) with r=8, α=16, and dropout
= 0.05. This adds only 1.77M parameters (∼0.3%
of mT5) and cuts GPU memory use by ∼70%, of-
fering an efficient yet expressive setup for multilin-
gual healthcare NLP.

2.2.2 Training Setup
We fine-tuned the model using Hug-
gingFace’s Seq2SeqTrainer with
predict_with_generate=True. Key hy-
perparameters were: 2 epochs, effective batch
size 32 (per-device 16, gradient accumulation=2),
learning rate 5 × 10−6 (AdamW), 1500 warmup
steps, and label smoothing 0.05. Inputs and
outputs were truncated to 384 and 192 tokens
respectively. Mixed precision (bf16/FP16) and
gradient checkpointing reduced memory usage.
All experiments ran on a single NVIDIA A100
(40GB), completing in ∼11 GPU-hours. Re-
leased artifacts include LoRA adapter weights,
configuration files, and tokenizer assets.

2.2.3 Unified Prompt-Based Inference
All tasks—summarization, key–value extraction,
and QA—were cast as text-to-text generation.
Prompts followed simple templates such as: “sum-
marize: <dialogue>”, “extract fields: <dia-
logue>”, and “answer in <language>: <dia-
logue> + <question>”. A single model produced
(i) English summaries, (ii) structured JSON (KnV),
and (iii) QA answers. Generation used greedy de-
coding (max 192 tokens). Post-processing vali-
dated JSON, normalized whitespace, and repaired

minor bracket issues. Outputs followed the shared-
task directory structure.

Discussion. This unified LoRA-augmented mT5
framework enables efficient multilingual adapta-
tion across free-text, structured, and QA tasks. De-
spite significant parameter reduction, it preserves
strong semantic accuracy and remains lightweight
for low-resource environments. Implementation
and decoding details are provided in Appendix A.

4 Evaluation

We report both development and official test-set re-
sults provided by the shared-task organizers. All
metrics were computed using the task evaluation
suite across ten Indian languages. Table 1 presents
aggregated structured (KnV) results, and Table 2
summarizes the official test-set performance for
QA, text summarization, and KnV extraction. Our
system achieved a macro-average QA F1 = 0.41,
Text BERTScore = 0.78, and KnV F1 = 0.13 on the
test set—consistent with the trends observed on the
development split.

Metric Value Note
KnV F1 (avg) 0.13 Measures structured ex-

traction consistency across
multiple key–value fields;
many errors are surface-
form mismatches (dates,
units).

KnV BERTScore-F1 0.70 Indicates semantic align-
ment between generated
and reference entries, ro-
bust to lexical paraphrase.

KnV COMET 0.51 Evaluates contextual se-
mantic adequacy; useful
for cross-lingual quality
assessment.

Table 1: Aggregated structured (KnV) evaluation met-
rics.

Table 2 summarizes the official test-set perfor-
mance across ten languages. English, Telugu, and
Kannada achieve the highest QA F1, while As-
samese and Marathi remain low due to limited
training data. Structured KnV extraction yields a
modest F1 (≈ 0.13) but strong BERTScore (≈ 0.77),
indicating semantic but not lexical alignment.

The relatively low KnV F1 arises from mis-
matched field names and variations in units and
date formats. Future work should incorporate
schema-guided decoding and value normalization
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Lang QA F1 QA B-F1 QA COMET Text F1 Text B-F1 KnV F1
Marathi 0.21 0.81 0.20 0.19 0.77 0.13
Kannada 0.41 0.82 0.31 0.17 0.78 0.13
Gujarati 0.31 0.82 0.30 0.18 0.77 0.12
English 0.67 0.82 0.45 0.11 0.78 0.13
Telugu 0.57 0.84 0.41 0.13 0.73 0.12
Tamil 0.40 0.82 0.35 0.18 0.76 0.13
Bangla 0.40 0.82 0.32 0.17 0.76 0.14
Hindi 0.46 0.84 0.29 0.11 0.74 0.14
Assamese 0.20 0.79 0.23 0.19 0.78 0.13

Table 2: Official test-set results for QA, Text Summarization, and Structured (KnV) extraction.

to improve structured extraction accuracy. Overall,
the system maintains consistent multilingual per-
formance with limited overfitting across languages.

4.1 Error Case Analysis
A representative test-set example illustrates the
main failure modes. The input dialogue clearly
states: “I finished radiotherapy last month… I’m
Rakesh Sharma, 45… my throat still feels dry”, and
the patient asks: “After a few years, can follow-ups
shift from three months to six months or yearly?”
However, the model-generated outputs were:

QnA: “throat inflammation, throat pain...
we’ll help you maintain your diet” Sum-
mary_KnV: "age": null, "sex": null,
"visit.type": null Summary_Text: repet-
itive phrases (e.g., “plan a detailed plan for a
plan”)

These errors reveal three recurring patterns: (1)
Intent failure: the QA answer ignores the schedul-
ing/triage question and produces irrelevant symp-
tom phrases. (2) Slot extraction failure: explicit
details (“45”, “Rakesh Sharma”) are missed, yield-
ing null in structured fields. (3) Repetition & hal-
lucination: greedy decoding causes looping and
insertion of unsupported symptoms.

To mitigate these, the revised system incor-
porates role-aware prompts, repetition-controlled
decoding, and constrained templates for demo-
graphic and visit fields. Additional detailed ex-
amples and per-field error counts appear in Ap-
pendix A.

5 Conclusion
We present a compact mT5–LoRA pipeline
for multilingual clinical summarization and QA,
achieving strong semantic results but facing chal-
lenges in structured extraction and low-resource
settings. We plan to incorporate factuality evalu-
ation and clinical terminology alignment in future
versions.
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Limitations
Our work is subject to several limitations. Dataset:
The shared-task dataset is unevenly distributed
across languages, with low-resource languages
(e.g., Assamese, Marathi) having fewer training
examples and noisier, code-mixed transcriptions.
Certain dialogues also contain incomplete sen-
tences, spelling inconsistencies, and irregular for-
matting, which affects both training stability and
structured extraction. Model: The mT5–LoRA
configuration was trained with a maximum in-
put length of 384 tokens due to GPU constraints,
making it less effective for long clinical consulta-
tions. LoRA adaptation may also underfit struc-
tured fields, leading to missing or hallucinated
slots in the KnV output. Additionally, role con-
fusion (patient vs. health worker) occasionally ap-
pears in highly code-mixed settings. Evaluation
Metrics: Automatic metrics such as ROUGE, F1,
and exact match do not fully capture clinical fac-
tuality or medical correctness. While BERTScore
and COMET evaluate semantic similarity, they re-
main insensitive to domain-specific errors such as
incorrect medications, swapped symptoms, or mis-
normalized dates. A more clinically grounded eval-
uation (e.g., expert review, schema-level scoring)
is needed for deployment.

Ethical Considerations
This system is intended strictly for research. Au-
tomatically generated summaries or answers must
not be used for clinical decision-making with-
out human oversight. All datasets should be de-
identified, and any downstream usage must com-
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ply with institutional ethics and data-governance
guidelines.

References
Samuel Finlayson and et al. 2018. Clamp: A toolkit

for clinical natural language processing. In AMIA
Annual Symposium Proceedings.

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, and Sanjeev Arora.
2021. Lora: Low-rank adaptation of large language
models. Preprint, arXiv:2106.09685.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-
wei H. Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G. Mark. 2016. Mimic-iii,
a freely accessible critical care database. Scientific
Data, 3:160035.

Parameswari Krishnamurthy, Dipti Misra Sharma,
R. Singh, and 1 others. 2023. Clinical nlp resources
and benchmarks for indian languages. In Proceed-
ings of the Workshop on Healthcare NLP for Indian
Languages. Workshop paper; proceedings not in-
dexed in ACL Anthology.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Yinhan Liu and et al. 2020. Multilingual denoising pre-
training for neural machine translation. In ACL 2020.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702. ACL.

Dipti Misra Sharma, Parameswari Krishnamurthy,
G. Rao, and 1 others. 2024. Nlp-ai4health shared
tasks on multilingual clinical dialogue summariza-
tion and question answering. In Proceedings of the
NLP-AI4Health Workshop. Workshop paper; pro-
ceedings not indexed in ACL Anthology.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mt5: A massively multilin-
gual pre-trained text-to-text transformer. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3763–3775, Online. ACL.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert. In International Con-
ference on Learning Representations (ICLR). Open-
Review entry.

Appendix A: Additional Error Analysis
Detailed Example. For the dialogue where the
patient states: “I finished radiotherapy… I am
Rakesh Sharma, 45… my throat still feels dry”
and asks about reducing follow-up frequency, the
model produced: (i) a symptom-based QA answer
unrelated to scheduling, (ii) a Summary_KnV with
all key fields set to null, and (iii) a repetitive
Summary_Text containing unsupported symptoms
(e.g., “stomach symptoms, throat edema”).

These failures arise from weak intent grounding,
missed entity spans, and greedy decoding loops.

Future versions will incorporate intent-aware
prompts, schema-constrained decoding, and entity-
aligned training examples to reduce these system-
atic errors.

Error Analysis (Summary). Across the test set,
the dominant error category was missed enti-
ties (21.5%), typically caused by implicit men-
tions, surface-form variation, and noise in low-
resource languages. Intent mismatch (14.2%) oc-
curred when long or underspecified patient ques-
tions lacked strong grounding, leading the model
to output generic or irrelevant symptom-based re-
sponses. The system also showed spurious symp-
tom hallucination (12.1%) driven by lexical co-
occurrence patterns in the training data, and repe-
tition loops (8.7%) arising from greedy decoding
under uncertainty. These errors collectively high-
light gaps in intent modeling, entity robustness,
and decoding stability.

Post-processing. Outputs were automatically
cleaned via: JSON validation (json.loads()),
bracket repair, whitespace and Unicode normal-
ization, and script-aware QA language checks.

Reproducibility. All LoRA adapters, to-
kenizer files, inference scripts, and decod-
ing configurations are publicly released at
https://huggingface.co/MoutushiRoy/
nlp4health_model and https://github.
com/roymoutushi/NLP4Health/blob/main
enabling full reproduction of our training and
inference pipeline.
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