Multilingual Clinical Dialogue Summarization and Information Extraction with Qwen-1.5B LoRA

Kunwar Zaid, Amit Sangroya, Jyotsana Khatri


Abstract
This paper describes our submission to theNLP-AI4Health 2025 Shared Task on multi-lingual clinical dialogue summarization andstructured information extraction. Our systemis based on Qwen-1.5B Instruct fine-tuned withLoRA adapters for parameter-efficient adapta-tion. The pipeline produces (i) concise Englishsummaries, (ii) schema-aligned JSON outputs,and (iii) multilingual Q&A responses. TheQwen-based approach substantially improvessummary fluency, factual completeness, andJSON field coverage while maintaining effi-ciency within constrained GPU resources.
Anthology ID:
2025.nlpai4health-main.6
Volume:
NLP-AI4Health
Month:
December
Year:
2025
Address:
Mumbai, India
Editors:
Parameswari Krishnamurthy, Vandan Mujadia, Dipti Misra Sharma, Hannah Mary Thomas
Venues:
NLP-AI4Health | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
69–74
Language:
URL:
https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.nlpai4health-main.6/
DOI:
Bibkey:
Cite (ACL):
Kunwar Zaid, Amit Sangroya, and Jyotsana Khatri. 2025. Multilingual Clinical Dialogue Summarization and Information Extraction with Qwen-1.5B LoRA. In NLP-AI4Health, pages 69–74, Mumbai, India. Association for Computational Linguistics.
Cite (Informal):
Multilingual Clinical Dialogue Summarization and Information Extraction with Qwen-1.5B LoRA (Zaid et al., NLP-AI4Health 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.nlpai4health-main.6.pdf