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Abstract

The human body is highly interconnected,
where a diagnosis in one organ can influ-
ence conditions in others. In medical re-
search, graphs (such as Knowledge Graphs
and Causal Graphs) have proven useful for
capturing these relationships, but construct-
ing them manually with expert input is both
costly and time-intensive, especially given the
continuous flow of new findings. To address
this, we leverage the extraction capabilities
of large language models (LLMs) to build
the MultiOrgan Diagnosis Knowledge Graph
(MOD-KG). MOD-KG contains over 21,200
knowledge triples, derived from both text-
books ( 13%) and carefully selected research
papers (with an average of 444 citations each).
The graph focuses primarily on the heart, lungs,
kidneys, liver, pancreas, and brain, which are
central to much of today’s multimodal imaging
research. The extraction quality of the LLM
was benchmarked against baselines over 1000
samples, demonstrating reliability.Our dataset
is publicly available'.

1 Introduction

The human body is a deeply interconnected system,
where dysfunction in one organ often cascades into
effects on others. Capturing these inter-organ re-
lationships in a structured form has long been a
goal in medical informatics. Graph-based represen-
tations—most notably Knowledge Graphs (KGs)
and Causal Graphs (CGs)—have emerged as pow-
erful tools to encode relationships among diseases,
risk factors, and treatments. They support explo-
ration of associations, causal pathways, and rea-
soning across complex medical conditions, and
have already been applied in tasks such as clinical
decision support, drug repurposing, treatment dis-
covery, medical imaging report generation, causal
drug prioritization, comorbidity network analysis,

"https://github.com/anas2908/MOD-KG

9

etc. Despite their promise, building such graphs
remains a bottleneck.

Manual curation requires substantial expert time,
struggles to keep pace with the constant influx of
biomedical knowledge, and is difficult to scale. To
address this, we present the Multi-Organ Diag-
nosis Knowledge Graph (MOD-KG), compris-
ing 21,200+ triples extracted from textbooks and
high-quality research papers, focusing on six key
organs: heart, lungs, kidneys, liver, pancreas, and
brain—which are central to many clinical diag-
noses and multimodal imaging studies.

MOD-KG enables a wide range of downstream
applications:

1. Diagnostic support: for example, linking kid-
ney disease with heart failure to prompt car-
diovascular monitoring.

2. Multimodal imaging: contextualizing CT find-
ings of pulmonary fibrosis with associated
liver comorbidities.

3. Causal reasoning: tracing pathways such as
diabetes — kidney disease — stroke.

4. Comorbidity discovery: uncovering links such
as between cirrhosis and hepatic encephalopa-
thy.

5. Diagnosis omission detection: flagging over-
looked risks, e.g., pneumonia noted in a report
but sepsis risk not considered.

Global Patient Safety Report 2024 by WHO?,
notes that most adults will experience at least one
diagnostic error in their lifetime and highlights tech-
nology based systems as promising interventions.
Similarly, (Panagioti et al., 2019) found that 16%
of preventable patient harm is linked to diagnostic
errors, with diagnosis omission being especially
prevalent. Detailed use cases are in Section 7

2https: //www.who.int/publications/i/item/
9789240095458
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Our work makes the following key contributions:

* We introduce MOD-KG, the first large-scale
Multi-Organ Diagnosis Knowledge Graph,
consisting of over 21,200 high-quality knowl-
edge triples covering six critical organs (heart,
lungs, kidneys, liver, pancreas, and brain).

We propose a pipeline for extracting medi-
cal knowledge triples from textbooks and re-
search papers, benchmark the extraction qual-
ity against baseline methods over 1000 sam-
ples, and release MOD-KG along with all as-
sociated metadata for the community.

2 Related Work

Biomedical knowledge graphs (BKGs) integrate
diverse sources such as databases, ontologies, and
literature to represent entities (e.g., diseases, drugs,
genes) and relations, supporting applications like
question answering, drug repurposing, and deci-
sion support via path-based or embedding-based
reasoning (Zhu et al., 2020; Lu et al., 2025; Ar-
senyan et al., 2024). In drug discovery, KG-based
approaches leverage drug—disease—gene networks
with path, embedding, and causal methods to prior-
itize candidates and explain mechanisms, exempli-
fied by RPath (Zhu et al., 2020; Ma et al., 2023a;
Zhu et al., 2023; Domingo-Ferndndez et al., 2022).
In radiology and multimodal medicine, organ- or
modality-specific KGs enhance vision-language
models for accurate report generation (Kale et al.,
2023b,a), while automated extraction pipelines
(e.g., SemMedDB, SemRep, PubTator) and hy-
brid rule-ML methods improve coverage and preci-
sion for specialized biomedical relations (Kilicoglu
etal., 2020; Wei et al., 2019; Lai et al., 2023; Pawar
et al., 2021). Large language models have further
enabled zero/few-shot and ontology-guided triplet
extraction pipelines for text-to-KG construction,
reducing annotation costs but facing challenges
in calibration, factuality, and entity standardiza-
tion (Papaluca et al., 2024; Mo et al., 2025; Kho-
rashadizadeh et al., 2024).

MOD-KG distinguishes itself as an organ-
centric graph encoding both intra- and inter-organ
relations, automatically extracted from curated text-
books and highly cited research, with 21.7k triples
across six major organs, supporting applications in
imaging context, comorbidity discovery, and omis-
sion detection.
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3 MultiOrgan Diagnostic Knowledge
Graph (MOD-KG)

3.1 Definition and representation

We represent inter- and intra-organ diagnostic
knowledge initially as quintuples of the form

Q

where d; is a diagnosis (or clinical concept), o; is
the organ in which d; occurs, and r is a relation
(e.g., “may cause”, “is associated with”, “increases
risk of”’). Quintuples explicitly bind each diagno-
sis to an organ, which reduces ambiguity when
the same diagnosis label can appear in multiple
anatomical contexts.

For graph construction we map each quintu-
ple to a canonical triple by collapsing the diag-
nosis+organ pair into a single node identifier via a
canonicalization function ¢(-, -):

Q = (dy1,01,7,d2, 02)
— t = (h,r,t)
with h = ¢(dy,01), t = c(da,02).

<d17 01,7, d27 02>7

The set of all canonical entities (nodes) is denoted
£ and the set of relation types is R. The resulting
knowledge graph is

g - (€7R7 7-)7

where 7 C £ x R x & is the set of extracted
triples. Representative intra- and inter-organ triples
are shown in Table 1 and node examples in Table 2.

3.2 Relation to existing organ-centric work
and embedding strategy

Organ-centric KGs have been shown useful for
multimodal clinical tasks; in particular, Kaveri
Kale et al. construct abdominal-organ knowledge
representations and demonstrate benefits when
these triples are injected into vision—language
pipelines for radiology report generation (Kale
et al., 2023b,a). Following the same spirit of con-
verting structured text extractions into an embed-
dable graph, we produce MOD-KG triples and
compute translational embeddings using TransE
(Bordes et al., 2013) so that MOD-KG is immedi-
ately amenable to downstream neural integration.

Concretely, for each triple (h,r,t) € T we learn
low-dimensional vectors ej,, e;,r € RF with the
TransE scoring function

f(h,?",t) = ”eh"i'r_etH%



Inter Organ Triples

Intra Organ Triples

Cirrhosis in Liver, may cause, Impaired Ventricular Ejection in Heart

Pneumothorax in Lung, may cause, Hypoxia in Lung

NAFLD in Liver, is associated with, Myocardial infarction in Heart

COPD in Lung, contributes to, Emphysema in Lung

COPD in Lung, may lead to, Glomerular Injury in Kidney

Honeycomb Lung, associated with, Rheumatoid Arthritis in Lung

Osteoporosis in Bone, is related to, Emphysema in Lung

Tumor embolism in Heart, associated with, Mild cardiomegaly in Heart

Emphysema in Lung, linked to, Elastolytic changes of the skin

Valvular Heart disease, may cause, Hypoeffective Heart

Severe PLD in Liver, may cause, Elevation in Diaphragm

Aortic Regurgitation in Heart, may cause, Diastolic Murmur in Heart

Sarcoidosis in Spleen, can involve, Cardiac Sarcoidosis in Heart

Glomerulonephritis in Kidney, may lead to, Chronic Inflammation in Kidney

Type 2 diabetes in Pancreas, is associated with, Reduced Lung function

Portal Hypertension in Liver, can lead to, Ascites in Liver

Cancer in Bladder, may cause, Aortic endocarditis in Heart

Pancreatitis in Pancreas, may be caused by, ERCP in Pancreas

Drooling in Mouth, may lead to, Aspiration in Lung

Neurovascular dysfunction in Brain, may cause, Oligemia in Brain

Table 1: Example intra- and inter-organ knowledge triples.

Source Diagnosis Inter-Organ Relation

Inter-Organ Target Diagnosis

Intra-Organ Relation Intra-Organ Target Diagnosis

may cause Cardiac Dysfunction in Heart may induce Cardiac Liver cirrhosis

may cause Q-T Interval Prolongation in Heart may lead to Portal Hypertension

may be associated with | decreased heart rate variability in Heart | may lead to Biliary Cyst (BC)
Liver Cirrhosis may be involved in Cirrhotic Cardiomyopathy in Heart may lead to Fibrosis in Liver

may cause Biliary Cyst (BC) in Gallbladder may be caused by Chronic Hepatitis B (CHB)

may be associated with | Pulmonary hypertension in Lung may be caused by Hepatocellular Necrosis

may lead to Hepatorenal Syndrome in Kidney may be caused by Hepatocellular Regeneration

may involve Cardiac Sarcoidosis in Heart may cause Pleural effusions

may accumulate in Hilar Lymph Node Sarcoidosis is similar to Talc granulomatosis

may cause Congestive heart failure may be associated with | Pulmonary hypertension

Sarcoidosis in Lung | may cause Pulmonary Hypertension in Heart may lead to Pneumothorax in Lung

may cause Granulomatous Vasculitis in Heart increase risk of Pulmonary embolism

may cause Right Ventricular Hypertrophy in Heart | may cause Aspergillus Lung disease

may cause Cardiac Involvement in Heart may cause Bronchiectasis

Table 2: Organ-centric source—target triple examples.

Description Statistics retrieval and filtering is summarized in Table 5, and
Total Triples Curated 21770 L. . i .
Redundant Triples 564 the per-organ frequency distribution is reported in
Total Unique Triples 21206 Table 6.
Number of Intra-Organ Triples 16039
Number of Inter-Organ Triples >167 Segmentation and chunking Each document
Number of Unique Relation in Triples | 2794 . .
Number of Unique Diagnosis in Triples | 20581 was Segmented mto overlapplng chunks to reduce
Number of Unique Organs 62 boundary artifacts during extraction. We used

Table 3: Summary statistics of MOD-KG triples.

trained using a margin ranking loss with negative
sampling (standard TransE procedure). These em-
beddings (stored for all h, t € £) convert MOD-KG
from a collection of symbolic triples into a continu-
ously parameterized graph representation. In future
work the learned node/edge features can be con-
sumed by graph neural modules (e.g., Graph Atten-
tion Networks, GATs (Velickovi¢ et al., 2018)) and
injected into model decoders (via cross-attention
or concatenated latent features) for tasks such as
multimodal generation or graph-aware reasoning.

3.3 Methodology

Corpus curation & target coverage We curated
a high-quality corpus of 422 well-cited research pa-
pers (avg. 444 citations) from 219 distinct journals,
covering 109 clinically relevant conditions across
the target organs. The organ keyword set used for
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chunks of length 300 tokens with a 100-token
overlap (heuristically chosen through pilot experi-
ments). This segmentation balances local context
size with the need to avoid splitting relations across
chunk boundaries.

Prompted LLM extraction (2-shot) The
Prompt used in extraction is mentioned in the
section 8. The extraction output examples and
selected triples are shown in Table 1.

Post-processing and canonicalization Raw
quintuples were normalized and canonicalized be-
fore conversion to triples. Canonicalization in-
cluded (i) string normalization, (ii) mapping high-
confidence synonyms to a single canonical node la-
bel, and (iii) light clustering to unify near-duplicate
entities arising from surface variation. After canon-
icalization each quintuple was mapped to a triple as
shown above and duplicate triples were collapsed.

Embedding and storage The deduplicated triple
set 7 (MOD-KG) was embedded with TransE to



produce node and relation vectors for all canonical
entities and relations. These embeddings are stored
alongside the symbolic graph, enabling either (i)
direct graph-based queries over G or (ii) neural con-
sumption (e.g., as initial node features for GATSs)
for downstream models.

Summary Statistics Table 3 presents the over-
all statistics of MOD-KG. Out of 21,770 cu-
rated triples, 564 were redundant, yielding 21,206
unique triples. The graph captures both intra-organ
(16,039) and inter-organ (5,167) relations, span-
ning 2,794 unique relation types, 20,581 unique
diagnoses, and 62 organ categories. These num-
bers highlight the medium scale of MOD-KG while
ensuring high coverage across diverse diagnostic
contexts.

4 Extraction Evaluation

The quality of a knowledge graph is fundamentally
constrained by the quality of its extraction pipeline.
Since MOD-KG was curated from well-cited pa-
pers and textbooks sourced from reputable jour-
nals and publishers, the limiting factor becomes
the accuracy of the extraction itself. We therefore
systematically evaluated whether large language
model (LLM)-based extraction, specifically GPT-
40 (Achiam et al., 2023), can reliably operate in
the medical domain.

Setup. We compared GPT-40 extraction against
classical IE pipelines, including spaCy, DREEAM
(Ma et al., 2023b), and OpenlE (Vasiliev, 2020;
Zhou et al., 2022). For each method we sam-
pled 1000 quintuples, stratified across organs, and
asked a practicing medical doctor to annotate cor-
rectness with respect to both medical faithfulness
and relation accuracy. This provided a controlled
human benchmark for extraction quality.

Results. Table 4 summarizes the comparative re-
sults. GPT-40 achieved the highest faithfulness,
substantially outperforming both heuristic IE base-
lines and the smaller LLM. Classical pipelines of-
ten failed to capture domain-specific terminology
or produced fragmented triples. In contrast, GPT-
40 consistently generated medically coherent re-
lations, though with some errors in rare disease
contexts.

Cost. The full extraction across the corpus re-
quired approximately $730 of OpenAI API usage
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for GPT-40, which was acceptable given the quality
gains relative to baselines.

Method Faithfulness (% correct)
GPT-40 (ours) 96.2
spaCy 39.1
DREEAM 48.9
OpenlE 66.9

Table 4: Faithfulness comparison of extraction methods
(1000-sample evaluation with human annotation). GPT-
40 achieves the highest medical accuracy.

5 Conclusion

In this work, we presented MOD-KG, a multi-
organ diagnostic knowledge graph constructed
from high-quality biomedical corpora, compris-
ing both textbooks and well-cited research papers.
By extracting quintuples and converting them into
triples, MOD-KG captures both intra- and inter-
organ relationships across six major organ sys-
tems. Through post-processing and embedding
with TransE, we produced a resource that is both
interpretable and readily usable for neural con-
sumption. Our evaluation, based on 1000 expert-
annotated samples, demonstrated that GPT-40 sub-
stantially outperforms classical IE pipelines in med-
ical extraction quality, albeit at a higher computa-
tional cost.

6 Limitations and Ethical Considerations

MOD-KG, built from high-quality textbooks and
research papers, is limited by the scope of its
source corpus, which may omit rare conditions,
emerging knowledge, or community-specific diag-
nostic practices. Although LLLM-based extraction
achieves high accuracy, it can occasionally halluci-
nate, particularly for underrepresented terminolo-
gies, and decisions may collapse medical subtypes
into broader categories. As a research resource,
not a clinical decision support system, MOD-KG
is not intended for direct patient care. Addition-
ally, biases present in published literature, such as
overrepresentation of certain populations, diseases,
or treatment paradigms, may propagate into the
graph. Therefore, its use is intended for research,
benchmarking, and as a substrate for developing
multimodal models.
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Appendix
7 Use Cases of MOD-KG

The MultiOrgan Diagnostic Knowledge Graph
(MOD-KG) offers a structured representation of
inter- and intra-organ diagnostic relationships, mak-
ing it applicable to a wide range of clinical and
computational settings. Below, we outline several
key use cases where MOD-KG can contribute to
improved results and insights.

7.1 Diagnostic Omission Detection

A common challenge in clinical workflows is the
inadvertent omission of potential diagnoses. By
encoding inter-organ dependencies (e.g., “Liver
Cirrhosis — Kidney Failure”), MOD-KG can flag
missing diagnoses in structured or free-text reports.
For example, if a patient record documents Cirrho-
sis but omits possible Renal Dysfunction, MOD-
KG can highlight the omission, prompting physi-
cians to investigate further. This can reduce diag-
nostic errors and improve patient safety.

7.2 Multimodal Imaging Report
Augmentation

MOD-KG can be paired with vision—-language mod-
els for radiology report generation. For instance,
in chest X-ray interpretation, if a model predicts
Cardiomegaly, MOD-KG can suggest related find-
ings such as Pulmonary Edema or Pleural Effusion,
thereby producing more complete and consistent re-
ports. Such augmentation mirrors the use of organ-
centric KGs in models like KGVL-BART (Kale
et al., 2023b,a), but extends coverage across multi-
ple organs.

7.3 Comorbidity Analysis and Patient
Stratification

By representing co-occurrence and causal relation-
ships among diagnoses, MOD-KG can support
stratification of patient cohorts. For example, in a
hospital database, patients diagnosed with Diabetes
Mellitus and Hypertension can be linked to MOD-
KG’s paths leading to Chronic Kidney Disease, en-
abling earlier identification of at-risk populations.
This is particularly valuable for designing preven-
tive interventions and population-scale studies.

7.4 Causal Reasoning in Disease Progression

MOD-KG encodes not only co-occurrence but also
directional relationships. This enables causal rea-
soning over progression paths. For instance, a
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path such as Hypertension — Left Ventricular Hy-
pertrophy — Heart Failure allows models to in-
fer plausible progressions and to simulate hypo-
thetical interventions. This could support clinical
decision-making by providing mechanistic expla-
nations rather than surface-level associations.

7.5 Clinical Decision Support Systems (CDSS)

CDSS often rely on isolated rules or black-box pre-
dictions. MOD-KG provides an interpretable layer
of structured knowledge that can complement pre-
dictive models. For example, when a CDSS flags
arisk of Stroke, MOD-KG can provide context by
surfacing associated conditions such as Atrial Fib-
rillation or Carotid Atherosclerosis. This improves
both physician trust and actionability of CDSS out-
puts.

7.6 Education and Training

Medical students and residents often struggle
with connecting knowledge across organ systems.
MOD-KG can serve as a visual and interactive
learning resource, showing how diagnoses in one
system cascade into others (e.g., COPD in Lungs
— Pulmonary Hypertension — Right Heart Fail-
ure). This supports a systems-based approach to
clinical education.

7.7 Foundation for Multimodal Extensions

Beyond text, MOD-KG could be extended to in-
tegrate imaging or lab-test signals. For example,
embedding MOD-KG into a multimodal pipeline
could allow a model to jointly reason over lab ab-
normalities (e.g., elevated creatinine), imaging find-
ings (e.g., renal cysts), and clinical diagnoses, pro-
viding a holistic diagnostic assistant.

8 LLM Extraction Prompt

Extraction was performed with an LLM using a 2-
shot prompting strategy. For each chunk we asked
the model to emit structured quintuples in a fixed
JSON format.

Please analyze the following text to
identify organ-to-organ diagnosis
relationships,whether they occur between
different organs or within the same organ,
using only the information provided in the
text. Structure the output strictly in the
JSON format specified below with a dummy
2-shot example. If no such relationships
can be derived from the text, return an



myocardial infarction
tetralogy of fallot

coronary heart disease
mitral valve regurgitation
atrial septal defect

tricuspid regurgitation
pulmonary embolism
ventricular septal defect
cardiac sarcoidosis

patent foramen ovale

patent ductus arteriosus
wolff-parkinson white syndrome
cardiac tamponade

aortic stenosis

mitral valve prolapse
cardiomegaly

enlarged cardiomediastinum

goodpasture syndrome
lung cancer
pneumothorax

cystic fibrosis

pleuritis
hydropneumothorax
silicosis
histoplasmosis
bronchiectasis

ARDS

tuberculosis
pulmonary sarcoidosis
pulmonary hypertension
cor pulmonale
mesothelioma
atelectasis
consolidation

edema

lung lesion

lung opacity

pleural effusion

HUS

HSP

hypertensive nephrosclerosis
lupus nephritis

kidney cancer

kidney stones

nephrotic syndrome
obstructive nephropathy
vasculitis

pyelonephritis

post-cystic kidney disease
papillary necrosis
proteinuria

gilbert syndrome
crigler-najjar syndrome
primary biliary cholangitis
drug-induced liver injury
amebic liver abscess
portal vein thrombosis
caroli’s disease
choledochal cysts
polycystic liver disease
viral hepatitis d
budd-chiari syndrome
acute hepatic failure
hepatoblastoma
hepatitis e

Heart Keywords Lungs Keywords Kidney Keywords Liver Keywords Brain Keywords Pancreas Keywords
pericarditis COPD acute kidney injury hepatitis b Encephalitis cystic fibroma

angina pectoris asthma alport syndrome cirrhosis Huntington’s disease | pancreatic cancer

atrial fibrillation emphysema amyloidosis liver cancer Epilepsy pancreatitis
hypertension chronic bronchitis ADPKD fatty liver Cerebral palsy hemorrhagic pancreatitis
cardiomyopathy pneumonia ESRD liver fibrosis Diabetic neuropathy | glucagonoma

heart failure pulmonary hypertension | FSGS hemochromatosis Vascular dementia diabetes mellitus
endocarditis pulmonary embolism chronic kidney disease wilsons disease ascites

annular pancreas
pancreatic agenesis
pancreatic fistula

Table 5: Keywords used for MOD-KG corpus curation.

Organ Frequency | Organ Frequency | Organ Frequency | Organ Frequency
Heart 16044 Kidney 6401 Lung 5676 Liver 4833
Brain 3774 Pancreas 1960 Skin 423 Eye 342
Bone 302 Skeletal Muscle 246 Thyroid 244 Stomach 211
Artery 165 Spleen 160 Joint 117 Nose 115
Colon 102 Bladder 100 Spinal Cord 97 Adrenal Gland 96
Testis 78 Hypothalamus 70 Bone Marrow 67 Uterus 65
Small Intestine 62 Gallbladder 60 Cerebellum 43 Nerve 39
Mouth 39 Vein 38 Pituitary Gland 38 Diaphragm 34
Ovary 32 Cervix 31 Lymph Node 30 Bronchus 27
Ear 25 Large Intestine 25 Prostate 24 Rectum 24
Parathyroid Gland 18 Salivary Gland 16 Ureter 14 Penis 13
Tooth 13 Placenta 12 Mesentery 8 Appendix 8
Capillary 8 Scrotum 8 Vagina 6 Fallopian Tube 6
Larynx 5 Subcutaneous Tissue 5 Urethra 4 Nasal Cavity 2
Trachea 2 Tonsil 1 Pharynx 1 Nail 1
Seminal Vesicle 1 Tongue 1 Others 0

Table 6: Organ-wise distribution of entities in MOD-KG.

empty JSON object.

L

"organ1”: "Heart",

"diagnosis1”: "Pericarditis”,
"relation”: "may cause”,

"organ2": "Lungs",
"diagnosis2"”: "Retrosternal Chest Pain’

3
{

"organ1”: "Heart",

]

We operated the extractor at the chunk level
across the corpus and collected the resulting quintu-
ples for downstream processing. We used GPT-40
as the extraction engine and compared its output
against heuristic and classical IE pipelines (e.g.,

spaCy, DREEAM, OpenlE) and literature mining
baselines (SemRep / PubTator) to guide our choice

of extractor (Achiam et al., 2023; Vasiliev, 2020;
Ma et al., 2023b; Zhou et al., 2022; Kilicoglu et al.,

2020; Wei et al., 2019).

"diagnosis1”: "Pericardial Effusion”,
"relation”: "may lead to",

"organ2": "Heart",

"diagnosis2": "Cardiac Tamponade”
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