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Abstract

This paper presents a multimodal emotion anal-
ysis framework designed to enhance patient-
centric healthcare communication and sup-
port clinical decision-making. Our system ad-
dresses automated patient emotion monitor-
ing during consultations, telemedicine sessions,
and mental health screenings by combining
audio transcription, facial emotion analysis,
and text processing. Using emotion patterns
from the CREMA-D dataset as a foundation
for healthcare-relevant emotional expressions,
we introduce a novel emotion-annotated text
format “[emotion] transcript [emotion]” inte-
grating Whisper-based audio transcription with
DeepFace facial emotion analysis. We sys-
tematically evaluate eight transformer archi-
tectures (BERT, RoBERTa, DeBERTa, XLNet,
ALBERT, DistilBERT, ELECTRA, and BERT-
base) for three-class clinical emotion classifi-
cation: Distress/Negative (anxiety, fear), Sta-
ble/Neutral (baseline), and Engaged/Positive
(comfort). Our multimodal fusion strategy
achieves 86.8% accuracy with DeBERTa-v3-
base, representing a 12.6% improvement over
unimodal approaches and meeting clinical re-
quirements for reliable patient emotion detec-
tion. Cross-modal attention analysis reveals
facial expressions provide crucial disambigua-
tion, with stronger attention to negative emo-
tions (0.41 vs 0.28), aligning with clinical prior-
ities for detecting patient distress. Our contribu-
tions include emotion-annotated text represen-
tation for healthcare contexts, systematic trans-
former evaluation for clinical deployment, and
a framework enabling real-time patient emo-
tion monitoring and emotionally-aware clinical
decision support.

1 Introduction

Patient emotion recognition is fundamental to qual-
ity healthcare delivery, enabling clinicians to iden-
tify distress, anxiety, and engagement levels that
patients may not explicitly communicate during

consultations. In healthcare settings, missed emo-
tional cues can indicate mental health issues, treat-
ment non-compliance, or communication barri-
ers, particularly critical in telemedicine and cross-
cultural healthcare environments where traditional
verbal and visual indicators become limited. Cur-
rent healthcare systems lack robust tools for real-
time patient emotion monitoring, creating gaps in
patient-centered care that automated multimodal
emotion analysis can address.

Existing emotion recognition approaches typi-
cally focus on single modalities audio, visual, or
textual, missing the rich complementary informa-
tion essential for understanding complex patient
emotional states. Recent advances in transformer
architectures have demonstrated remarkable suc-
cess in natural language processing tasks, yet their
systematic application to healthcare-oriented multi-
modal emotion recognition remains underexplored,
particularly for clinical deployment scenarios.

Current multimodal emotion recognition sys-
tems employ sophisticated fusion strategies,
with Cross-Modal Transformers (CMT) showing
promise across benchmark datasets (Khan et al.,
2025). However, existing approaches lack system-
atic evaluation for healthcare applications and fail
to leverage multimodal integration in formats suit-
able for clinical decision support systems.

This paper addresses these healthcare commu-
nication challenges by introducing a novel multi-
modal emotion analysis framework designed for
patient-centric care contexts. Our key innovation
lies in the emotion-annotated text format “[emo-
tion] transcript [emotion]” that embeds visual emo-
tional cues directly into textual representations, en-
abling transformer models to learn cross-modal
relationships crucial for detecting patient distress,
engagement, and emotional state transitions during
healthcare interactions.

Our primary contributions include: (1) A
novel emotion-annotated text representation for
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healthcare communication contexts; (2) System-
atic evaluation of eight transformer architectures
for clinical-grade emotion recognition; (3) Anal-
ysis of cross-modal attention mechanisms for pa-
tient emotion detection; (4) Framework enabling
real-time patient emotion monitoring, telemedicine
enhancement, and emotionally-aware clinical deci-
sion support systems.

2 Related Work

2.1 Multimodal Emotion Recognition for
Healthcare

Recent advances in multimodal emotion recogni-
tion have focused on sophisticated fusion strategies
combining audio, visual, and textual information,
with growing applications in healthcare contexts
for patient emotion monitoring and clinical deci-
sion support (Wu et al., 2025; Guo et al., 2024).
Cross-Modal Transformers (CMT) have emerged
as the dominant approach, with MemoCMT achiev-
ing state-of-the-art performance on conversational
datasets that mirror patient-clinician interactions
(Khan et al., 2025).

Recursive Joint Cross-Modal Attention
(RJCMA) represents another significant advance-
ment, iteratively refining intra- and inter-modal
correlations across modalities (Praveen and
Alam, 2024). This approach computes attention
weights based on cross-correlation between
joint multimodal representations and individual
modality features, achieving strong performance
on dimensional emotion tasks relevant for clinical
applications.

Multimodal Transformers have shown effective-
ness in handling unaligned multimodal sequences,
providing robust frameworks for processing tempo-
ral misalignments common in healthcare settings
(Tsai et al., 2019). Advanced fusion strategies show
particular promise for clinical applications, with
recent approaches demonstrating effectiveness in
depression detection (Zhang et al., 2024; Fang et al.,
2023) and patient emotional state monitoring dur-
ing medical consultations.

Healthcare-oriented emotion recognition re-
quires high reliability for detecting negative emo-
tional states, as missing patient distress has more
severe clinical consequences than false positive
detections. Hybrid fusion strategies combin-
ing feature-level and model-level fusion through
Cross-Transformer Encoders generate multimodal
emotional intermediate representations that guide

modal interactions essential for clinical decision
support systems.

Emotion-aware clinical decision support systems
represent an emerging frontier, with recent frame-
works demonstrating integration of affective com-
puting into healthcare decision-making processes
(Vazquez-Rodriguez et al., 2024). These systems
leverage patient emotional states to enhance di-
agnostic accuracy and treatment personalization,
particularly valuable for mental health screening
and patient-clinician interaction optimization dur-
ing consultations and telemedicine sessions.

2.2 CREMA-D Dataset Applications
The CREMA-D dataset, containing 7,442 audio-
visual clips from 91 actors expressing six basic
emotions (anger, disgust, fear, happy, neutral, sad),
provides a robust foundation for multimodal emo-
tion recognition research (Cao et al., 2014). The
dataset’s comprehensive coverage of emotional ex-
pressions has enabled development of models ap-
plicable to healthcare contexts where detecting pa-
tient emotional states is crucial for clinical decision-
making.

Recent transformer-based approaches have
demonstrated strong performance on CREMA-D
and similar emotion recognition benchmarks, es-
tablishing foundations for clinical applications re-
quiring reliable emotion detection.

2.3 Transformer Architectures for Emotion
Recognition

Comparative studies reveal significant performance
differences among transformer architectures for
emotion recognition tasks. RoBERTa has demon-
strated strong performance on fine-grained emo-
tion classification tasks, with F1-scores reaching
0.62-0.84 across different emotion categories (Liu
et al., 2019), while DeBERTa shows superior ef-
ficiency, achieving human-level performance on
SuperGLUE (89.9 vs 89.8 human baseline) with its
disentangled attention mechanism (He et al., 2021).

DistilBERT emerges as an optimal efficiency-
performance trade-off, providing 60% faster infer-
ence than BERT while maintaining competitive
accuracy, crucial for clinical deployment scenar-
ios. Recent comprehensive surveys demonstrate
that transformer-based approaches achieve state-
of-the-art performance across multimodal emotion
recognition tasks (Hazmoune et al., 2024), with
growing applications in healthcare emotion moni-
toring showing promising results for patient emo-
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tional state detection and clinical decision support
applications (Guo et al., 2024).

The evolution of transformer architectures has
been foundational, with BERT establishing the
paradigm for understanding contextual relation-
ships in text (Devlin et al., 2019). Multimodal ap-
proaches combining facial expression recognition
with text analysis have shown promising results for
healthcare emotion monitoring (Reghunathan et al.,
2024).

2.4 Cross-Modal Attention Mechanisms
Cross-modal attention mechanisms enable effective
information exchange between modalities through
learned attention weights. Mathematical formula-
tions typically follow the pattern:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

(1)

CrossAttention(Mi,Mj) = Attention(Qi,Kj , Vj)
(2)

where Q represents queries from one modality
while K and V come from another. Multi-head
attention mechanisms capture different aspects of
cross-modal relationships, while bidirectional at-
tention ensures mutual information exchange be-
tween modalities.

3 Methodology

3.1 Dataset and Preprocessing
Our experiments utilize the CREMA-D dataset,
containing 7,442 audio-visual clips from 91 actors
expressing six basic emotions across four intensity
levels, providing foundational emotional expres-
sion patterns transferable to healthcare communica-
tion contexts. We map these to a three-class clinical
emotion classification: Patient Distress (anger, dis-
gust, fear, sad), Stable State (neutral), and Patient
Engagement (happy).

Dataset and Mapping Justification: While
CREMA-D uses acted emotions, basic emotional
expressions show universal patterns across acted
and spontaneous contexts (Ekman and Friesen,
1971), providing transferable baseline patterns for
clinical fine-tuning. We reduce six emotions to
three clinically-actionable categories: Distress
(anger, disgust, fear, sad) requires immediate clin-
ical attention; Stable (neutral) provides baseline
monitoring; Engaged (happy) indicates therapeutic

rapport. This mapping prioritizes detecting patient
distress over granular classification, aligning with
clinical workflows where missing negative affect
has serious consequences, while maintaining 86.8%
accuracy necessary for deployment.

Audio-to-Text Conversion Each video is pro-
cessed through Whisper ASR (Radford et al.,
2023) to obtain timestamped transcripts, simulating
speech-to-text capabilities essential for real-time
patient monitoring during consultations.

Facial Emotion Extraction Facial frames are
extracted at 5fps and processed through pre-trained
emotion classification models to detect the six
CREMA-D emotions. Time-aligned emotion pre-
dictions are mapped to corresponding transcript
segments, creating comprehensive emotional pro-
files crucial for clinical decision support.

3.2 Emotion-Enhanced Text Annotation

Detected facial emotions are used to annotate the
textual transcript to enhance context awareness in
downstream sentiment models, particularly valu-
able for healthcare applications where patients may
suppress or mask emotional distress. Each utter-
ance is wrapped with the dominant emotion ob-
served during its duration. When emotion shifts
are detected within an utterance, annotation bound-
aries are adjusted accordingly.

Example:

[sad] I really don’t feel like talking today
[sad] [happy] but I’m glad you called
[happy]

This annotated text becomes the input to an aug-
mented sentiment model. We train transformer-
based sentiment classifiers that treat emotion tags
as special tokens. These tokens guide the model to
adjust its interpretation based on facial affect, im-
proving sensitivity to nuanced emotional shifts cru-
cial for clinical contexts, such as detecting patient
anxiety despite verbal reassurances, or identifying
depression markers when patients minimize their
distress.

3.3 Model Pipeline Overview

The full pipeline comprises:

• Audio Transcription: Whisper ASR gener-
ates timestamped transcripts from video audio,
enabling real-time patient speech processing
during consultations.
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• Facial Emotion Detection: CNN-based emo-
tion classifiers process facial frames to detect
emotional expressions that patients may not
verbally communicate.

• Emotion-Text Alignment: Transcript seg-
ments are annotated with facial emotion tags
corresponding to aligned time windows, creat-
ing comprehensive patient emotional profiles.

• Multimodal Sentiment Classification: Eight
transformer architectures (BERT, RoBERTa,
DeBERTa, XLNet, ALBERT, DistilBERT,
ELECTRA variants) process the emotion-
tagged text for clinical-grade sentiment classi-
fication.

Figure 1: Multimodal Emotion Recognition Pipeline for
Healthcare Applications

Figure 1 illustrates our comprehensive multi-
modal architecture, showing the parallel processing
of audio and visual modalities that converge into
emotion-annotated text for transformer-based clini-
cal emotion classification.

3.4 Transformer Architecture Comparison

We systematically evaluate eight transformer archi-
tectures to identify optimal models for healthcare
deployment scenarios, considering both accuracy
and computational efficiency requirements for clin-
ical settings:

BERT variants: bert-base-uncased (110M
parameters), bert-large-uncased (340M parameters)
(Devlin et al., 2019)
RoBERTa: roberta-base (125M parameters)
DeBERTa: microsoft/deberta-v3-base (86M
parameters)

XLNet: xlnet-base-cased (110M parameters)
ALBERT: albert-base-v2 (11M parameters)
DistilBERT: distilbert-base-uncased (66M param-
eters)
ELECTRA: google/electra-base-discriminator
(110M parameters)

This diverse selection enables evaluation of
accuracy-efficiency trade-offs crucial for real-
world healthcare deployment, from resource-
constrained clinical devices (ALBERT, Distil-
BERT) to high-performance hospital systems
(BERT-large, DeBERTa).

3.5 Architecture and Training Details

Our architecture employs a standard transformer-
based classification pipeline optimized for health-
care emotion analysis with emotion-annotated text
inputs. The model architecture consists of:

1. Tokenization: Text inputs tokenized using
model-specific tokenizers with maximum se-
quence length of 256 tokens (suitable for typi-
cal patient utterances during consultations)

2. Transformer Encoder: Pre-trained trans-
former models fine-tuned for clinical emotion
classification

3. Classification Head: Linear layer with soft-
max activation for three-class prediction (Pa-
tient Distress, Stable State, Patient Engage-
ment)

4. Loss Function: Cross-entropy loss with label
smoothing ( = 0.1) to handle clinical emotion
classification uncertainty

Training hyperparameters optimized for clinical
deployment: Learning rate: 2e-5, batch size: 16,
epochs: 4, warmup steps: 500, weight decay: 0.01.
All models trained using mixed precision on Tesla
V100 GPUs to ensure computational efficiency for
healthcare applications.

3.6 Evaluation Metrics

We employ standard classification metrics includ-
ing accuracy, precision, recall, and F1-score, with
particular emphasis on clinical performance re-
quirements. Weighted metrics account for class im-
balance inherent in healthcare emotion data, while
macro-averaged metrics provide equal weight to
all classes. We prioritize recall for Patient Dis-
tress detection, as false negatives (missing patient
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emotional distress) have more serious clinical con-
sequences than false positives. Additionally, we
compute confusion matrices to analyze emotion-
specific performance patterns and identify potential
clinical misclassification risks between Patient Dis-
tress, Stable State, and Patient Engagement classes.

3.7 Dataset Split and Validation
We employ stratified 5-fold cross-validation to en-
sure robust performance estimation while maintain-
ing class distribution balance across Patient Dis-
tress, Stable State, and Patient Engagement classes.
Speaker-independent validation prevents overfit-
ting to specific actor characteristics, crucial for
real-world clinical generalization where the system
must accurately recognize emotions from diverse
patient populations without prior patient-specific
training.

3.8 Baseline Comparisons
We compare our multimodal approach against sev-
eral baselines to demonstrate the clinical value
of emotion-annotated text for healthcare emotion
recognition:

1) Unimodal Text-Only: Transformer models
trained on Whisper transcripts without emotion an-
notations, simulating text-only patient monitoring
systems
2) Unimodal Audio: Traditional audio-only ap-
proaches using MFCC features with SVM classifi-
cation, representing voice-based patient assessment
tools
3) Unimodal Visual: CNN-based facial emotion
recognition using raw video frames, mimicking
visual-only patient emotion monitoring
4) Simple Concatenation: Feature-level fusion
without emotion-annotated format, representing ba-
sic multimodal integration approaches in existing
clinical systems

3.9 Main Results
Table 1 presents our comprehensive results across
all transformer architectures and approaches.

Key findings: DeBERTa-v3-base achieves the
highest performance at 86.8% accuracy, demon-
strating the effectiveness of disentangled attention
mechanisms for multimodal integration. All trans-
former architectures show consistent improvements
of 12.4% when using our emotion-annotated format
compared to text-only approaches, with improve-
ments ranging from +12.2% to +12.7% across all
models.

Table 1: Performance Comparison of Transformer Ar-
chitectures

Model Uni. Multi. Improv.

DeBERTa-v3-base 74.2% 86.8% +12.6%
RoBERTa-base 73.1% 85.7% +12.6%
BERT-large 72.4% 85.1% +12.7%
XLNet-base 71.6% 83.9% +12.3%
BERT-base 70.8% 83.2% +12.4%
DistilBERT 69.3% 81.8% +12.5%
ALBERT-base 67.9% 80.1% +12.2%
ELECTRA-base 67.2% 79.4% +12.2%

3.10 Ablation Studies

Table 2 presents ablation study results using
DeBERTa-v3-base.

Table 2: Ablation Study Results (DeBERTa-v3-base)

Component Acc. ∆Acc.

Full Model 86.8% —
Without Emotion Tags 74.2% -12.6%
Simple Concatenation 75.9% -10.9%
Audio Features Only 67.8% -19.0%
Visual Features Only 71.5% -15.3%
Random Emotion Tags 75.1% -11.7%

The ablation study demonstrates that emotion
tags provide crucial information for classification
performance. Simple concatenation approaches
achieve only marginal improvements (+1.7%) com-
pared to our emotion-annotated format (+12.6%),
highlighting the importance of structured multi-
modal integration for clinical emotion recognition
applications.

3.11 Attention Analysis

We visualize attention patterns to understand how
models process emotion-annotated text for clini-
cal emotion recognition. Cross-modal attention
analysis reveals that models consistently attend to
emotion tags when processing ambiguous textual
content, with attention weights averaging 0.34 for
emotion tokens compared to 0.12 for regular text
tokens, demonstrating the clinical value of visual
emotional cues in patient communication analysis.

Emotion-specific attention patterns show clin-
ically relevant behavior: models attend more
strongly to emotion tags during negative sentiment
classification (0.41 average attention) compared to
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positive sentiment (0.28 average attention), sug-
gesting that facial expressions provide more disam-
biguating information for detecting patient distress.
This asymmetric attention pattern aligns with clini-
cal priorities where identifying patient anxiety, fear,
or emotional distress is more critical than detecting
positive engagement, making the approach partic-
ularly suitable for healthcare applications where
missing negative emotional states has more serious
consequences than false positive detections.

4 Discussion

4.1 Performance Analysis

Our results demonstrate that multimodal integra-
tion provides substantial benefits across all trans-
former architectures, with consistent improvements
of approximately 12.4%. The emotion-annotated
text format enables effective cross-modal learning
by providing explicit bridges between visual and
textual information, particularly valuable for health-
care applications where patients may suppress ver-
bal emotional distress.

DeBERTa’s superior performance (86.8% accu-
racy) can be attributed to its disentangled attention
mechanism, which separates content and positional
information. This architectural innovation appears
particularly beneficial for processing our emotion-
annotated format, where positional relationships
between emotion tags and text content are crucial
for clinical emotion assessment.

4.2 Computational Efficiency

Training efficiency analysis reveals significant dif-
ferences between models for healthcare deploy-
ment. DistilBERT achieves 81.8% accuracy with
60% faster inference than BERT-base, making
it ideal for resource-constrained clinical environ-
ments. ELECTRA provides excellent training ef-
ficiency at 79.4% accuracy while requiring 25%
less computation, suitable for edge deployment in
telemedicine applications.

4.3 Limitations and Future Work

Current limitations include: (1) Dependence on
high-quality facial detection, which may fail in
clinical environments with poor lighting or mask-
wearing; (2) Limited validation on diverse patient
populations; (3) Privacy concerns for processing
patient facial data.

Future research should explore: (1) Privacy-
preserving emotion recognition techniques for

healthcare data; (2) Robust performance with miss-
ing modalities during telemedicine; (3) Real-time
processing optimizations for clinical deployment;
(4) Cross-cultural validation across diverse patient
populations.

Robustness to Missing Modalities: Our cur-
rent architecture requires both audio and visual
modalities, degrading when one is unavailable (e.g.,
poor video quality in telemedicine, noisy ASR
outputs). Future work should explore modality
dropout training where models learn robust repre-
sentations with randomly excluded modalities dur-
ing training, uncertainty-aware fusion that down-
weights low-quality inputs based on detection con-
fidence, and cascaded fallback systems that attempt
multimodal analysis but revert to best-available uni-
modal processing when quality thresholds are not
met (Ma et al., 2021).

Privacy concerns for processing patient facial
data require comprehensive mitigation strategies.
We propose: (1) Federated learning to train mod-
els across hospitals without sharing raw patient
videos, only encrypted parameter updates; (2) Dif-
ferential privacy adding calibrated noise to fea-
tures while maintaining clinical accuracy; (3) On-
device processing where emotion analysis occurs
locally without cloud transmission; (4) Face de-
identification preserving emotion-relevant features
while removing identity information; (5) End-to-
end encryption for telemedicine video streams.

4.4 Bias and Fairness Considerations

Our evaluation lacks systematic bias analysis
across demographic groups (gender, age, ethnicity),
a critical limitation for clinical deployment. Facial
emotion recognition systems exhibit documented
performance disparities across demographic groups
(Xu et al., 2020), with lower accuracy for darker
skin tones, older adults, and non-Western expres-
sions. The CREMA-D dataset contains 48 male
and 43 female actors, ages 20-74, across diverse
ethnic backgrounds, but without fairness metrics
(Demographic Parity, Equalized Odds), our sys-
tem risks perpetuating healthcare disparities where
certain patient populations receive inferior emotion
monitoring. Future work requires demographically-
balanced validation on clinical datasets, adversarial
debiasing techniques, and fairness constraints dur-
ing training to ensure equal performance across
protected demographic categories before clinical
deployment.
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4.5 Broader Implications

Our emotion-annotated text format represents a
generalizable approach for clinical multimodal
integration with significant potential for health-
care applications, aligning with recent advances
in emotion-aware clinical decision support sys-
tems (Vazquez-Rodriguez et al., 2024) and compre-
hensive patient emotion monitoring frameworks
(Wu et al., 2025). The methodology could ex-
tend to patient-clinician interaction analysis, men-
tal health screening systems, and telemedicine plat-
forms where detecting patient emotional states is
crucial for quality care. The systematic transformer
comparison provides valuable insights for health-
care practitioners selecting models based on clini-
cal deployment requirements, offering clear guid-
ance on accuracy-efficiency trade-offs for resource-
constrained clinical environments versus high-
performance hospital systems.

5 Conclusion

This paper presents a comprehensive multimodal
emotion analysis framework for healthcare appli-
cations that significantly advances clinical emotion
recognition capabilities. Our emotion-annotated
text format “[emotion] transcript [emotion]” en-
ables effective integration of visual and textual in-
formation for patient emotion monitoring, achiev-
ing 86.8% accuracy with DeBERTa-v3-base, a
12.6% improvement over unimodal approaches and
substantially exceeding the 63.6% human baseline
for multimodal emotion recognition.

Key contributions include: (1) Novel emotion-
annotated text representation optimized for clinical
multimodal integration; (2) Systematic evaluation
of eight transformer architectures on healthcare-
relevant emotion classification; (3) Comprehen-
sive analysis of cross-modal attention mechanisms
showing models prioritize emotion tags during neg-
ative sentiment detection (0.41 vs 0.28 attention
weights), aligning with clinical priorities for patient
distress identification; (4) Demonstration of consis-
tent ∼12.4% performance improvements across all
tested architectures, providing robust options for
diverse healthcare deployment scenarios.

Our systematic comparison reveals that while
DeBERTa achieves the highest accuracy for maxi-
mum clinical performance, different models offer
varying trade-offs suitable for healthcare deploy-
ment: DistilBERT (81.8%, 60% faster inference)
for resource-constrained clinical environments, and

ELECTRA (79.4%, 25% less computation) for effi-
cient training in healthcare settings. The proposed
framework provides a practical solution for real-
world clinical emotion recognition, with applica-
tions in patient-clinician interaction analysis, men-
tal health screening, and telemedicine platforms.

Future work will focus on privacy-preserving
emotion recognition for healthcare data, ro-
bust performance with missing modalities dur-
ing telemedicine, and real-time processing opti-
mizations for clinical deployment. The emotion-
annotated text format opens new possibilities for
structured multimodal learning in healthcare con-
texts, enabling more effective detection of patient
emotional distress where traditional verbal commu-
nication may be insufficient.

Limitations

This work has several limitations that should be ac-
knowledged. First, our approach depends on high-
quality facial emotion detection, which may fail
in clinical environments with poor lighting, mask-
wearing patients, or camera occlusion scenarios
common in healthcare settings. Second, the eval-
uation is limited to the CREMA-D dataset, which
primarily contains North American actors, poten-
tially limiting generalizability across diverse pa-
tient populations and cultural contexts essential for
global healthcare deployment. Third, the computa-
tional overhead from processing multiple modali-
ties poses challenges for real-time deployment in
resource-constrained clinical environments. Fourth,
our emotion annotation approach assumes tempo-
ral alignment between audio and visual modali-
ties, which may not hold during telemedicine ses-
sions with network latency or technical interrup-
tions. Fifth, privacy concerns regarding process-
ing patient facial data require additional security
protocols for clinical implementation. Sixth, our
evaluation lacks systematic bias and fairness analy-
sis across demographic groups, risking differential
performance across patient populations. Finally,
the three-class sentiment mapping may oversim-
plify the rich spectrum of human emotions relevant
for comprehensive patient emotional assessment,
potentially missing subtle indicators of anxiety, de-
pression, or other clinically significant emotional
states.
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