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Abstract
Speech recognition models often struggle in
specialized domains due to the lack of domain-
specific paired audio-text data, making it diffi-
cult to adapt general-purpose systems to unique
terminology and linguistic patterns. In this
work, we propose a text-only domain adapta-
tion method for Whisper, fine-tuning only the
decoder using domain-relevant text. Our ap-
proach introduces trainable cross-attention bias
embeddings, extended with a gated mixture-
of-experts routing mechanism, enabling the
model to encode domain-specific linguistic
priors without any audio data. Unlike ASR
adaptation methods that require paired audio-
text datasets, our approach is lightweight and
resource-efficient. We observe up to a 56%
relative improvement in word error rate over
the baseline. Our findings demonstrate that
text-only adaptation is a practical and effective
strategy for improving speech recognition in
specialized domains with limited or no domain-
specific audio.

1 Introduction

Speech recognition technology has advanced sig-
nificantly in recent years, with applications in vir-
tual assistants, transcription services, and real-
time communication systems. These improve-
ments have been driven by supervised learning
approaches that rely on paired audio-text datasets
to train models capable of mapping language to
text Watanabe et al. (2017). Such datasets en-
able models to learn the complex relationships be-
tween speech signals and their textual represen-
tations, resulting in robust general-purpose Auto-
matic Speech Recognition (ASR) systems. How-
ever, achieving high accuracy in specialized do-
mains remains challenging. Domain-specific ASR
systems must address unique linguistic patterns,
specialized terminology, and the limited availabil-
ity of paired audio-text data Bataev et al. (2023).
In domains such as healthcare, legal, or scientific

research, the limited availability of annotated do-
main audio constrains the adaptation of general-
purpose models, highlighting the need for ap-
proaches that reduce reliance on domain-specific
audio resources.

To address these challenges, researchers have in-
vestigated integrating ASR systems with language
models (LMs) through shallow and deep fusion
Gulcehre et al. (2015), as well as generating syn-
thetic domain audio using text-to-speech (TTS)
systems Huang et al. (2020). Shallow fusion can
improve recognition accuracy but requires an ex-
ternal LM during inference, which increases com-
putational cost and latency. Deep fusion incorpo-
rates the LM within the ASR training process, but
this often demands substantial computational re-
sources and careful tuning to prevent overfitting.
TTS-based augmentation provides a way to create
domain-specific audio from text, yet the generated
speech may contain artifacts and fail to replicate the
prosody and acoustic variability of natural speech,
limiting its effectiveness for adaptation.

In this work, we propose a text-only domain
adaptation method for Whisper, fine-tuning only
the decoder using domain-relevant textual corpora.
Our approach introduces trainable cross-attention
bias embeddings, extended with a gated mixture-
of-experts routing mechanism, enabling the model
to encode domain-specific linguistic priors without
any audio data. This eliminates the dependence on
paired domain audio while offering a lightweight
and resource-efficient adaptation strategy. We ob-
serve up to a 56% relative reduction in word error
rate compared to the baseline. These results demon-
strate that text-only fine-tuning is a practical and
effective approach for improving ASR performance
in specialized domains.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work, Section 3
presents the proposed approach, Section 4 details
the evaluation and results, and Section 5 concludes
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the paper.

2 Related Work

Traditional ASR systems rely heavily on hand-
crafted features and statistical models, involv-
ing multiple stages such as acoustic modeling,
phoneme recognition, and language modeling Bell
et al. (2020). Recent advances in deep learning, par-
ticularly Transformer-based architectures Vaswani
(2017), have enabled end-to-end models that map
audio directly to text, simplifying the pipeline and
achieving state-of-the-art performance. However,
adapting these models to new domains remains
challenging due to the need for large amounts of
labeled audio data, motivating research into more
efficient domain adaptation techniques Bell et al.
(2020).

A common strategy for domain adaptation is
to use text-to-speech (TTS) to synthesize paired
speech-text data from target-domain text for fine-
tuning ASR models Huang et al. (2020). While
effective, this process requires training high-quality
multi-speaker TTS models, which is computation-
ally expensive Zheng et al. (2021). To reduce this
cost, text-to-spectrogram approaches generate syn-
thetic spectrograms directly from text, removing
the need for TTS and audio storage while minimiz-
ing the mismatch between synthetic and real audio
Bataev et al. (2023). This approach still requires
careful training of the spectrogram generator to
ensure quality.

Text-only adaptation methods offer a more cost-
efficient alternative. These include fine-tuning
external language models on target-domain text
and integrating them into ASR decoding via shal-
low fusion Kannan et al. (2018). Contextual bi-
asing methods embed domain-specific phrases to
improve recognition of rare terms Aleksic et al.
(2015); Chang et al. (2023), while prompt-based
techniques condition the ASR model on additional
domain cues to guide transcription Suh et al. (2024).
Another approach uses pseudo-audio embeddings
as prompts for fine-tuning Ma et al. (2024), al-
lowing adaptation without paired data. Tran et al.
Tran et al. (2025) propose DAS, a domain adap-
tation framework that generates domain-specific
synthetic speech from LLM-produced text and fine-
tunes Whisper with LoRA adapters.

Our approach adapts the ASR model to new
domains using text-only fine-tuning, without re-
lying on synthetic audio generation, prompt-based

conditioning, or external rescoring. This design
reduces computational cost, lowers latency, and
simplifies deployment, while enhancing recogni-
tion of domain-specific vocabulary. Our method
directly adapts the model’s language understanding
capabilities using only textual data, making it prac-
tical for scenarios where domain audio is limited
or unavailable.

3 Approach

Our approach builds on Whisper, a state-of-the-art
ASR model developed by OpenAI Radford et al.
(2023). Whisper employs a Transformer-based
encoder-decoder architecture, where the encoder
processes audio inputs into latent representations,
and the decoder generates transcriptions by attend-
ing to both the encoder’s output and prior textual
context. The encoder captures acoustic features
such as phonemes, pitch, and rhythm, while the de-
coder aligns these features with linguistic patterns
to produce accurate transcriptions. Whisper’s de-
coder accepts input sequences, enabling the model
to incorporate textual descriptions or prompts as
part of the input. This feature allows Whisper to
condition its transcription generation on additional
context, such as domain-specific instructions or
metadata. We leverage this capability for domain
adaptation by modifying the architecture to focus
only on the decoder, bypassing the encoder. This
enables adaptation using text-only data without re-
quiring paired audio-text inputs.

The encoder in Whisper generates contextual-
ized representations of the input audio, which are
passed to the decoder for processing via the cross-
attention mechanism. During cross-attention, the
decoder queries the encoder outputs using keys
(K) and values (V ), where K represents the con-
textualized embeddings generated by the encoder,
and V serves as the basis for computing attention-
weighted outputs that guide the decoder’s predic-
tions. We freeze the encoder during training, but
the decoder still requires valid K and V representa-
tions for the cross-attention mechanism to function
correctly, even though the encoder’s outputs are
no longer updated. To address this, we replace the
encoder’s output in the cross-attention mechanism
with trainable biases B. The bias embeddings B
denoted as RN×d, where N is the bias sequence
length (representing the number of tokens) and d is
the embedding dimension, which matches the out-
put dimension of the frozen encoder. These biases
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Figure 1: Figure (a) shows the Whisper-base encoder-decoder architecture. Figure (b) shows the modified architec-
ture with domain-specific bias adapters for text-only adaptation (our approach), where multiple expert bias matrices
are introduced into the decoder to incorporate domain-specific linguistic priors and guide transcription without
using paired audio.

serve as trainable substitutes for the encoder’s rep-
resentations, allowing the decoder to focus entirely
on linguistic patterns while maintaining structural
compatibility with the original architecture Suh
et al. (2024).

We compute cross-attention as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

We replace the encoder outputs with the bias
embeddings as K and V in the decoder’s cross-
attention layers. Substituting K and V with B, the
cross-attention becomes:

Cross-Attention = Attention(Q,B,B) (2)

To further refine the contribution of bias embed-
dings, we introduce a tanh gating mechanism:

G = tanh(Wg ·B) (3)

where Wg represents a learnable weight matrix
that modulates bias embeddings.

We initialize the bias embeddings B using
precomputed representations from the pretrained
Whisper encoder.

B = Epretrained (4)

where Epretrained represents the fixed output of
the pretrained Whisper encoder. These bias embed-
dings are then made trainable during fine-tuning, al-
lowing the model to adapt them for domain-specific
text representations. This initialization ensures
that the model starts with relevant embeddings
while retaining the flexibility to refine them through
backpropagation. The trainable biases introduced
into the cross-attention layers implicitly capture
domain-relevant features during training, allowing
the decoder to operate effectively in a text-only
setting.

Gated Routing for Multi-Domain Adaptation:
To handle multiple domain subspaces, we extend
the bias embedding design into a mixture-of-experts
(MoE) framework. Instead of a single bias matrix
B, we maintain a set of M expert bias matrices
{Bm}Mm=1, each representing domain-specific lin-
guistic priors. A lightweight routing network com-

80



putes mixture weights π ∈ RM conditioned on the
current decoding context:

π = softmax(Wr, φ(y<t)), (5)

where φ(y<t) encodes the partial transcription his-
tory and Wr is a learnable projection. The aggre-
gated bias is then:

B∗ =
M∑

m=1

πm,Bm. (6)

This B∗ replaces B in the cross-attention mecha-
nism, enabling the decoder to dynamically route
attention toward the most relevant domain priors.
This structure not only improves adaptation to di-
verse subdomains but also retains efficiency, as only
the small bias matrices and routing parameters are
updated during training.

During inference, real audio input is available,
and the encoder is reintroduced to generate con-
textual representations. However, the decoder is
trained with bias embeddings, creating a potential
mismatch between the learned adaptation and the
actual encoder output. To ensure a smooth transi-
tion while preserving domain-specific knowledge,
we integrate the learned biases with the encoder’s
output through a linear interpolation.

Given the encoder-generated key and value
matrices during inference, we modify the cross-
attention mechanism as follows:

K ′ = αK+(1−α)B∗, V ′ = αV +(1−α)B∗

(7)
where K, V are the encoder’s outputs derived

from the audio input, B∗ is the aggregated bias
embedding from the routing network, and α is a
weight that balances the contribution of the encoder
and bias embeddings.

The interpolation ensures that the decoder re-
ceives both domain-specific cues (from B) and ac-
tual acoustic representations (from K, V ). We
consider the value of α as 0.5.

Loss Function: To improve Whisper’s perfor-
mance on domain-specific transcription tasks, we
explore alternative loss functions beyond standard
cross-entropy. Specifically, we incorporate two loss
functions:

1. Kullback-Leibler (KL) Divergence: This
loss function measures the divergence be-
tween two probability distributions, guiding

the model towards a better approximation of
the true transcription distribution. Minimiz-
ing this divergence improves the fluency and
accuracy of generated transcriptions.

2. Bregman Divergence-Inspired Loss: This
loss function prioritizes correct predictions of
domain-specific terms (e.g., technical jargon,
medical terminology) by assigning higher
penalties to errors involving critical domain-
specific words.

The combined loss function as

Ltotal = LCE + λKL · KL(Ptrue||Ppred)

+ λBD ·
n∑

i=1

δi · I(wi ∈ D) (8)

where KL(Ptrue||Ppred) is the Kullback-Leibler
Divergence between the true transcription distribu-
tion Ptrue and the predicted transcription distribu-
tion Ppred, λKL is a hyperparameter that controls the
weight of the KL divergence term, δi is a penalty
factor for incorrect predictions of domain-specific
words, I(wi ∈ D) is an indicator function that is
1 if the word wi belongs to the domain-specific
vocabulary D, and 0 otherwise, and λBD is a hy-
perparameter controlling the weight of the Breg-
man Divergence-Inspired loss term. In this work,
we construct the domain-specific vocabulary D us-
ing public data sources and private data, including
domain-specific reports.

4 Evaluation and Results

We utilize the Whisper-base English model as the
foundation for domain-specific adaptation in our
experiments. The domain-specific text data is nor-
malized and tokenized to ensure compatibility with
the Whisper tokenizer. We measure performance
using Word Error Rate (WER) against the baseline
to assess the effectiveness of text-only fine-tuning
in improving recognition accuracy in specialized
domains.

4.1 Dataset
We evaluate the model on three domain-specific
datasets:

Earnings Call: The dataset contains quarterly
earnings conference calls from S&P 500 compa-
nies in 2017 Qin and Yang (2019). It includes
domain-specific financial discussions from corpo-
rate meetings. For text-only fine-tuning, we use
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Table 1: Performance of our model with existing baselines

Methods Earnings Call OCW2 MedReport
Whisper-base Radford et al. (2022) 32.9 33.5 32
Context Pertubation Suh et al. (2024) 15.15 9.79 NA
Ours 14.24 17.4 18

11,736 text files for training and 1,678 audio files
for testing, with total audio durations of approxi-
mately 30 hours and 5 hours, respectively.

OCW2: The OCW2 dataset from MIT Open-
CourseWare covers a range of academic lectures
Suh et al. (2024). It contains 24,123 text files for
training and 3,447 audio files for testing, corre-
sponding to approximately 40 and 10 hours of au-
dio, respectively.

MedReport: The medical domain often lacks
large paired audio-text datasets, but has abundant
domain-specific text. We curate a set of medi-
cal sentences, including drug and medicine names,
from pharmaceutical company annual reports and
industry publications. This dataset contains 4,000
text files for training and 1,000 audio files for test-
ing, with total audio durations of approximately 10
and 3 hours, respectively.

4.2 Experimental Setup
Training is conducted on an NVIDIA Tesla V100
GPU for a maximum of 1,000 steps, with 200
warmup steps to gradually increase the learning
rate. Data loading uses 16 workers, and evaluation
is performed every 50 steps. Logging occurs every
10 steps, and model checkpoints are saved every
50 steps. Intermediate evaluations are skipped to
accelerate training iterations.

4.3 Results and Discussion
We evaluate our approach using Whisper-base as
the base model and compare it with two baselines.
The first is the pre-trained Whisper-base model
Radford et al. (2022). The second is a domain-
adapted ASR model trained on paired audio-text
data and prompted with LLM-generated descrip-
tions combined with context perturbation Suh et al.
(2024).

Model performance is measured using WER. Ta-
ble 1 presents the overall results, showing that our
model achieves notable improvements over both
baselines. These gains confirm that text-only fine-
tuning enhances recognition accuracy in special-
ized domains. Table 2 provides example transcrip-
tions for the Earnings Call, OCW2, and MedReport

datasets, comparing Whisper-base and our adapted
model. After fine-tuning, our model more accu-
rately recognizes domain-specific vocabulary, lead-
ing to better transcription quality. In the exam-
ples, bold text denotes correct outputs matching the
ground truth (previously misclassified by Whisper-
base), while underlined text indicates incorrect out-
puts that differ from the ground truth.

Earnings Call: Table 2 compares transcriptions
among the ground truth, Whisper-base, and our pro-
posed model (“Ours") for the Earnings Call dataset.
In the first example, Whisper-base misinterprets “in
fact" as “affect" and “net interest expense" as “that
interest expense" while also transcribing “debt"
as “dad." The proposed model restores these key
financial terms correctly. In the second example,
Whisper-base introduces disfluencies such as “you
know," misrecognizes “build" as “bill" and distorts
“UK" into “u.k.a." In the third example, Whisper-
base produces an entirely altered phrase, “many
ways when I’m very much focused" deviating sig-
nificantly from the ground truth, whereas the pro-
posed model correctly outputs “we’re now" pre-
serving the intended meaning.

As shown in Table 1, the context perturba-
tion approach improves accuracy, reducing WER
to 15.15 on the Earnings Call dataset compared
with Whisper-base’s 32.9. The proposed method
achieves the best performance, lowering WER fur-
ther to 14.24, corresponding to a 19% relative re-
duction over Whisper-base and a 0.9% reduction
compared with the context perturbation approach.

OCW2: Table 2 shows that, for the OCW2
dataset, our model correctly retains technical terms
such as “fetch and decode" instead of Whisper-
base’s “FETCH-ND code" and produces grammati-
cally accurate phrases such as “generator is going
to burn out" instead of “generators gonna burn out".
For complex scientific content, the proposed model
maintains coherence better than Whisper-base, al-
though minor errors persist, such as “phalmus" for
“thalamus" (an improvement over Whisper-base’s
“phalm") and the introduction of “cells that goes"
instead of “cells that go".
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Table 2: Comparison of the transcription output obtained from Whisper-base and Ours with the ground truth. Bold
text represents responses that are correct according to the ground truth, but were misclassified by the Whisper-base
model. Incorrect responses are underlined.

Ground Truth Whisper-base Ours

Earnings Call
most of that in fact almost
all of that was net interest ex-
pense on our automotive debt

most of that affect almost all
of that was that interest ex-
pense on our automotive dad

most of that, in fact almost
all of that, was net interest
expense on our automotive
debt.

no question about it because
customers were trying to de-
cide do they want to build
their next datacenter in the
uk or should they be build-
ing that datacenter someplace
else in europe

no question about it because
customers were trying to de-
cide that they want to you
know bill that next data cen-
ter in the u.k.a. or should they
be building that data center
someplace else in europe

no question about it because
customers were trying to de-
cide that they want to build
that next data center in the
UK or should they be build-
ing that data center someplace
else in Europe.

we’re now very much focused
on operating effectively in a
warehouse delivered model
which we think we can do
because we do it across our
other businesses

many ways when I’m very
much focused on operating ef-
fectively in a warehouse de-
livered model which we think
we can do because we do it
across our other businesses.

we’re now very much fo-
cused on operating effec-
tively in a warehouse deliv-
ered model which we think
we can do because we do it
across our other businesses.

OCW2
generator is going to burn out
in let’s say 10 or 20 years

generators gonna burn out in
let’s say 10 or 20 years.

generator is going to burn out
in let’s say 10 or 20 years.

and the fetch and decode
stages implement optimiza-
tions

and the FETCH-ND code
stages implement optimiza-
tions

and the FETCH and Decode
stages implement optimiza-
tions

it’s the ventral the posterior
part of the ventral nucleus the
thalamus. and that’s where
we find the cells that goes to
the neocortex as i show there

It’s the ventral posterior part
of the ventral nucleus of the
phalm. And that’s where we
find the cells that go to the
neocortex as I show there.

It’s the ventral posterior part
of the ventral nucleus of the
phalmus. And that’s where
we find the cells that goes to
the neocortex as I show there.

MedReport
Paracetamol is one of the
most commonly used medica-
tions for pain relief and fever
reduction.

Parasetimal is one of the most
commonly used medications
for pain relief and fever reduc-
tion.

Paracetamol is one of the
most commonly used medica-
tions for pain relief and fever
reduction.

Azee is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

A Z is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

Azee is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

Broncol is a bronchodilator
that helps manage respira-
tory conditions like asthma.
Cipla’s broncol is effective
in relieving broncospasm and
improving breathing.

Bronkel is a bronco dilator
that helps manage respira-
tory conditions like asthma.
Sipla’s bronkel is effective in
relieving bronchospasm and
improving breathing.

Broncal is a bronchodilator
that helps manage respira-
tory conditions like asthma.
Cipla’s broncal is effective
in relieving broncospasm and
improving breathing.

As reported in Table 1, Whisper-base has a
high WER of 33.5. The context perturbation
method achieves the lowest WER of 9.79, reflect-
ing strong adaptation when trained with audio data
and domain-specific prompts. Our method achieves
a WER of 17.4, representing a 16% relative reduc-

tion compared to Whisper-base, but not matching
the performance of context perturbation due to its
reliance on text-only fine-tuning.

The relatively higher WER on the OCW2 dataset
arises from the nature of our text-only adaptation
strategy. Unlike the context perturbation method,
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which leverages paired audio–text data and domain
audio cues to align acoustic and lexical variations,
our approach operates purely on text, without ex-
posure to acoustic or prosodic features present in
lecture recordings. OCW2 includes substantial vari-
ability in speaker style, pacing, and background
conditions, which purely textual fine-tuning cannot
capture. Despite this limitation, our model achieves
consistent improvements over the base Whisper
model, demonstrating that linguistic adaptation
alone can transfer domain knowledge effectively
even in acoustically complex settings. Future exten-
sions could integrate lightweight audio-conditioned
adapters or multi-modal alignment losses to further
close this gap.

MedReport: For the MedReport dataset, our
model shows substantial improvements in recogniz-
ing medical terminology. It accurately transcribes
“Paracetamol" instead of “Parasetimal" and “Azee"
instead of “A Z" which are critical distinctions in
medical transcription. Some errors remain, such
as “Broncol" being transcribed as “Broncal" but
these are less severe than Whisper-base’s phonetic
distortions. For example, in a case where “Bron-
col" appears with additional context about Cipla’s
product, the proposed model correctly restores the
term. As shown in Table 1, WER improves from
32% to 18% after fine-tuning, corresponding to a
14% relative reduction over Whisper-base.

Across domains, Whisper-base shows frequent
structural inconsistencies and misrecognitions that
distort meaning. Our model, which relies solely
on text-based domain adaptation, produces more
accurate and readable domain-specific transcrip-
tions but occasionally hallucinates, especially on
short audio segments where insufficient context
leads to completions based on statistical likelihood
rather than actual input. For example, in OCW2,

“and you can restore this activity. you have a ques-
tion the intermediate stuff where it’s reduced but
not yet denatured how do you” was transcribed as

“and you can restore this activity. Do you have a
question? Yes, so in the intermediate stuff where
it’s reduced, but not yet, do you make sure how to
use it?”. Similarly, in Earnings Call, “the amer-
icas were up in midsingle digits with strength in
the united states” became “America’s Rop in mid-
single digits for strengthening audit states.”. These
errors are rare in Earnings Call and mostly sub-
stitutions, while OCW2 shows added explanatory
phrases. We mitigate hallucinations by appending
silence to short segments and applying prompt con-

straints, improving consistency without requiring
audio-text alignment. Overall, the improvements
over Whisper-base demonstrate that text-only adap-
tation can achieve strong domain-specific perfor-
mance while keeping computational costs low.

5 Conclusion

In this work, we present a text-only adaptation
method for domain-specific speech recognition by
fine-tuning the decoder of the Whisper model. The
encoder’s output is replaced with trainable biases,
allowing the model to capture domain-specific lin-
guistic patterns without requiring paired audio-text
data. The proposed method shows substantial im-
provements in transcription accuracy, particularly
for specialized vocabularies, while maintaining
computational efficiency. This demonstrates the
practicality of our approach for domain adapta-
tion in settings with limited audio resources. Fu-
ture work explores integrating fine-tuned small lan-
guage models (SLMs) with additional modalities,
such as video, to further enhance domain-specific
recognition performance.
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