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Abstract

Large-scale Vision Language Models (LVLMs)
exhibit advanced capabilities in tasks that re-
quire visual information, including object de-
tection. These capabilities have promising ap-
plications in various industrial domains, such as
autonomous driving. For example, LVLMs can
generate safety-oriented descriptions of videos
captured by road-facing cameras. However, en-
suring comprehensive safety requires additional
monitoring driver-facing views to detect risky
events, such as the use of mobiles while driv-
ing. Thus, the ability to process synchronized
inputs is necessary from both driver-facing and
road-facing cameras. In this study, we develop
a model integrating two video inputs and in-
vestigate the capabilities of LVLMs by con-
structing a dataset and evaluating their perfor-
mance on this dataset. Our experimental re-
sults demonstrate that while pre-trained LVLMs
have limited effectiveness, fine-tuned LVLMs
can generate accurate and safety-aware driving
instructions. Nonetheless, several challenges
remain, particularly in detecting subtle or com-
plex events in the video. Our findings and er-
ror analysis provide valuable insights that can
contribute to the improvement of LVLM-based
systems in this domain.

1 Introduction

The promising capabilities of Large Language Mod-
els (LLMs) are changing this society by assisting
various tasks, e.g., coding (Roziere et al., 2024)
and education (Liu et al., 2024). Large-scale Vi-
sion Language Models (LVLMs) possess high ca-
pabilities in the intersection of vision and language
tasks, leveraging the capabilities of LLMs, such
as inference and instruction following, by integrat-
ing a vision encoder. Therefore, LVLMs have been
adopted across domains that require both visual
and textual information, including the medical ap-
plication (Li et al., 2023a; Yan et al., 2024; Pal and
Sankarasubbu, 2024) and driving assistance (Arai
et al., 2025; Duan et al., 2024; Xuan et al., 2024).
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Figure 1: Illustration of an application of this study. A
Model provides driving instructions for the given video.

In a driving domain, LVLMs are used to detect
objects on the road, generate actions, and provide
safe driving instructions (Zhou et al., 2024; Lu et al.,
2025; Duanetal., 2024; Xuan et al., 2024). With the
rapid growth of the dashcam industry, LVLMs are
increasingly exploited to interpret driving scenes
captured by the dashcam. Previous studies investi-
gated the capabilities of LVLMs to interpret vehicle
behavior and suggest actions for safe driving (Duan
et al., 2024; Xuan et al., 2024). However, while a
single dashcam for the road-facing view is enough
to detect risky actions of vehicles (e.g., harsh turns),
a driver-facing view using an additional dashcam
is needed, for example, when detecting the driver’s
use of mobiles while driving.

In this study, we develop LVLM-based models
that generate instructions for safe driving based on
two video streams that synchronize driver-facing
and road-facing views. We collect such videos and
annotate each clip in two stages: first, by detect-
ing events that happened in them, and second, by
generating safe driving instructions. We create a
conversation-style dataset, where a user asks what
is happening in the video, followed by a request to
generate safe driving instructions. Our experiments
demonstrate that fine-tuned LVLMs on our dataset
can generate safe driving instructions that are well-
aligned with the visual context, whereas pre-trained
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Figure 2: Overview of our dataset construction approach. The dataset contains videos with synchronized driver-
facing and road-facing views. GPT-40 generates the gold answers to event detection and safe driving instruction

questions based on annotated labels for each video.

Human What is happening in the video?

Assistant  The environment is icy with clear weather as you approach an intersection. A rolling stop occurs as you navigate
the intersection at 8 mph while properly using your turn signal.

Human What is recommended actions for the ego-car?

Assistant  \ud83d\udcalPaying extra attention to road conditions due to ice is important. Make sure to bring your vehicle to

a complete stop at intersections to ensure safety, especially in icy conditions where stopping distances are longer.

Table 1: An example of the question and its answer. The top is the event detection, and the bottom is the safe driving

instruction.

models generate generic guidance. Nonetheless,
even the fine-tuned models occasionally fail to de-
tect risky events (e.g., harsh turns). Our findings
and analysis provide valuable insights that help im-
prove LVLM-based driving instruction systems, as
illustrated in Figure 1.

2 Background and Related Work

2.1 Large-scale Vision Language Models

Large-scale Vision Language Models (LVLMs),
such as Flamingo (Alayrac et al., 2022), BLIP-2 (Li
et al., 2023b), and LLaVA (Liu et al., 2023), in-
tegrate a vision encoder with a Large Language
Model (LLM), enabling them to process visual
inputs (e.g., images) and achieving advanced per-
formance on Visual Question—Answering (VQA)
tasks (Liu et al., 2023; Bai et al., 2025). Visual
instruction tuning is also effective for further per-
formance improvement (Liu et al., 2023). The en-
hanced capabilities of LVLMs are helpful across
various domains, including disease detection from
clinical images (Yan et al., 2024; Pal and Sankara-
subbu, 2024), artwork explanation (Hayashi et al.,
2024; Ozaki et al., 2025), and vowel prediction from
MRI-based articulatory images and videos (Sakajo
et al., 2025).
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2.2 Language Models in Driving Scenario

LLMs and LVLMs are also helpful in driving
domains, and several studies have demonstrated
their capabilities (Zhou et al., 2024). For exam-
ple, LVLMs visually understand traffic signs (Lu
et al., 2025), and LLMs can be utilized to de-
velop models for processing LiDAR data (Yang
et al., 2023) and autonomous driving (Xu et al.,
2024). LVLMs are also leveraged for construct-
ing a driving dataset (Arai et al., 2025). In the
Al City Challenge (Wang et al., 2024), LVLM-
based approaches (Duan et al., 2024; Xuan et al.,
2024) achieved advanced performance for the traffic
safety description and analysis task, suggesting that
LVLMs have the capabilities to learn and provide
descriptions regarding safe driving. However, the
capabilities of LLMs to instruct safe driving with
synchronized driver-facing and road-facing RGB
cameras are unexplored.

3 Dataset Construction

We constructed a dataset to evaluate LVLMs in the
context of safe driving instructions, as illustrated in
Figure 2. The dataset comprises videos and ques-
tions, along with expert-annotated answers.



Primary Event Description

Crash

Forward Collision Warning
Tailgating (Following Distance)
Harsh Brake

Harsh Turn

Rolling Stop

Mobile Usage

Inattentive Driving

Lane Departure

Any visible crash involving ego-vehicle or other vehicles.

An event where the ego-vehicle is at risk of imminent front-end collision.
Following another vehicle at a dangerously short distance.

A sudden, strong deceleration by the ego-vehicle.

A sharp, abrupt turn indicating potential loss of control or evasive maneuver.
Failure to come to a complete stop at stop signs or similar control points.
The driver is observed using a mobile phone (hands-on or hands-free).
Observable distraction or loss of attention by the driver.

Vehicle crosses out of its lane without clear intention or necessity.

Other Events Includes seatbelt violations or distraction events.
Table 2: Primary Event Categories for Annotation.
Sub-Event Options
Lane Cut Off Proper use of turn signal,Improper use of turn signal
Lane Change Proper use of turn signal, Improper use of turn signal, To avoid primary event, Root
cause of primary event
Turn (Other Vehicles) Proper use of turn signal, Improper use of turn signal
Turn (Ego Vehicle) Proper use of turn signal (listen to the audio), Improper use of turn signal

Signs of Aggressive Reaction
Signs of Distraction

Vehicle maneuver, Aggressive language, Honk, None, Unknown
Smoking, Mobile phone, Playing with hair, Drinking, Eating, Picking something from

the floor, Reaching behind the backseat, Yawning, None, Unknown

Weather Condition Clear, Rainy, Foggy, Snowy
Road Condition Dry, Wet, Icy
Visibility Condition Clear, Poor

Road Information

Highway, Highway merge, Local road, Intersection, 3-leg intersection, School zone,

Construction zone, Residential area, Rural roads, Tunnel, Pedestrian crossroad

Speed Management Decrease, Maintain, Increase

Table 3: Sub-Event Categories and Options.
Train  Validation Test Parameter Value
Samples 1,719 215 215 Batch size 8
Duration (s) 18,720 2,311 2,371 Epoch 3
Frames 561,223 69,291 72,836 Learning rate le-5
Learning rate scheduler  cosine
. - Adam 34 0.9
Table 4: Dataset statistics. Adam 0.999
Adam € le-8
Precision BF16
3.1 Task Video Max Pixels 16,384
Video Min Pixels 256
We evaluate LVLMS’ capabilities and challenges x;gzg g{j‘s"]e“ 122
using a conversation-style VQA task related to safe Seed 42

driving. We provide LVLMs with synchronized
driver-facing and road-facing videos captured using
RGB cameras and then ask the LVLMs to explain
what happens in the video and generate instructions
for safe driving.

3.2 Video Collection

We collected vehicle speed and video recordings
from both driver-facing and road-facing RGB cam-
eras and lined them up vertically as unified clips,
placing the road-facing view on the top and the
driver-facing view on the bottom. Each video in
our dataset presents synchronized views of both the
driver and the road.
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Table 5: Hyperparameters for fine-tuning.

3.3 Question Definition

We adopt a Chain-of-Thought (Kojima et al., 2022)
and a conversation-style template to facilitate step-
by-step reasoning. The dataset has two questions:
(1) “What is happening in the video?” and (2)
“What is recommended actions for the ego-car?”.
We refer to the first type as event detection ques-
tions/answers and the second as safe driving in-
struction questions/answers. An example of each
type of question—answer pair is presented in Table 1.



This Chain-of-Thought format is designed to guide
the model through a reasoning process that first
identifies events in the video and then infers appro-
priate driving actions based on those observations.

3.4 Annotations

To support structured, context-rich labeling of driv-
ing scenarios, we implemented a three-step process.

Primary event selection. An annotator begins by
selecting a single primary event from a predefined
taxonomy of safety-critical driving behaviors, as
listed in Table 2. These events capture the core
nature of the incident.

Sub-event selection. Next, an annotator is encour-
aged to select as many relevant sub-events as neces-
sary to describe the contributing context. These sub-
events, summarized in Table 3, include surround-
ing vehicle behaviors (e.g., lane changes, turn ma-
neuvers), environmental conditions (e.g., weather,
visibility), or behavioral cues (e.g., signs of aggres-
sion). This multi-label scheme enables fine-grained
characterization of complex traffic scenes.

Summary generation. In the final step, a natural
language annotation is automatically generated us-
ing GPT-40 (OpenAl et al., 2024). The model takes
as input the selected primary and sub-events, along
with auxiliary data such as the vehicle’s speed at
the time of the event. Based on this information,
GPT-40 generates a descriptive summary that an-
swers two key questions: “What is happening in
the video?” and “What is recommended actions for
the ego-car?” Finally, experts manually review the
generated descriptions and confirm the quality.

3.5 Data Statistics

Table 4 shows our dataset statistics. A video has an
approximate duration of 10 seconds and 30 frames
per second. The number of primary events and
sub-event options is provided in Appendix A.

4 Experimental Settings

4.1 Dataset

‘We use our dataset introduced in Section 3 and treat
the videos as two frames per second.

4.2 Models

In this study, we utilize Qwen2.5-VL (Bai et al.,
2025) 3B and 7B models, which are available even
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with limited computational resources. We also fine-
tune these models on our dataset. We refer to fine-
tuned Qwen2.5-VL-3B and fine-tuned Qwen?2.5-
VL-7B as Qwen2.5-VL-3B (FT) and Qwen2.5-VL-
7B (FT), respectively.

4.3 Training and Inference

Models receive instruction and video inputs, while
auxiliary sensor data, e.g., vehicle speed, was incor-
porated during dataset construction. This approach
reflects the practical consideration that dashcams
are easily deployable, whereas sensor installation
requires additional costs.

Training. We freeze the vision encoder and train
only the language model with full-parameter super-
vised fine-tuning. LVLMs fine-tuning is conducted
using the LLaMA-Factory (Zheng et al., 2024) with
DeepSpeed ZeRO stage 2 (Rajbhandari et al., 2020).
We fine-tuned LVLMs using eight NVIDIA A100-
SXM4-40GB GPUs and used LLaMA-Factory ver-
sion 0.9.2.dev0 with minor modifications to load
models correctly. Table 5 provides the hyperparam-
eters.

Inference. We test LVLMs and fine-tuned
LVLMs under the zero-shot setting. The evalua-
tions are performed on an NVIDIA L4 GPU.

4.4 Metrics

We evaluate the quality of generated text by com-
paring it to the reference text in the dataset us-
ing BERTScore (Zhang* et al., 2020) and BLEU
socres (Papineni et al., 2002) as evaluation met-
rics. We use the original implementation! for
BERTScore using RoBERTa (Liu et al., 2019) and
sacreBLEU (Post, 2018)? for BLEU scores.

5 Result and Discussion

Table 6 shows the results of each model on our
dataset, and Tables 7 and 8 show the samples of
generated text for event detection and safe driving
instruction. Before fine-tuning, Qwen2.5-VL-3B
performs better in terms of F1 score on BERTScore
for the safe driving instruction than Qwen2.5-VL-
7B, while the 7B model outperforms the 3B model
in event detection. This suggests that the parameter
size is irrelevant to the task performance of pre-
trained models. Fine-tuning improves both BERT
scores and BLEU scores, indicating that models
can learn this task correctly.

'nttps://github.com/Tiiiger/bert_score
*https://github.com/mjpost/sacrebleu


https://github.com/Tiiiger/bert_score
https://github.com/mjpost/sacrebleu

Event Detection

Safe Driving Instruction

Model P R Fl1 BLEU P R Fl1 BLEU
Qwen2.5-VL-3B*f 0.8180*F 0.8504*F 0.8337*F 1.44*F 0.8273*F 0.8590*F 0.8426%f  1.66%7
Qwen2.5-VL-7B 0.8235*%1 0.8498*f 0.8364*f 1.26%F 0.8086*1 0.8662*1 0.8364%f  1.15%7
Qwen2.5-VL-3B (FT) 0.8901*f 0.9041*f 0.8970*f 10.59* 0.8935*f1 0.8954*f 0.8944*F 11.83*f
Qwen2.5-VL-7B (FT) 0.8999*% 0.9070*f 0.8983*f 10.24* 0.8994*% 0.9002*f 0.8997*F 13.40%*7

Table 6: Results of event detection and safe driving instruction tasks. Metrics include BERTScore Precision (P),
Recall (R), F1, and BLEU. We performed statistical significance tests using 10,000 bootstrap resamples with a
significance level of p = 0.05. * and T indicate statistically significant differences between fine-tuned and non-
fine-tuned conditions and across models, respectively. The performance differences across models and between
fine-tuning and non-fine-tuning conditions are statistically significant, except for the BLEU scores for the event

detection between Qwen2.5-VL-3B (FT) and Qwen2.5-VL-7B (FT)

Question

What is happening in the video?

Ground-truth

The environment is icy with clear weather as you approach an intersection. A
rolling stop occurs as you navigate the intersection at 8 mph while properly
using your turn signal.

Qwen2.5-VL 3B

The video shows a split-screen view of a snowy street scene and the interior
of a vehicle. The top half of the screen captures the outside view, showing a
snow-covered road with tire tracks, buildings on either side, and a stop sign
ahead. The bottom half of the screen shows the inside of the vehicle, where a
person is driving. The driver appears to be looking straight ahead, and there
is a piece of paper or document on the dashboard. The scene suggests that the
driver is navigating through a snowy environment, possibly preparing to make a
turn or stop at the stop sign.

[BERTScore] P: 0.8202, R: 0.8554, F: 0.8374 [BLEU] 0.5540

Qwen2.5-VL 7B

The video shows a first-person perspective from inside a vehicle, likely a truck
or bus, as it drives through a snowy town. The view alternates between the
road ahead and the interior of the vehicle, where a person is driving. The road
appears to be partially cleared of snow, with patches of snow on the sides. There
are buildings on both sides of the road, some of which have signs indicating they
are businesses. The driver is focused on the road, and there are other vehicles
visible in the background, including a white car and an orange vehicle parked
near a building labeled “Body Shop.” The weather seems overcast, and the
ground is covered with snow.

[BERTScore] P: 0.8139, R: 0.8439, F: 0.8286 [BLEU] 0.4693

Qwen3.5-VL 3B (FT)

The weather is clear and the road conditions are dry as you approach an inter-
section. You perform a rolling stop at the intersection, maintaining a speed of
10 mph. There are no signs of distraction or aggressive reaction from your side.
[BERTScore] P: 0.8997, R: 0.9149, F: 0.9072 [BLEU] 14.3398

Qwen2.5-VL 7B (FT)

The environment around you is snowy with icy road conditions, making it
challenging to drive safely. You approach an intersection and perform a rolling
stop at 10 mph while using aggressive language.

[BERTScore] P: 0.9132, R: 0.9202, F: 0.9167 [BLEU] 7.6260

Table 7: Sample ground-truth and generated sentences of Qwen2.5-VL 3B in event detection with evaluation metrics
include BERTScore Precision (P), Recall (R), F1, and BLEU.

5.1 Result Comparison

Parameter size influence. The difference in the
F1 score of BERTScore between Qwen2.5-VL-3B
and Qwen2.5-VL-7B on the event detection was
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not significant, indicating that the performance of
the event detection task is saturated in the zero-shot
setting. The results demonstrate that the 3B model
performs better for safe driving instruction than the
7B model, which can be attributed to the output



Question What is recommended actions for the ego-car?

Ground-truth ~ \ud83d\udcalPaying extra attention to road conditions due to ice is important. Make sure to
bring your vehicle to a complete stop at intersections to ensure safety, especially in icy conditions
where stopping distances are longer.

Qwen2.5-VL  Based on the video description, the recommended action for the ego-car (the vehicle being driven)
3B would be to follow the instructions given by the driver. Since the driver is looking straight ahead
and appears to be focused on the road, it is likely that they have made a decision about the next
move. The driver may be preparing to make a turn or stop at the stop sign. Therefore, the ego-car
should follow the driver’s instructions and navigate accordingly. This could involve accelerating,
decelerating, or changing lanes as directed by the driver.
[BERTScore] P: 0.8356, R: 0.8400, F: 0.8378 [BLEU] 1.0798

In the context of the video, the ego-car (the vehicle being driven) is navigating a snowy
environment. Here are some recommended actions that could help ensure safe driving:

1. **Drive Slowly**: Snowy roads can be slippery, so reducing speed helps maintain
better control of the vehicle.

2. **Maintain a Safe Following Distance**: Increase the distance between your vehicle
and the one in front to allow more time to react to any sudden stops or changes in traffic conditions.

3. **Use Low Beams**: If visibility is reduced due to snow or ice, use low beams to
improve visibility without causing glare for other drivers.

4. **Avoid\u6025\u8f6c\uSf2f (Sharp Turns)**: Snow can cause the tires to lose trac-
tion, making sharp turns particularly dangerous. Try to avoid them if possible.

5. **Check Tires**: Ensure that your tires have adequate tread depth and are properly
inflated. Snow chains may also be necessary in very snowy conditions.

Qwen2.5-VL

7B 6. **Be Aware of Other Vehicles**: Watch out for other vehicles, especially those that
might be struggling to navigate the snow. Be prepared to stop or slow down if necessary.

7. **Stay Alert**: Snowy conditions can be deceptive, and visibility might be reduced.
Stay alert and be ready to react to any changes in the road or traffic.

8. **Use Turn Signals**: Signal your intentions clearly to other drivers, especially
when changing lanes or turning.

9. **Keep a Full Tank of Fuel**: Snowy conditions can lead to unexpected delays, so
having enough fuel is crucial.

10. **Plan Your Route**: If possible, plan your route in advance to avoid areas with
heavy snow accumulation or icy patches.

By following these recommendations, the ego-car can navigate the snowy conditions
safely and efficiently.

[BERTScore] P: 0.8089, R: 0.8662, F: 0.8366 [BLEU] 0.4625

Qwen2.5-VL  While it’s good that you’re paying attention to the road, it’s important to come to a complete stop
3B (FT) at intersections to ensure safety and compliance with traffic laws. Practice making full stops to
improve your driving skills and enhance safety.
[BERTScore] P: 0.9062, R: 0.8896, F: 0.8978 [BLEU] 22.1907

Qwen2.5-VL  \ud83d\udcalln icy and snowy conditions, it’s crucial to come to a complete stop at intersections
7B (FT) to ensure safety. Try to remain calm and avoid aggressive language as it can distract from the
primary task of driving safely.
[BERTScore] P: 0.9142, R: 0.9243, F: 0.9192 [BLEU] 22.2504

Table 8: Sample ground-truth and generated sentences of Qwen2.5-VL 3 in safe drivinginstruction with evaluation
metrics include BERTScore Precision (P), Recall (R), F1, and BLEU.

tendencies in the 7B model. The 7B model outputs  analysis, we also computed self-BLEU scores (Zhu
general recommendations for safe driving instruc- et al., 2018) for each event using the outputs gen-
tion before fine-tuning, as shown in Table 9, result-  erated by each model to assess diversity. The self-
ing in lower precision and higher recall. For further =~ BLEU scores, as shown in Table 10, also indicate
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Model & Event Type

Top-10 4-gram words

Qwen2.5-VL-3B
Event Detection

Safe Driving Instuction

half of the video; The video shows a; top half of the; The video shows two; the interior of
the; The top half of; bottom half of the; The bottom half of; The interior of the; interior of
the vehicle.

Based on the video; on the video description,; the ego-car (the vehicle; for the ego-car
(the; there are no specific; are no specific actions; recommended actions for the; the video
description, there; video description, there are; a safe distance from.

Qwen2.5-VL-3B (FT)
Event Detection

Safe Driving Instruction

no signs of distraction; signs of distraction or; of distraction or aggressive; There are no
signs; are no signs of; The footage shows you; footage shows you driving; distraction or
aggressive reaction; or aggressive reaction from; aggressive reaction from your.

While it’s good that; come to a complete; to a complete stop; a complete stop at; it’s good
that you’re; to come to a; it’s important to come; important to come to; complete stop at
intersections; stop at intersections to.

Qwen2.5-VL-7B
Event Detection

Safe Driving Instruction

The video appears to; half of the screen; of the screen shows; the screen shows the; video
appears to be; the interior of the; appears to be a; shows the interior of; to be a split-screen;
be a split-screen view.

In the context of; the context of the; are some general recommendations; some general
recommendations for; the ego-car (the vehicle; context of the video,; a safe distance from;
ego-car (the vehicle being; distance from the vehicle; for the ego-car (the.

Qwen2.5-VL-7B (FT)
Event Detection

Safe Driving Instruction

signs of distraction or; of distraction or aggressive; no signs of distraction; There are no
signs; are no signs of; clear weather and dry; weather and dry road; The footage shows
you; footage shows you driving; and dry road conditions.

come to a complete; to a complete stop; a complete stop at; increase your following
distance; maintain a safe following; your following distance to; to maintain a safe; a safe

following distance; important to maintain a; safe following distance to.

Table 9: The top 10 4-grams in each response.

Detection  Instruction
Qwen2.5-VL-3B 84.4359 82.8134
Qwen2.5-VL-7B 83.6289 85.7856
Qwen2.5-VL-3B (FT) 96.4625 95.8846
Qwen2.5-VL-7B (FT) 95.5442 93.5108

Table 10: Self-BLEU scores. “Detection” and “Instruc-
tion” denote “Event Detection” and “Safe Driving In-
struction”, respectively.

that the 7B model outputs less diverse texts for the
safe driving instruction when compared with the
3B model.

Performance improvement by fine-tuning.
Fine-tuning improves overall performance, and
Qwen2.5-VL-7B (FT) outperforms Qwen2.5-VL-
3B (FT) on both tasks in terms of BERTScore,
while Qwen2.5-VL-3B outperforms Qwen2.5-
VL-7B before fine-tuning. Figures 3, 4 5 and
6 also show that fine-tuning improves overall
performance. On the other hand, Table 6 shows
that the difference in the BLEU scores between
both fine-tuned models on the event detection
task is not significant. This suggests that a
larger parameter size has a positive effect on the
fine-tuning performance of LVLMs for this task.
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In contrast, the final performance after fine-tuning
remains consistent across model sizes with respect
to BLEU scores.

5.2 Error Analysis

We focus on the subset of samples for which
BERTScore of the safe driving instruction falls
within the bottom 25%. Approximately 4% of all
the samples are shared across the bottom 25% sub-
sets for all models, which we refer to as the “difficult
subset”. Within this subset, 33% of the samples are
annotated as good driving, and another 33% involve
scenarios where the ego-car is turning right and left.
Although all models generated recommendations
to improve already good driving behaviors, the sug-
gestions for safer driving varied slightly, resulting
in relatively low scores.

For the turning right and left scenarios, the gold
answers typically recommend turning while reduc-
ing speed. However, even fine-tuned models pro-
duced irrelevant suggestions, such as mentioning
a stop sign not presented in the video. These ob-
servations suggest that while fine-tuned models are
capable of generating various safety-related sug-
gestions, they still struggle to detect issues such as
excessive speed during turns.
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75
&
& 50
[
=]
E II IIII ||||
- o . I- I ._7 -. [ = _l ._
0.80 0.85 0.90 0.80 0.85 0.90 0.80 0.85 0.90 0.80 0.85 0.90
BERTScore F1
Figure 3: Score distribution of BERTScore F1 of event detection.
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Figure 6: Score distribution of BLEU of safe driving instruction.

In the difficult subset, approximately 10% have er-
rors related to the driver-facing view, where a driver
holds and uses a phone while keeping their eyes on
the road. This might suggest that LVL.Ms can pro-
vide safe driving instruction regarding drivers’ be-
haviors, while they struggle to generate it regarding
vehicle behaviors. This phenomenon is explained
by the relative ease with which LVLMs can detect
a driver holding an object, as opposed to estimat-
ing vehicle speed, which requires more temporal
reasoning.

5.3 Unimodal Biases

As discussed in Section 5.1, in several cases, pre-
trained models provide general suggestions regard-
less of the videos, as shown in Table 8. We also ob-
served that the fine-tuned models mentioned objects
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not presented in the video in Section 5.2. This be-
havior can be attributed to unimodal biases, specif-
ically language biases (Goyal et al., 2017; Agrawal
et al., 2018; Zhu et al., 2020; Abbasnejad et al.,
2020; Chen et al., 2024), where models’ outputs
are biased toward textual information in the given
inputs. However, while language biases have been
attributed to the model’s learning of the relation-
ships between question-answer pairs in the training
data (Agrawal et al., 2018), it is unclear whether the
training data includes question-answer pairs regard-
ing safe driving instruction. Given that Sakajo et al.
(2025) observed the model generating identical an-
swers for different images with the same question in
a phonetics-related VQA task, our findings suggest
that language priors emerge in certain domains.



5.4 Task Difficulty and Application Possibility

The results reveal that this task is challenging for
LVLMs without fine-tuning, whereas fine-tuning
improves performance. Our error analysis in Sec-
tion 5.2 also indicates that several failure cases hap-
pen for good driving videos, and suggestions for
safer driving vary slightly. Those discussions sug-
gest that our fine-tuned models can be applied to
safe driving instruction systems, although several
challenges remain in certain situations, such as in-
structing against a harsh turn.

6 Conclusion

In this study, we constructed a dataset comprising
synchronized driver-facing and road-facing video
streams, along with step-by-step question—answer
pairs. We fine-tuned LVLMs on our dataset for
safe driving instructions and investigated their ca-
pabilities and performance in detecting risky events
and providing safe driving instructions. Our experi-
mental results reveal that fine-tuned LVLMs demon-
strate the capability of suggesting safety-aware driv-
ing instructions, while detecting several events re-
mains challenging, even for fine-tuned models. Our
findings suggest that LVLMs can be safe driving in-
structors, although there is room for improvement.

Limitations

Dataset size. As described in Section 3, our
dataset comprises 1,719 training samples, 215 vali-
dation samples, and 215 test samples, which can be
considered relatively small in scale. However, the
collection of synchronized driver-facing and road-
facing views requires a complicated setup, charac-
terizing this task as a low-resource scenario. In this
study, we investigated model performance using the
current dataset as an initial step, with evaluation on
a larger dataset left for future work.

Dataset quality. The instructions in our dataset
were generated using GPT-40, which might raise
concerns regarding their quality. However, as de-
tailed in Section 3, the generated texts were manu-
ally reviewed to ensure the quality.

Model selection. In this study, we selected two
base models: Qwen2.5-VL-3B and Qwen2.5-VL-
7B. While this choice might constrain our investiga-
tion of the scaling law in this task and performance
variation across models, it remains justifiable. The
Qwen2.5-VL series achieves advanced performance
on various benchmarks, including Video-MME (Fu

et al., 2024), and our objective is to evaluate model
effectiveness for driving instruction. Accordingly,
focusing on the Qwen2.5-VL series and its relatively
small variants is appropriate for our investigation.

Ethical Considerations

Our dataset contains videos that capture drivers.
We collect these videos legitimately and use them
within the prescribed scope.
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A Dataset Statistics (Detail)

Table 11 shows the number of events or options in
each dataset split.

Train Val. Test
Primary Events
Crash 3 0 0
Forward Collision Warning 41 6 7
Tailgating 90 21 7
Harsh Brake 253 20 26
Harsh Turn 15 4 2
Rolling Stop 308 42 42
Mobile Usage 87 14 11
Inattentive Driving 142 17 20
Lane Departure 0 0 0
Sub Events
Lane Cut Off
Improper use of turn signal 18 3
Proper use of turn signal 21 7 1
Lane Change
Improper use of turn signal 11 0 1
Proper use of turn signal 84 11 9
To avoid primary event 21 2 3
Root cause of primary event 24 3 2
Turn (Other Vehicles)
Proper use of turn signal 10 1 3
Improper use of turn signal 3 0 0
Turn (Ego Vehicle)
Proper use of turn signal 114 15 20
Improper use of turn signal 102 18 10
Signs of Aggressive Reaction
Vehicle maneuver 1 0 0
Aggressive language 18 1 2
Honk 9 2 0
None 634 72 85
Unknown (Dashcam Issue) 209 30 25
Signs of Distraction
Smoking 26 3 5
Mobile phone 18 3 2
Playing with hair 2 1 0
Drinking 14 0 2
Eating 18 2 3
Picking something from floor 2 0 1
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Reaching behind backseat 0 1 0

Yawning 1 0 0
None 580 63 75
Unknown 218 32 25
Weather Condition
Clear 1380 184 172
Rainy 92 6 10
Foggy 0 1 0
Snowy 60 7 9
Road Condition
Dry 1362 181 170
Wet 98 6 11
Icy 72 11 11
Visibility Condition
Clear 0 0 0
Poor 0 0 0
Road Information
Highway 893 124 102
Highway merge 22 3 2
Local Road 8 0 0
Intersection 348 28 46
3-Leg intersection 166 31 26
School zone 0 1 0
Construction Zone 10 3 2
Residential area 66 8 14
Rural roads 12 2 1
Tunnel 1 0 0
Pedestrian crossroad 22 2 1
Parking 27 2 6
Speed Management
Decrease 37 5 1
Maintain 409 59 48
Increase 43 9 1

Table 11: The number of each event or option in each
dataset split. Val. denotes the validation set.



