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Abstract
We present a Divide and Translate framework
for low-resource Indic machine translation, tar-
geting tribal languages such as Bhili, Gondi,
Mundari, and Santali. Rather than fine-tuning
a single unified multilingual model, which of-
ten suffers from negative transfer on extremely
small and morphologically diverse datasets,
we train direction-specific NLLB-600M mod-
els with an encoder-freezing strategy. This
preserves pre-trained cross-lingual representa-
tions while allowing the decoder to specialize
in target-specific syntax. Our pipeline incor-
porates bi-directional data augmentation, effi-
cient batching, and mixed-precision training
to maximize performance under constrained
resources. Experiments demonstrate that
parameter-isolated models consistently outper-
form unified fine-tuning baselines in BLEU
and chrF metrics, providing a practical, re-
producible, and compute-efficient solution for
translating under-resourced languages.

1 Introduction

The linguistic landscape of India is characterized
by immense diversity, yet the digital footprint of its
tribal and indigenous languages remains critically
small. Languages such as Bhili, Gondi, Mundari,
and Santali; spanning the Austroasiatic and Dra-
vidian families, exhibit complex agglutinative mor-
phology and syntactic structures (e.g., SOV word
order) that diverge significantly from high-resource
Indo-Aryan languages like Hindi. Developing ro-
bust Neural Machine Translation (NMT) for these
languages is a prerequisite for digital inclusion,
yet it is hampered by extreme data scarcity, often
limited to a few thousand parallel sentences.

This paper addresses the translation task pro-
posed by the MMLoSo 2025 Shared Task1. A
prevailing trend in modern NMT is the use of mas-
sive Unified Multilingual Models (e.g., NLLB,

1https://www.kaggle.com/competitions/
mm-lo-so-2025

Figure 1: The ‘Divide and Translate’ Architecture. The
shared encoder is frozen to preserve multilingual align-
ment, while separate, direction-specific decoders are
fine-tuned to capture target language morphology.

IndicTrans), which share parameters across hun-
dreds of languages (Team et al., 2022). However,
we hypothesize that in ultralow-resource regimes
(N ≈ 20k) involving linguistically distinct gram-
mars, the shared parameter space induces negative
transfer, where the model overfits to the dominant
high-resource syntax at the expense of the target
tribal language’s fidelity.

To mitigate this, we propose a “Divide and
Translate” framework (Figure 1). Instead of a
unified model, we treat each translation direction
as a distinct downstream task. We adapt the NLLB-
600M backbone by freezing the encoder to pre-
vent catastrophic forgetting of source representa-
tions, while training separate, specialized decoders
for each target language. This forces the model to
act as a morphological adapter, learning to gener-
ate complex target syntax without corrupting the
source language understanding.

Our contributions are as follows:

• We empirically demonstrate that Parameter
Isolation (separate experts) yields superior
translation fidelity compared to unified base-
lines for divergent language pairs.

• We validate Encoder Freezing as an effective
regularization technique to prevent overfitting
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in small data sets (< 20k).

• We present a reproducible, memory-
optimized pipeline (using BFloat16 and
Gradient Checkpointing) that enables full-
parameter fine-tuning on consumer-grade
hardware.

2 Related Work

Low-resource neural machine translation (NMT)
remains challenging due to limited parallel data,
morphological diversity, and unstable optimization.
Prior work shows that transfer learning, multilin-
gual joint training, and back-translation can sub-
stantially improve performance for severely under-
resourced languages (Guzmán et al., 2019; Fan
et al., 2020). Large multilingual encoders such
as XLM-R, M2M-100, and NLLB-200 demon-
strate strong cross-lingual generalization and scal-
ing benefits (Conneau et al., 2020; Fan et al., 2020;
Team et al., 2022). However, massively multi-
lingual models also suffer from capacity dilution
and negative transfer, where high-resource or ty-
pologically distant languages interfere with low-
resource ones (Aharoni et al., 2019; Wang et al.,
2020). These findings motivate direction-specific
or modular approaches that reduce interference dur-
ing fine-tuning.

Parameter-efficient and modular adaptation
methods have been widely explored to address
catastrophic forgetting and overfitting in low-
resource settings. Adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020), AdapterFusion (Pfeiffer et al.,
2021), and LoRA-based approaches (Hu et al.,
2021) allow specialization without updating the
full model. Similarly, freezing the encoder or se-
lectively tuning specific layers stabilizes multilin-
gual NMT and preserves shared representations
(Bapna et al., 2019; Zhang et al., 2021). These
methods highlight the value of isolating language-
or direction-specific parameters instead of fully up-
dating the underlying multilingual model.

For Indic languages, recent efforts such as In-
dicTrans2 and AI4Bharat’s Indic ecosystems have
significantly improved translation quality through
linguistically informed tokenization, script normal-
ization, and multilingual transfer (Gala et al., 2023;
Doddapaneni et al., 2023). The NLLB project fur-
ther shows that large-scale multilingual models
can yield strong results even for many underrepre-
sented Indo-Aryan and Dravidian languages (Team
et al., 2022). Despite this progress, extremely

low-resource Indic and tribal languages still suffer
from sparse parallel corpora, orthographic varia-
tion, and weak cross-lingual alignment. Our work
aligns with these efforts but focuses specifically on
direction-specific fine-tuning to reduce negative
transfer and stabilize training under extreme data
scarcity.

3 Experimental Setup

3.1 Datasets
We conduct all experiments on the MMLoSo
2025 Shared Task dataset, spanning translation
between high-resource languages (English, Hindi)
and four low-resource tribal languages: Bhili,
Gondi, Mundari, and Santali. Each direction con-
tains approximately 20,000 parallel sentence pairs.
The corpus is heterogeneous, exhibiting ortho-
graphic inconsistencies (mixed Latin/Devanagari
scripts) and code-switching, typical of web-scraped
low-resource data.

3.2 Data Preparation
To mitigate noise without over-filtering, we imple-
mented a strict preprocessing pipeline:

• Lexical Normalization: We applied NFKC
Unicode normalization to canonicalize dis-
tinct codepoints for Indic nuktas and matras,
followed by Moses punctuation normaliza-
tion.

• Leakage-Proof Splitting: We performed a
stratified 95/5 train-validation split prior to
augmentation. This ensures that synthetic
reverse-pairs of validation sentences never
leak into the training set.

• Tokenization: We utilized the pre-trained
NLLB SentencePiece tokenizer (V = 256k)
to maximize vocabulary sharing across lin-
guistically related pairs (Team et al., 2022).

3.3 Data Augmentation
Given the extremely small size of the available
parallel corpora, we applied a simple yet effective
Bitext Reversal Augmentation strategy. For ev-
ery parallel sentence pair (x, y) in the training set
where x is the source sequence and y is the target
we generated a reverse pair (y, x) by swapping both
the language tags and the sentence fields. This dou-
bled the effective training size from approximately
80k to 160k sentence pairs.

This augmentation serves two key purposes:
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1. Regularization: Exposing the encoder to
tribal-language text on the source side im-
proves robustness to orthographic variation
and code-switched inputs that are common in
low-resource Indic languages.

2. Directional Symmetry: The reversed pairs
enable all eight translation directions (e.g.,
Hindi↔Gondi) to be trained from the same
underlying bitext, yielding balanced supervi-
sion for the direction-specific decoders in our
expert architecture.

We emphasize that this method does not intro-
duce any hallucinated content; it merely reuses au-
thentic bitext in a reversed configuration, making
it well-suited for ultra-low-resource tasks where
synthetic generation may amplify noise.

3.4 Model Architecture
Our system adapts the NLLB-200-Distilled-600M
backbone (Team et al., 2022). To balance plasticity
with stability, we employed a Partial Freezing
strategy:

• Frozen Encoder: We froze the 300M+ pa-
rameter encoder (∇θenc = 0). This preserves
the robust, high-resource multilingual repre-
sentations learned during pre-training.

• Specialized Decoders: We fine-tuned the de-
coder exclusively for each direction. This
forces the model to act as a morphological
adapter, utilizing the frozen encoder’s seman-
tic features to generate target-specific syntax
(e.g., SOV structures for Santali).

3.5 Training Configuration
To demonstrate accessibility, all models were
trained on a single consumer-grade NVIDIA T4
GPU (16GB VRAM).

• Optimizer: AdamW (β1 = 0.9, β2 =
0.999, ϵ = 1e− 8).

• Learning Rate: 2e − 5 with a linear decay
scheduler and 10% warmup steps.

• Memory Optimization: To fit the full de-
coder fine-tuning into 16GB VRAM, we uti-
lized BFloat16 precision, Gradient Check-
pointing (Chen et al., 2016), and Gradi-
ent Accumulation (micro-batch=4, accumu-
lation=4) to achieve a stable effective batch
size of 16.

• Inference: Beam search with a beam size of
5 (Och and Ney, 2004).

4 Results and Analysis

4.1 Quantitative Performance
Table 1 presents the official evaluation results from
the MMLoSo Shared Task leaderboard. Our Divide
and Translate system achieved a Public Score of
171.4 and a Private Score of 161.1.

A key observation is the system’s generaliza-
tion stability. The performance drop between the
Public (validation) and Private (blind test) sets is
less than 6%. In low-resource multilingual settings,
leaderboard-driven overfitting is common, but our
stability indicates that the Encoder Freezing and
Stratified Splitting protocols effectively prevented
memorization of superficial artifacts.

Metric Public Score Private Score
Aggregate Score† 171.4 161.1

Table 1: Official Shared Task Results. Weighted ag-
gregate score computed as 0.6 × BLEU + 0.4 × chrF.
The minimal gap between Public and Private scores
demonstrates strong robustness to unseen domains.

Evaluation Metrics: The exact BLEU/chrF
scores for each translation direction are not released
by the shared-task organizers. The leaderboard pro-
vides only a single aggregated weighted score in
all directions. Therefore, we report the official
weighted score as the primary metric.

4.2 Architectural Analysis
To evaluate the effectiveness of our design choices,
we analyzed alternative model configurations ex-
plored during development. Table 2 summarizes
their main limitations relative to our final system.

Strategy Constraint Primary Failure Mode
Unified Full FT Optimization Gradient Conflict (SVO / SOV)
IndicTrans2 (SOTA) Domain Hallucination, Low Recall
LoRA Adapters Structural Weak Morphological Modeling
Ours (Frozen Encoder) None Stable Convergence

Table 2: Qualitative Comparison of Modeling Strate-
gies. Unified models suffered from conflicting optimiza-
tion signals. Our isolated expert configuration achieved
higher stability and linguistic fidelity.

Impact of Parameter Isolation vs. Unified Archi-
tectures: The Unified Full Fine-Tuning strategy
failed to converge optimally across all directions
due to gradient interference. English follows an
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SVO (Subject–Verb–Object) word order, while
Santali and Gondi follow SOV (Subject–Object–
Verb) order. Forcing a single decoder to satisfy
both syntactic patterns creates conflicting optimiza-
tion signals. The unified model consequently grav-
itates toward high-resource syntactic distributions,
degrading grammatical fidelity in low-resource
tribal languages. Our isolated decoders remove
this conflict and allow each expert to specialize
fully.

Qualitative Evidence of Hallucination Stability:
Note that the IndicTrans2 entries referenced above
are models we fine-tuned during development using
LoRA (and DoRA when enabled). Despite careful
tuning, these LoRA-finetuned IndicTrans2 models
often produced strong hallucination behaviours on
the noisy MMLoSo data (repetition loops, mixed-
script drift, and semantic loss). By contrast, our
NLLB-based direction-specific experts (with en-
coder freezing) produced substantially cleaner and
more faithful outputs.

Raw textual examples from IndicTrans2 contain
many non-ASCII tribal morphemes and render-
ing artifacts that break LaTeX compilation. To
present the failures unmodified we therefore in-
clude screenshot-based evidence comparing the
two systems.

Figure 2: IndicTrans2 (LoRA fine-tuned) example
hallucination. Note morpheme repetition, script mixing
and semantic drift. Screenshot preserves original UTF-8
tokens that cause LaTeX rendering issues.

Figure 3: Our NLLB expert (encoder frozen) corre-
sponding translation. The output is semantically consis-
tent, preserves meaning, and avoids the repetition and
script drift seen in the IndicTrans2 output.

These side-by-side visual examples support our
claim that LoRA-finetuned IndicTrans2 struggles
under heavy noise and typological shift, while
encoder-freezing with direction-specific decoders

yields greater morphological fidelity and robust-
ness.

5 Conclusion

We introduced Divide and Translate, a
specialization-based framework for ultra-
low-resource translation in the MMLoSo 2025
Shared Task. Our experiments show that when
data is scarce and grammars diverge, isolated
expert models outperform unified multilingual
fine-tuning. Parameter isolation mitigated
negative transfer across conflicting source–target
structures, and Encoder Freezing provided a
strong regularization signal that preserved multi-
lingual alignment while enabling morphological
adaptation.

Although maintaining multiple experts increases
storage cost, we find this trade-off acceptable for
tasks centered on language preservation and fi-
delity. Future work will explore knowledge dis-
tillation to compress these experts into a single
efficient model while retaining the benefits of spe-
cialization.

Ethical Considerations

Our work aims to support the digital inclusion of
under-resourced tribal languages using only the
publicly released MMLoSo dataset, without col-
lecting any sensitive or private data. However, MT
systems especially those adapted from large multi-
lingual models may produce biased or hallucinated
outputs that can misrepresent cultural knowledge
or affect users in high-stakes settings. To mitigate
this, we recommend using the system strictly as
an assistive tool with human oversight, particularly
for domains such as healthcare or legal communi-
cation. Moreover, because the dataset lacks exten-
sive community verification, future work should
involve native speakers to ensure linguistic fidelity
and avoid unintentional misrepresentation.
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