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Abstract

Low-resource machine translation for Indic lan-
guages remains challenging, especially when
high-resource languages such as Hindi and En-
glish must be translated to and from very low-
resource, grammatically rich languages like
Bhili, Mundari, Santali, and Gondi.

We describe our winning system for a recent
shared task in this setting. We start from a
strong pretrained Indic MT backbone, Indic-
Trans2, and fine-tune it jointly on all translation
directions, pushing the model close to memo-
rization under strict data constraints. On top of
this backbone, we add direction-specific low-
rank adapters based on LoRA that allow each
language pair to specialize while still sharing
most parameters. At inference time, we fur-
ther couple these directional adapters through a
noisy-channel objective, in which forward and
reverse models jointly score a set of candidate
translations, encouraging outputs that are both
fluent in the target language and informative
about the source.

This combination of shared pretraining, di-
rectional parameter-efficient adaptation, and
noisy-channel reranking substantially improves
over a strong fine-tuned baseline. We re-
lease our codebase at https://github.com/
SajayR/LoRA-in-All-Directions.

1 Introduction

The MMLoSo shared task (mml, 2025) targets
a difficult gap in machine translation: bridging
high-resource languages (Hindi, English) with ex-
tremely low-resource community languages (Bhili,
Mundari, Santali, Gondi). These languages are par-
ticularly challenging for standard models because
they utilize diverse scripts (such as Ol Chiki) and
complex word structures, yet lack the large-scale
parallel data required to learn these features effec-
tively.

In this regime, standard training strategies face
a dilemma. Training separate models for each di-

rection creates data fragmentation, leading to poor
convergence. Conversely, joint multilingual fine-
tuning maximizes transfer learning but introduces
interference (or “negative transfer”), where the
model’s capacity is dominated by high-resource di-
rections, often resulting in script hallucinations or
morphological simplification in the lower-resource
targets.

Our winning submission addresses this trade-off
through a saturate-then-specialize strategy. We
hypothesize that while a shared backbone is nec-
essary to learn general linguistic representations,
distinct parameter spaces are required to resolve or-
thographic and grammatical conflicts. We therefore
combine massive joint fine-tuning (to saturate the
backbone with domain knowledge) with direction-
specific Low-Rank Adapters (LoRA) (to isolate
task-specific constraints) (Hu et al., 2022). Fi-
nally, to counter the semantic drift common in low-
resource generation, we abandon greedy decoding
in favor of a noisy-channel formulation (Pang et al.,
2022), using the LoRA adapters to strictly enforce
mutual consistency between source and translation.

2 Task and Data

2.1 Shared task setup
The shared task focuses on translation between
two high-resource languages (Hindi, English) and
four low-resource Indic languages: Bhili, Mundari,
Santali, and Gondi. Let

L = {Hindi,English,Bhili,

Mundari, Santali,Gondi}

be the set of languages.
A translation direction is defined as an ordered

pair d = (ℓs → ℓt) with ℓs, ℓt ∈ L. The task
provides parallel datasets Dd = {(x(i), y(i))}Nd

i=1

for each direction, where source x and target y are
in their native scripts. The objective is to produce
a translation ŷ given x and the direction d.
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2.2 Leaderboard Score

The leaderboard reports a single scalar score S that
mixes BLEU(Post, 2018) and chrF(Popović, 2015)
across all eight directions.

Let BLEUH→L be the mean BLEU over the
four high→low directions (Hin→Bhi, Hin→Mun,
Hin→Gon, Eng→San), and let BLEUL→H be
the mean over the four low→high directions
(Bhi→Hin, Mun→Hin, Gon→Hin, San→Eng).
We define chrFH→L and chrFL→H analogously, re-
placing BLEU with chrF.

The final score is

S = 0.6
(
0.6BLEUH→L + 0.4BLEUL→H

)
(1)

+ 0.4
(
0.6 chrFH→L + 0.4 chrFL→H

)
. (2)

BLEU contributes 60% of S and chrF 40%;
within each metric, high→low directions get 60%
of the weight and low→high directions 40%.

Two variations of this score are reported: the
Public Score, calculated on a fixed 25% subset
of the test data during the competition, and the
Private Score, calculated on the remaining 75%
hidden subset to determine the final rankings.

3 Methodology

4 Backbone Selection

We initially compared NLLB-200 (600M) (NLLB
Team et al., 2022) and IndicTrans2 (360M) (Gala
et al., 2023) by fine-tuning both for 100k steps. Ta-
ble 1 shows that IndicTrans2 outperformed NLLB
by nearly 9 points despite being half the size.

Backbone Public Score

NLLB-600M 243.18
IndicTrans2-360M 252.11

Table 1: Leaderboard scores at 100k steps.

Tokenization analysis (Table 2) reveals that
NLLB suffers from higher word fragmentation
across the board. In contrast, IndicTrans2 offers far
superior tokenization stability. While this comes at
the cost of a slightly higher unknown token rate (Ta-
ble 2), the difference is negligible (< 1.7% worst-
case) and easily mitigated via decoding constraints.
We therefore proceed with IndicTrans2.

4.1 Tag-Only Preprocessing

To minimize pipeline complexity and avoid brittle
external preprocessors for these under-resourced

Fertility (↓) Unknown tokens % (↓)

Language NLLB IndicTrans2 NLLB IndicTrans2

Bhili 1.73 1.45 0.02 0.03
Gondi 2.16 1.75 0.17 0.21
Mundari 2.56 2.16 0.42 0.50
Santali 3.07 1.44 0.00 1.69

Table 2: Backbone Analysis. Fertility scores (lower
is better) and unknown-token rates (lower is better) for
NLLB and IndicTrans2.

languages, we adopt a “tags-only” preprocessing
strategy. We avoid script unification or transliter-
ation. Instead, we condition the model purely via
tag prefixing (Johnson et al., 2017).

Each language ℓ ∈ L is associated with a fixed
tokenizer tag τ(ℓ) (e.g., τ(Hindi) = hin_Deva).
For extremely low-resource languages not origi-
nally supported by the tokenizer, we map them to
the closest available script-proxy tag. Specifically,
we map Bhili to mar_Deva (Marathi) as a surrogate
to leverage Devanagari script transfer.

For a source sentence x and direction d = (ℓs →
ℓt), we construct the model input

x̃ = [τ(ℓs), τ(ℓt), tokens(x)].

By consistently applying this formatting, we con-
vert all parallel data into a unified sequence-to-
sequence task, allowing joint training across all
directions simultaneously.

4.2 Base Model and Joint Fine-tuning
We initialize our model with IndicTrans2,
a Transformer-based encoder-decoder (Vaswani
et al., 2017) model pretrained on large-scale Indic
corpora. While IndicTrans2 is a strong baseline,
the specific domains and languages in this shared
task (e.g., Gondi, Mundari) are under-represented
in the pretraining data.

We treat the union of all available training data
D =

⋃
dDd as a single dataset. We fold the de-

velopment sets into the training data to maximize
the supervision available for the lowest-resource
directions. We fine-tune all model parameters θ
(initialized at pretrained weights θ0) via standard
token-level cross-entropy loss:

Lbase(θ) = −
∑

(x,y,d)∈D

1

|y|

|y|∑

t=1

log pθ(yt | y<t, x̃d)

(3)
where x̃d encodes the direction d via tags. This
stage produces a “generalist” base model θ⋆ that
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creates a strong baseline but may suffer from inter-
ference between conflicting translation directions
(e.g., translating into Devanagari vs. Ol Chiki
scripts).

4.3 Directional LoRA Adapters
To mitigate interference and allow specializa-
tion, we freeze the base model θ⋆ and introduce
direction-specific Low-Rank Adaptation (LoRA)
modules.

For a target module weight matrix W ∈ Rdout×din

(e.g., attention projections or FFN layers), we pa-
rameterize the update for direction d as:

Wd = W +
α

r
BdAd (4)

where r is the rank, Ad ∈ Rr×din , Bd ∈ Rdout×r,
and α is a scaling factor.

We create a separate bank of adapters {∆θd}
for each direction. During this stage, we freeze θ⋆

and optimize only the adapter parameters ∆θd and
the shared embeddings/LM head ϕ on the subset
of data Dd corresponding to that direction. This
results in a system where the backbone provides
shared linguistic knowledge, while the adapter de-
fines the specific mapping for a language pair.

5 Inference: Noisy-Channel Reranking

Standard beam search often yields generic or “safe”
translations, particularly in low-resource settings
where the model may hallucinate or default to copy-
ing the source script. To address this, we employ
a noisy-channel reranking approach (Pang et al.,
2022) that couples forward and reverse translation
models.

5.1 Candidate Generation and Scoring
Given a test input x and direction d = (τs → τt),
we first generate a set of K candidate translations
YK = {y(1), . . . , y(K)} using beam search with
the forward adapter ∆θd. We strictly constrain the
beam search to disallow the generation of the <unk>
token to prevent degenerate outputs in low-resource
target scripts.

We then score each candidate y(k) using two
components:

1. Forward Score: The log-probability of the
candidate given the source, using the forward
adapter ∆θd:

ℓfwd =
1

|y(k)| log p(y
(k) | x, d; ∆θd) (5)

2. Reverse Score: The log-probability of re-
constructing the source x given the candi-
date, using the reverse adapter ∆θd−1 (where
d−1 = τt → τs):

ℓrev =
1

|x| log p(x | y(k), d−1; ∆θd−1) (6)

Both scores are computed via batched teacher forc-
ing.

5.2 Reranking Objective
The final translation ŷ is selected by maximizing a
weighted combination of these scores:

ŷ = argmax
y(k)∈YK

[α · ℓfwd + β · ℓrev] (7)

In our experiments, we set α = 1.0 and β = 1.0.
The reverse term acts as a regularizer: it penalizes
candidates that are fluent (high forward probability)
but semantically drifted such that the source cannot
be reconstructed.

Finally, we apply a lightweight script-aware post-
processing step to normalize punctuation and re-
move artifacts (e.g., spacing before Danda or Ol
Chiki punctuation) introduced by the tokenizer.

6 Experimental Setup

6.1 Training Details
We trained the base model for 300k steps with a
learning rate of 2e-5, using mixed precision (BF16)
and a batch size of 44. For the LoRA stage, we
used a rank r = 64, α = 128, and dropout 0.1.
We targeted all linear layers in the attention and
feed-forward blocks along with training the base
model’s embedding and output head while training
for 50k steps.

7 Results

Table 3 presents the performance of our system
on the shared task leaderboard. We compare two
model sizes (360M and 1.1B) across three stages of
our pipeline: the fine-tuned baseline, the addition
of Directional Adapters (MultiLoRA), and the final
Noisy-Channel Reranking (Backloss).

Impact of Directional Adapters For the 1.1B
model, Directional LoRA adapters give a +13.9
point increase in the Public score. This validates
our hypothesis that low-resource languages bene-
fit from dedicated parameter spaces that are iso-
lated from the interference of other translation di-
rections. Notably, our 360M model with adapters
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Figure 1: Final Results Left: Public Scores (higher is better), showing a steady increase in performance across
both model sizes with the 3 stages (Finetuning, Multi-LoRA adaptation, Noisy Channel Reranking). Right: Private
Scores. Showing a similar trend in performance gains

Model Configuration Public Private
Small Variant (360M)
IndicTrans2-360M (FT Baseline) 304.41 197.44

+ Directional Adapters 312.75 201.04
+ Noisy-Channel Reranking 314.30 202.18

Large Variant (1.1B)
IndicTrans2-1.1B (FT Baseline) 305.03 199.20

+ Directional Adapters 318.94 210.00
+ Noisy-Channel Reranking 319.39 212.04

Table 3: Main Results. Comparison of Public and
Private leaderboard scores. Our proposed methods yield
consistent improvements across model sizes. The 1.1B
model with full pipeline achieves the winning score.

(312.75) significantly outperforms the much larger
1.1B baseline (305.03), highlighting the efficiency
of this approach.

Impact of Noisy-Channel Reranking The addi-
tion of noisy-channel reranking provides a consis-
tent final boost (+0.45 to +1.55 points). While the
magnitude is smaller than the LoRA step, this re-
ranking method is a cheap and consistent method
to improve MT performance.

8 Conclusion

We presented our winning submission to the MM-
LoSo shared task. By combining a strong pre-
trained backbone (IndicTrans2) with a unified
“tags-only” preprocessing scheme, we established
a robust baseline. We then introduced Directional
LoRA Adapters to resolve interference between

diverse scripts and Noisy-Channel Reranking to
ensure semantic fidelity. Our results demonstrate
that even in the era of massive multilingual mod-
els, task-specific modular adaptation and rigorous
decoding strategies remain essential for achieving
state-of-the-art performance in low-resource Indic
languages.

9 Limitations

The proposed system remains constrained by the
IndicTrans2 tokenizer and vocabulary. Coverage of
low-resource scripts (in particular Ol Chiki for San-
tali and the surrogate tag used for Bhilli) is incom-
plete, which leads to fragmented subword segmen-
tations and occasional out-of-vocabulary symbols.
Decoding-time constraints such as banning <unk>
partially mitigate their impact on automatic met-
rics, but do not recover missing characters and can
still yield approximate or distorted surface forms
for rare words and named entities.

The training and tuning setup is tightly coupled
to the shared-task configuration. The base model is
deliberately saturated on the full training data, and
several hyperparameters (e.g., beam size, noisy-
channel weights) are selected using subsets of the
same data or leaderboard feedback, rather than a
clean held-out validation set.

Finally, the architecture makes explicit trade-
offs in efficiency and generality. Direction-specific
LoRA adapters scale linearly with the number of
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language pairs and require separate finetuning for
each direction, limiting zero-shot coverage. The
noisy-channel reranking scheme further increases
inference-time cost by requiring both forward and
reverse likelihoods for multiple candidates per
input, which may be impractical in latency- or
resource-constrained settings.
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