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Abstract

This paper presents Tayronas Trigrams’s
methodology and findings from our participa-
tion in the JUST-NLP 2025 Shared Task of
Legal Summarization (L-SUMM), which fo-
cused on generating abstractive summaries of
lengthy Indian court judgments. Our initial
approach involved evaluating and fine-tuning
specialized sequence-to-sequence models like
Legal-Pegasus, Indian Legal LED, and BART.
We found that these small generative models,
even after fine-tuning on the limited InLSum
dataset (1,200 training examples), delivered
performance (e.g., Legal-Pegasus AVG score:
16.50) significantly below expected.

Consequently, our final, best-performing
method was a hybrid extractive-abstractive
pipeline. This approach first employed the ex-
tractive method PACSUM to select the most
important sentences yielding an initial AVG
score of 20.04 and then utilized a Large Lan-
guage Model (specifically Gemini 2.5 Pro), cor-
rectly prompted, to perform the final abstractive
step by seamlessly stitching and ensuring co-
herence between these extracted chunks. This
hybrid strategy achieved an average ROUGE-2
of 21.05, ROUGE-L of 24.35, and BLEU of
15.12, securing 7th place in the competition.
Our key finding is that, under data scarcity, a
two-stage hybrid approach dramatically out-
performs end-to-end abstractive fine-tuning on
smaller models.

1 Introduction

The legal systems of highly populous nations, such
as India, are facing a critical challenge due to judi-
cial pendency. As reported by the National Judicial
Data Grid (NJDG), India alone contends with over
44 million pending cases across its courts. This
massive backlog, often caused by manual, ineffi-
cient document processing, delays timely justice
and undermines the fundamental rights the system
is designed to protect. Automated systems powered

by Natural Language Processing (NLP) offer a scal-
able solution to assist legal professionals, stream-
line document workflow, and ultimately improve
public access to case information.

Our team, Tayronas Trigrams, participated in
the JUST-NLP 2025 Shared Task 1: Legal Sum-
marization (L-SUMM), which required generating
500-word abstractive summaries for lengthy Indian
court judgments. We found that the task’s inher-
ent challenges, such as nuanced legal reasoning
and textual abstraction, were significantly ampli-
fied by the limited InLSum dataset (1,200 training
instances). This data scarcity caused existing spe-
cialized small generative models to struggle, moti-
vating our pivot from a purely abstractive approach
to a novel, two-stage methodology.

• We demonstrate the limited efficacy of fine-
tuning small, specialized transformer mod-
els (e.g., Legal-Pegasus, Indian Legal LED,
BART) for abstractive legal summarization
under low-resource conditions.

• We establish that a simple extractive baseline
significantly outperforms these fine-tuned gen-
erative models when data is scarce.

• We propose and validate a Hybrid Extractive-
Abstractive pipeline, which uses Large Lan-
guage Models (LLMs) to connect and coher-
ently refine extracted content, resulting in a
substantial performance gain.

• Our final model achieved strong competitive
metrics (ROUGE-2: 21.05, ROUGE-L: 24.35)
by leveraging this hybrid approach, under-
scoring its superiority for low-data, domain-
specific summarization.

2 Related Work

Automatic legal summarization is challenging due
to extreme document length (Shukla et al., 2022),
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domain-specific "legalese" (Joshi et al., 2024), and
the need for high factual consistency. Indian legal
texts present additional challenges, being "noisier
and poorly organized" (Sharma et al., 2023). While
traditional extractive methods like LexRank are
factually robust (Shukla et al., 2022; Sharma et al.,
2023), recent work has shifted to abstractive mod-
els like BART (Shukla et al., 2022) and specialized
models such as Legal-Pegasus. Notably, Sharma
et al. (2023) identified Legal-Pegasus as a top per-
former on Indian legal data, justifying its use as a
strong baseline.

A primary obstacle, however, is data scarcity.
The L-SUMM task utilizes the low-resource InL-
Sum dataset, creating a significant performance
bottleneck. This setting favors robust baselines;
Shukla et al. (2022) observed that strong extrac-
tive models can perform on par with abstractive
ones. Furthermore, Joshi et al. (2024) found that
even large LLMs (e.g., GPT-4) can underperform
fine-tuned models on this specific task (SUMM).
Our work builds directly on these findings, corrob-
orating the limitations of fine-tuning small models
in a low-resource setting and instead proposing a
hybrid approach that combines extractive content
selection with LLM-based refinement.

3 Methodology

Our methodology was structured as a multi-stage
process, beginning with a systematic evaluation of
existing models and culminating in a hybrid ap-
proach. The initial phase, detailed below, focused
on benchmarking specialized pre-trained models to
establish a performance baseline on the L-SUMM
task, following similar comparative analyses in the
literature (Sharma et al., 2023; Shukla et al., 2022).
This foundational analysis was critical in guiding
our subsequent, more complex strategies.

3.1 Initial Model Evaluation

To assess the zero-shot capabilities of existing
models on the provided dataset, we implemented
a unified evaluation pipeline using the Hugging
Face Transformers library. This allowed us
to systematically compare promising pre-trained,
domain-specific models for legal text summariza-
tion (Sharma et al., 2023; Shukla et al., 2022). The
selected models were:

• BART (sanatann/legal-summarizer-bart):
A model based on the BART architecture,

fine-tuned for legal summarization, com-
monly used as a baseline for this task (Sharma
et al., 2023; Shukla et al., 2022).

• LED (TheGod-2003/legal-summarizer):
A Longformer-Encoder-Decoder (LED)
model designed to handle long documents,
making it suitable for legal texts (Sharma
et al., 2023; Shukla et al., 2022).

• Indian Legal LED
(Yashaswat/indian-legal-led-base):
An LED model specifically fine-tuned
on Indian legal documents. The use of a
specialized Legal-LED is supported by Joshi
et al. (2024) and Shukla et al. (2022), who
identify it as a strong-performing model for
the domain.

• Legal Pegasus (nsi319/legal-pegasus): A
model based on the Pegasus architecture
adapted for the legal domain. This model
was prioritized for evaluation as Sharma et al.
(2023) found it to “outperform over all other
models” for Indian legal summarization, a
finding supported by Shukla et al. (2022).

Our pipeline loaded each model and its corre-
sponding tokenizer, processed documents from the
training set, generated summaries, and evaluated
them against the ground truth. Performance was
measured using standard summarization metrics:
ROUGE-2, ROUGE-L, and BLEU, which are stan-
dard for the task and the In-Abs dataset (Joshi et al.,
2024; Shukla et al., 2022). This initial evaluation
provided the baseline data that informed our deci-
sion to move away from a purely fine-tuning-based
approach.

3.1.1 Initial Evaluation Results
The initial evaluation was conducted on a small,
representative sample of 8 documents from the
training set to quickly gauge the zero-shot perfor-
mance of each model. While not statistically signif-
icant, this preliminary analysis provided valuable
directional insights into which models were most
promising. The results, shown in Table 1, indicated
that Legal Pegasus offered a competitive starting
point.

3.2 Fine-Tuning Phase
3.2.1 Motivation and Model Selection
Following Bhattacharya et al. (2021), who recom-
mended Legal-Pegasus for legal summarization via
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Model ROUGE-2 ROUGE-L BLEU

BART 9.34 17.37 10.06
LED 11.77 18.91 16.30
Indian Legal LED 2.45 16.67 7.19
Legal Pegasus 20.05 17.37 10.06

Table 1: Preliminary zero-shot results on a sample of 8
documents. Scores are corpus-level.

chunking, we selected nsi319/legal-pegasus
as our base model. However, Indian legal judg-
ments averaged 10,000+ tokens, exceeding Legal-
Pegasus’s 1,024-token limit, necessitating an intel-
ligent chunking strategy. We investigated whether
embedding-based similarity could improve chunk-
summary alignments.

3.2.2 Chunking Strategy
We adopted the chunking approach of Bhattacharya
et al. (2021), inspired by Gidiotis and Tsoumakas
(2020), which segments documents into chunks
and constructs targeted summaries by mapping
summary sentences to similar document sentences.
Given a document-summary pair (d, s), we parti-
tion d into chunks {d1, d2, . . . , dn} and generate
chunk-specific summaries si by aggregating sum-
mary sentences that map to sentences within each
chunk di (see Appendix A for detailed methodol-
ogy). We compared two similarity metrics while
keeping the fine-tuning pipeline constant.

Experiment 1: TF-IDF Baseline. Our baseline
employed TF-IDF cosine similarity with fixed-size
chunks (400 words, 50 overlap) and a 0.1 similarity
threshold, yielding 4,706 training pairs. While com-
putationally efficient, this bag-of-words approach
lacks semantic context (detailed vectorization pa-
rameters in Appendix A).

Experiment 2: MCS-SBERT Optimiza-
tion. Building on Mean Cosine Similarity
(MCS) (Reimers and Gurevych, 2019), we
replaced TF-IDF with dense embeddings from
all-MiniLM-L6-v2 Sentence-BERT (384-dim),
which capture semantic relationships beyond
lexical overlap. We implemented semantic
chunking respecting paragraph boundaries (500
words, 40-word minimum) and raised the similarity
threshold to 0.4 to filter false positives. Quality
filters (compression ratio 0.05–0.4, minimum
summary length 40 words) excluded degenerate
pairs, yielding 638 high-confidence examples—a
deliberate trade-off sacrificing quantity for quality.

Analysis. Table 2 shows MCS-SBERT outper-
formed TF-IDF with 82% fewer pairs, attributable
to semantic capture (SBERT encodes meaning be-
yond surface similarity) and noise reduction (ele-
vated threshold filtered spurious alignments). This
validates that in low-resource legal domains, cu-
rated high-precision data outweighs large volumes
of noisy examples.

3.2.3 Fine-tuning Setup
We fine-tuned Legal-Pegasus using Hugging Face
Transformers with the 638 MCS-SBERT pairs
(85/15 split). Configuration: LR 2 × 10−5, 500
warmup steps, batch 4 (effective: 8), 3 epochs,
1,024/512 tokens, BF16 on A100 GPU, beam
search (6). Training converged in 45 minutes with
ROUGE evaluation (Lin, 2004).

3.2.4 Results and Analysis
Our fine-tuned Legal-Pegasus achieved ROUGE-
2: 17.1 and ROUGE-L: 19.8, validating MCS-
SBERT’s effectiveness but falling below our ex-
tractive baseline (ROUGE-2: 20.51, ROUGE-L:
23.49, as shown in Table 3). This gap reveals limi-
tations of fine-tuning small models in low-resource
legal scenarios: (1) data scarcity—638 pairs vs.
10,000+ typically required (Zhang et al., 2020);
(2) domain complexity—legal precision demands
exceed small model capacity (568M parameters),
causing occasional hallucinations; and (3) abstrac-
tive risk—semantic drifts unacceptable for legal
fidelity, where extractive methods excel.

Despite suboptimal performance, this validated
dense embeddings’ superiority over bag-of-words
and demonstrated fine-tuning’s viability thresh-
old, motivating our pivot to a hybrid extractive-
abstractive approach.

3.3 Hybrid Extractive-Abstractive Method
We propose a two-stage approach combining ex-
tractive pre-selection with abstractive refinement
for legal document summarization. Legal case
judgments pose significant challenges due to ex-
treme length (10,000+ tokens), technical terminol-
ogy, and complex argumentation structures (Bhat-
tacharya et al., 2021).

3.3.1 Final method
Stage 1: Extractive Pre-selection. Documents
are first segmented into semantic chunks (maxi-
mum 512 tokens per chunk, no overlap), breaking
at natural boundaries to preserve meaning. We ap-
ply PACSUM (Zheng and Lapata, 2019), a BERT-
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Table 2: Comparative study of chunking strategies. MCS-SBERT achieves superior performance with 82% fewer
training pairs. The performance is reported on the InLSum Validation Set (200 datapoints).

Method Similarity Threshold Pairs AVG R-2 R-L BLEU

TF-IDF Baseline Cosine (BoW) 0.1 4,706 16.77 19.94 22.51 7.85
MCS-SBERT SBERT Cosine 0.4 638 17.16 20.64 21.62 9.23

based unsupervised method that constructs directed
sentence graphs with position-augmented central-
ity scoring. PACSUM ranks sentences within each
chunk by semantic similarity and positional im-
portance. We then select the chunks correspond-
ing to the highest PACSUM scores and aggregate
them sequentially until reaching a 1000-token bud-
get, adding additional highly-ranked content when
space permits. This reduces input length by 60-
70% while retaining salient information.

Stage 2: Abstractive Refinement. The ag-
gregated 1000-token extractive summary is pro-
cessed by Gemini 2.5 Pro (DeepMind, 2024) us-
ing zero-shot prompting with optimized instruc-
tions. We employ automated prompt optimization
through iterative refinement, evaluating candidate
prompts on validation examples and selecting those
maximizing ROUGE scores. While we experi-
mented with few-shot learning (1-3 demonstration
examples), zero-shot prompting consistently out-
performed few-shot across all metrics. The LLM
generates coherent abstractive summaries by para-
phrasing, fusing sentences, and removing redun-
dancy.

3.3.2 Experimental Results
We evaluate our method on the Indian Court
Judgment Summarization shared task. Table 3
presents performance across four metrics: the AVG
Score (primary ranking metric), ROUGE-2 (R2),
ROUGE-L (RL), and BLEU (B). The AVG Score
(C) is calculated as the average of the three stan-
dard relevance metrics:

AVG Score (C) =
R2 +RL+B

3

Method Score R-2 R-L BLEU

PACSUM (extractive) 19.61 20.51 23.49 14.84
PACSUM + Gemini 2.5 Pro 20.17 21.05 24.35 15.12

Table 3: Performance comparison on test set. PACSUM
processes 512-token chunks and aggregates to 1000
tokens. The hybrid method shows consistent improve-
ments across all metrics.

The hybrid approach outperforms the purely ex-
tractive baseline across all metrics, with improve-
ments of +0.56 points in Competition Score, +0.54
in ROUGE-2, +0.86 in ROUGE-L, and +0.28 in
BLEU. These gains demonstrate that abstractive re-
finement by the LLM adds value beyond extractive
selection alone.

Analysis. The modest improvements suggest
that the extractive pre-selection already captures
most salient content effectively. The LLM’s pri-
mary contribution is enhancing fluency and coher-
ence rather than identifying additional key informa-
tion. The two-stage strategy (512-token chunks for
processing, 1000-token aggregation for LLM input)
proved critical for managing computational costs
while maintaining summary quality. Notably, zero-
shot prompting outperformed few-shot approaches,
suggesting that well-crafted instructions are more
effective than demonstration examples for this task.

4 Conclusion

In this paper, we described the methodology used
by Tayronas Trigrams for the L-SUMM task at
JUST-NLP 2025. Our initial experiments fo-
cused on fine-tuning specialized models like Legal-
Pegasus, but we found that they did not perform
well due to the small size of the InLSum dataset
(1,200 examples). The models struggled to gen-
erate accurate summaries without more training
data.

To solve this, we developed a hybrid pipeline.
We used PACSUM for extractive selection to iden-
tify the most relevant sentences, followed by Gem-
ini 2.5 Pro for abstractive refinement. Our ap-
proach achieved 7th place in the competition with
a ROUGE-L score of 24.35. These results indi-
cate that when data is limited, combining extractive
methods with Large Language Models is a practical
and effective strategy for legal summarization. Fu-
ture work will explore dynamic chunking strategies
to mitigate information bottlenecks and evaluate
open-source models to address the privacy limita-
tions of proprietary APIs.
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Limitations

While our hybrid extractive-abstractive approach
proved effective for the shared task, we acknowl-
edge three primary limitations:

• Dependency on Proprietary APIs: Our re-
liance on Gemini 2.5 Pro introduces costs
and potential reproducibility issues. Further-
more, sending legal documents to external
APIs raises data privacy concerns that purely
local models avoid.

• Information Bottleneck: The abstractive
generator is strictly limited by the initial ex-
tractive step. If the PACSUM algorithm fails
to select a crucial piece of evidence or legal
precedent, the LLM has no way to recover that
information, as it never sees the full original
document.

• Domain Specificity: Our optimization steps,
particularly the chunking thresholds and
prompt engineering, were tailored specifically
for Indian case law. These parameters may not
generalize effectively to other legal systems
or languages without significant adjustment.
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Appendix

A Chunking Strategy: Detailed
Methodology

Our chunking approach follows the methodology of
Bhattacharya et al. (2021), inspired by Gidiotis and
Tsoumakas (2020), which addresses a fundamental
challenge: pre-trained models have input length
limits shorter than legal documents, yet naively
using the same reference summary for all chunks
ignores their varying content.

A.1 Chunk-Specific Summary Generation
Given a training pair (d, s) where d is a document
and s is its reference summary:
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Step 1: Document Segmentation. Partition d
into n chunks: d = {d1, d2, . . . , dn}.

Step 2: Sentence-Level Mapping. For each sen-
tence sj in the reference summary s, identify its
most similar sentence in the document d:

map(sj) = argmax
dk∈d

sim(sj , dk) (1)

where sim(·, ·) is a sentence similarity measure
(detailed below).

Step 3: Chunk-Specific Summary Construction.
For each chunk di, construct its target summary si
by aggregating all summary sentences mapped to
sentences within that chunk:

si = {sj ∈ s | map(sj) ∈ di} (2)

This procedure generates multiple training pairs
(di, si) from each document, where each chunk is
paired with a semantically relevant subset of the
original summary.

A.2 Similarity Measures

We compare two sentence similarity metrics:

A.2.1 TF-IDF Cosine Similarity (Baseline)
Representation. Sentences are represented as
sparse TF-IDF vectors. We apply preprocessing
(tokenization, stopword removal including legal
terms, stemming) and vectorize using:

• 3,000-dimensional vocabulary

• Unigram + bigram features

• Sublinear TF scaling: tf(t, d) = 1 +
log(count(t, d))

Similarity. For sentences sj (summary) and dk
(document) with TF-IDF vectors vs and vd:

simTF-IDF(sj , dk) =
vs · vd

∥vs∥∥vd∥
(3)

Chunking Parameters.

• Fixed sliding window: 400 words, 50-word
overlap

• Similarity threshold: 0.1 (sentence sj maps to
dk if similarity ≥ 0.1)

This lexical baseline captures term overlap but
ignores semantic context.

A.2.2 Mean Cosine Similarity with SBERT
(MCS)

Representation. We use all-MiniLM-L6-v2
Sentence-BERT (Reimers and Gurevych, 2019) to
encode sentences as 384-dimensional dense embed-
dings. Unlike TF-IDF, SBERT operates on raw text
and captures contextual semantics.

Similarity. For embeddings es, ed ∈ R384:

simMCS(sj , dk) =
es · ed

∥es∥2∥ed∥2
(4)

Chunking Parameters.

• Semantic chunking: respects paragraph
boundaries, 500-word target size

• Similarity threshold: 0.4 (raised to mitigate
false positives from dense embeddings)

• Quality filters: compression ratio
∈ [0.05, 0.4], minimum 40 words

The higher threshold and quality filters priori-
tize precision over recall, trading dataset size for
semantic coherence.

A.2.3 DSPy Prompt Configuration
The optimized prompt used in our hybrid extractive-
abstractive pipeline:

Instructions: Create an extractive summary of a
legal judgment by identifying and concatenating
key paragraphs.

Important Notes:

• If example summaries are shown above,
they are ONLY for demonstrating format
and style

• Do NOT use factual content, names, or le-
gal arguments from examples

• ONLY summarize the specific judgment
provided in the "Judgment Text" field

• Each judgment is separate - do not mix in-
formation between cases

Instructions:

1. Identify key paragraphs covering: case par-
ties/background, core legal issue, court’s
decision, and key reasoning

2. Optimize for ROUGE-2, ROUGE-L and
BLEU by copying text as exactly as possi-
ble

3. Join paragraphs in logical order with mini-
mal transitions

4. Preserve original legal terminology, case
citations, and phrasing

Target: 500-700 words from current judgment
only
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Prompt Structure:

• Input: Full judgment text preceded by “—
NEW JUDGMENT —”

• Reasoning: Chain-of-thought with “Let’s
think step by step in order to”

• Output: Extractive summary preceded by “—
SUMMARY OUTPUT —”
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