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Abstract

We describe an inexpensive system that ranked
first in the JUST-NLP 2025 L-SUMM task,
summarizing very long Indian court judgments
(up to 857k characters) using a single 80GB
GPU and a total budget of about $50. Our
pipeline first filters out length—summary out-
liers, then applies two-stage LoRA SFT on
Qwen3-4B-Instruct-2507 to learn style and ex-
tend context, and finally runs RLVR tuned to
BLEU, ROUGE-2, and ROUGE-L, with BLEU
upweighted. We showed that two-stage SFT
is better than a single-stage run, and RLVR
gives the largest gains, reaching 32.71 internal
vs. 16.15 base and 29.91 on the test leader-
board. In ablation on prompting, we find that a
simple, naive prompt converges faster but satu-
rates earlier, while the curated legal-structured
prompt keeps improving with longer training
and yields higher final scores, and the finetuned
model remains fairly robust to unseen prompts.
Our code' and models? are fully open-sourced,
available for reproducibility.

1 Introduction

Summarization is one of the challenging tasks
in the Natural Language Processing (NLP) do-
main (Zhang et al., 2024). Several benchmarks
tried to measure different NLP systems using stan-
dard metrics n-gram-based metrics (Lin, 2004; Pa-
pineni et al., 2002) or LLM-as-judges (Li et al.,
2024). In some specific case, summarization can
be viewed as a domain-specific problem. For exam-
ple, medical note summarization (Michalopoulos
et al., 2022) in medical domains, meeting summary
which usually summarizes key points and agenda
(Kirstein et al., 2024), or in legal where summa-
rization was done in legal cases (Datta et al., 2023;
Shukla et al., 2022) or court judgments (Sharma
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et al., 2023). In this work, we focus specifically
on legal judgment summarization, which is part
of the JUST-NLP 2025 Legal Summarization (L-
SUMM) Shared Task. We framed L-SUMM as a
long-form summarization task where the length of
the judgment can be extremely long (up to 857,477
characters).

To tackle this challenge, we utilized a standard
finetuning technique followed by Reinforcement
Learning with Verifiable Reward (RLVR). Addi-
tionally, we also constraint our compute budget
to only $50 in GPU hours and only require a sin-
gle GPU. To achieve such training efficiency, we
utilized supervised finetuning using LoRA (Hu
et al., 2021) on Qwen3-4B-Instruct-2507 (Yang
et al., 2025). Our pipeline consists of three steps,
two-stage supervised finetuning followed by a final
RLVR for aligning LLM towards better summariza-
tion style. Our results showed that a two-stage su-
pervised finetuning is necessary given a constrained
compute budget compared to unified single stage.
Furthermore, RLVR significantly boosted the fine-
tuned model performance across all summarization
metrics. However, we also noticed the instability
in applying RLVR towards legal summarization
across long-form summary. In our ablation study,
we also investigate the effect of prompting towards
downstream performance during supervised fine-
tuning stage. In summary, we conclude our contri-
butions as follows:

1. We provides a detailed system description of
our design that ranked first place in the L-
SUMM Shared Task.

2. We demonstrate an efficient training pipeline
that achieves competitive summarization per-
formance under a strict compute budget
roughtly $50 using a single 80GB GPU.

3. We study the effect of prompting supervised
finetuning data on legal summarization and
report findings.
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2 Related Works

Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards
(RLVR) was introduced as a more scalable alter-
native to the classical RLHF setup (Ouyang et al.,
2022), which typically relies on PPO (Schulman
et al., 2017), a critic head, and a learned reward
model components that make RLHF costly to train.
To reduce this overhead, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) became
popular, but it still requires human preference pairs.
Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) addressed this by replacing preference
data with rule-based, verifiable rewards, thereby
removing the need for both a critic head and cu-
rated preference pairs. Subsequent works such
as Dr. GRPO (Liu et al., 2025b) and DAPO (Yu
et al., 2025) improved GRPQO’s sampling efficiency,
reduced length bias, and refined clipping strate-
gies. Group Sequence Policy Optimization (GSPO)
(Zheng et al., 2025) further stabilized training for
MOoE models, by performing advantage renormal-
ization at the sequence level instead of per token.

In this work, we adopt this RLVR to further
align an instruction-tuned model for legal summa-
rization, using verifiable task rewards. Prior stud-
ies have also shown that n-gram—based rewards
(Chang et al., 2025) and semantic-similarity re-
wards (Akarajaradwong et al., 2025) can be effec-
tively plugged into this framework to strengthen
instruction following capabilities.

Parameter Efficient Approaches for Long Con-
textual Task Recent works proposed an efficient
approach to conduct Parameter Efficient Finetun-
ing (PEFT) towards long-form contents. Lon-
gLoRA (Chen et al., 2024) proposed using shifted-
sparse attention to expand context length cheaply
as well as it’s quantized counterparts LongQLoRA
(Yang, 2023). RST-LoRA (Liu and Demberg,
2024) adapts LoRA for long-document summariza-
tion by injecting RST discourse signals (centrality,
relations, and their confidence) into the adapter, giv-
ing the model a richer, structure-aware fine-tuning
signal and outperforming vanilla LoRA and full
fine-tuning on multiple evaluations.

Legal Summarization There are several works
introduced dataset for legal summarization task.
Shukla et al. (2022) released three new case law
summarization datasets drawn from Indian and UK
Supreme Court judgments, and conducted exten-
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Figure 1: Line best fit and 80% prediction interval be-
tween judgment word counts and summary word counts
in log-scale.

sive evaluations of extractive vs abstractive summa-
rization methods on these legal cases. Building on
this, Datta et al. (2023) presented the MILDSum
corpus, a benchmark of 3,122 Indian legal judg-
ments with high-quality summaries in both English
and Hindi. Joshi et al. (2024) introduced IL-TUR,
a broad benchmark for Indian Legal Text Under-
standing that includes a summarization task among
eight diverse legal NLP tasks. IL-TUR provides
multilingual legal datasets (spanning English and 9
Indian languages) and reports baseline results for
each task.

3 Methodology & Experimental Setups

Our system includes a data preparation phase that
removes potential data outliers, followed by a two-
stage instruction tuning pipeline before applying a
final alignment tuning via RLVR.

3.1 Data Preparation

Upon inspecting the dataset, we found that the ra-
tio between the judgment length and its summa-
rized reference was sometimes disproportionate. In
particular, some summaries were longer than the
judgment, while others were shorter than expected.
To reduce noise before finetuning, we removed
samples whose summary—judgment length ratio de-
viated from the expected trend. We first fitted a lin-
ear regression between judgment word counts and
summary word counts in log-scale, then discarded
any sample falling outside the 80% prediction inter-
val, as illustrated in Figure 1. This filtering reduced
the training set from 1,200 to 1,052 samples.
After filtering, we stratified the remaining data
into training and internal validation splits, ensuring
similar distributions of summary lengths in both.
We used an 80/20 split, resulting in 841 training
samples and 211 internal validation samples. Note
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that the official validation and test splits were kept
held-out and only used for evaluation, as their ref-
erence summaries were not released.

3.2 Finetuning Pipeline

Our finetuning pipeline consists of two main
stages, two-step supervised finetuning, followed
by RLVR. The supervised stages adapt the base
model to the task-specific summarization style,
and the reinforcement step further aligns the
model toward better word choice and target
metrics via GSPO (Zheng et al., 2025). We
use Qwen/Qwen3-4B-Instruct-2507 (Yang et al.,
2025) as the base model because of its strong in-
struction following capability and long context win-
dow (up to 262,144 tokens). We chose the non-
thinking variant to reduce rollout cost during RL.
All finetuning runs used LoRA (Hu et al., 2021)
to stay within our compute budget. Training was
constrained to a single A100 80GB GPU, costing
about $1.39/hour.’

Two-Stage Supervised Finetuning Because in-
puts can be very long and compute is limited, we
split supervised finetuning into two stages.

In the first stage, we finetuned with a max se-
quence length of 16,384 tokens. We applied Rank-
stabilized LoRA (Kalajdzievski, 2023) to all mod-
ules* using LoRA rank 256 and alpha of 32. We
used Adam (Kingma and Ba, 2017) with a constant
learning rate of 2e-4 following (Schulman and Lab,
2025), batch size 32, and trained for two epochs.
This model is reported as ‘SFT Stage 1°.

In the second stage, we merged the stage-1
adapter into the base model and continued train-
ing on longer-context samples. We filtered data
to those with total prompt+completion length be-
tween 10,000 and 30,000 tokens, solely improve
performance towards long input summary. To fit
on a single 80GB GPU at this length, we reduced
the LoRA rank to 32 and attached adapters only
to up_proj and down_proj. We trained for one
epoch with the same learning rate and batch size as
stage 1. This model is reported as ‘SFT Stage 2°.

Reinforcement Tuning Finally, we applied rein-
forcement tuning to directly optimize summariza-
tion metrics: BLEU, ROUGE-L, and ROUGE-2.
BLEU was weighted 3x higher because the SFT

3Price according to https://www.runpod.io/pricing.
*q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj,
and down_proj.

Model Avg Rouge-2 Rouge-. BLEU
Internal Validation results

Qwen3-4B-Thinking-2507 11.60 12.87 16.79 5.14
Qwen3-4B-Instruct-2507 16.15 18.79 22.31 7.33
SFT Stage 1 2296  29.32 29.19 10.38
SFT Stage 2 24.55 30.89 30.49 12.29
Reinforcement Tuned 32.71 35.60 34.43 28.11
Validation Leaderboard results
SFT Stage 1 25.47 31.25 31.42 13.74
SFT Stage 2 25.57 31.51 31.77 13.43
Test Leaderboard results
SFT Stage 2 2394 3035 30.19 11.27
Reinforcement Tuned 29.91 34.91 33.34 21.49

Table 1: Performance of models across internal val-
idation, validation leaderboard, and test leaderboard
results.

model already achieved strong ROUGE but com-
paratively lower BLEU. We used DAPO (Yu et al.,
2025) with high clip value and improved rollout
sampling to increase reward diversity, and we com-
puted importance sampling at sequence level fol-
lowing (Zheng et al., 2025). For optimizer, we used
Adam 8-bit (Dettmers et al., 2022) with constant
learning rate 8e-5, max grad norm 0.2, 16 rollouts,
LoRA rank 2 and alpha 1, rollout temperature 1.0,
max sequence length 12,000, and clip value 0.28
as in (Yu et al., 2025). We use low LoRA rank for
following (Schulman and Lab, 2025) which stated
that RLVR have a sparse reward thus lower train-
ing signal, making lower LoRA rank more suitable.
We used the Unsloth (Daniel Han and team, 2023)
implementation for efficient RL. During RL, we
observed training instabilities (see Section 4), so
selected the last stable checkpoint (step 500) for
evaluation. This model is reported as ‘Reinforce-
ment Tuned’ in the result table.

4 Results & Discussion
The main results are summarized in Table 1.

Qwen3-4B Instruct outperforms the Thinking
variant. From Table 1, the instruction-tuned
model scores clearly higher than the thinking
version on summarization. We attribute this
to the nature of the task: judgments are long
and information-dense, so additional chain-of-
thought style reasoning may introduce token over-
head and distract from concise summary gener-
ation. This observation supports our choice of
Qwen3-4B-Instruct-2507 as the base model.

Reinforcement tuning can collapse late in train-
ing. During GSPO-based reinforcement tuning,
we observed occasional reward collapse, charac-
terized by repetitive rollouts reaching the max se-

115


https://www.runpod.io/pricing.

b

Figure 2: An observed behavior of reward collapsed
when the model underwent GSPO training.
Model Avg Rouge-2 Rouge-L. BLEU
Internal Validation results

SFT Stage 2 24.55 30.89 30.49 12.29

SFT Unified 22.67 29.45 29.07 9.49
Test Leaderboard results

SFT Stage2 27.21 33.36 32.25 16.01

SFT Unified 21.62 28.46 28.42 7.97

Table 2: Performance of the model that underwent two-
stage supervised finetuning pipeline compared to unified
pipeline.

quence length and a subsequent sharp drop in re-
wards as shown in Figure 2. We hypothesized
that this collapse could resulted from an instability
inference-training mismatch, which can be either
from precision sensitivity (Qi et al., 2025), or hard-
ware instability (Liu et al., 2025a). To avoid evalu-
ating such degraded checkpoints, we selected the
last stable checkpoint (step 500) for reporting. We
also provide some analysis of model performance
on different checkpoints on Appendix B.

Cost analysis of the best model. Our full
pipeline used about 35 GPU-hours in total> On
RunPod pricing ($1.39/hour), this corresponds to
roughly $50 for end-to-end training, making the
approach practical for single-GPU setups.

5 Ablation Study

To further validate the effectiveness of our ap-
proach, we conducted two ablation studies. First,
we examined whether the two-stage supervised
finetuning pipeline can be replaced with a single
unified stage. Second, we evaluated the impact of
prompt design by comparing a carefully curated
prompt against a naive prompt (see Appendix A).

Two-stage supervised finetuning outperforms a
unified pipeline. Because our finetuning strat-
egy attaches different LoORA adapters across two
stages, we tested whether training only with the
second-stage setup (long-context, LoRA only on

551 minutes for SFT stage 1, 31 minutes for SFT stage 2,
and 33 hours for reinforcement tuning.

MLP modules) could match its performance. To
do this, we finetuned Qwen3-4B-Instruct-2507
using the stage-2 hyperparameters, increased the
training epochs to 3, and removed the minimum
prompt-length filter. We denote this as ‘SFT Uni-
fied” in Table 2. As shown in the table, SFT Stage
2 consistently outperforms SFT Unified, high-
lighting the benefit of first adapting the model on
shorter contexts with more trainable parameters
before extending to long-context finetuning.

Naive prompts converge faster, but curated
prompts win with longer training. We also
compared two-stage finetuning under two prompts:
a naive prompt with no heuristic guidance (Ap-
pendix A) and our curated summarization prompt.
Both models used the same stage-1 finetuning setup
described in Section 3.2. The results are summa-
rized in Figure 3.

Naive training prompt Our curated training prompt

24 | —8— SFT (train=ours,
SFT (train=ours, eval=

2 —e— SFT (trai
SFT (trai

Figure 3: Plot of internal validation performance of
Qwen3-4B-Instruct-2507 underwent SFT under differ-
ent prompt, and evaluate on different prompt. Hori-
zontal axis denotes training epochs and vertical axis
denotes average metric among ROUGE-2, ROUGE-L,
and BLEU.

We observed that the naive prompt learns faster
in the early steps, reaching an average score of
~19.5 after the first epoch, while the curated
prompt lags behind at ~14.5, slightly below base-
line. However, after the second epoch, the naive-
prompt model saturates and gains little, whereas
the model trained with the curated prompt con-
tinues to improve beyond an average score of 22.
This suggests that well-designed summarization
prompts yield better final performance when
training runs longer.

We also tested cross-prompt robustness by evalu-
ating models on prompts different from those seen
in training. Under our setup and hyperparameters,
the finetuned models did not exhibit strong sen-
sitivity to unseen prompts, indicating reasonable
prompt generalization.
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6 Conclusion

We presented a practical pipeline for finetun-
ing Qwen3-4B-Instruct-2507 on long-form legal
summarization. Our approach begins with length-
based data filtering to remove samples whose judg-
ment—summary ratio deviates from the expected
trend, reducing noise in the training set. We then
apply a two-stage supervised finetuning strategy
with LoRA, first adapting the model on shorter
contexts and then extending to long-context data,
followed by GSPO-based reinforcement tuning to
directly optimize ROUGE and BLEU. Experiments
showed that the two-stage SFT setup outperforms
both the base model and a unified SFT pipeline,
while RL yields the largest performance gains on
internal and leaderboard evaluations. Our ablations
further suggest that prompt design matters more at
longer training horizons and that the model remains
reasonably robust to unseen prompts. Notably, the
entire recipe fits within a single 80GB GPU and
costs roughly $50, demonstrating that competitive
legal summarization is achievable under modest
compute constraints.

Limitations

This work has several limitations. First, our evalua-
tion of the two-stage finetuning pipeline is incom-
plete: we fixed the second-stage training to a single
epoch and did not systematically explore longer
training, curriculum-style schedules, or error break-
downs by sequence length. As a result, it is still
unclear whether additional long-context finetuning
would yield further gains or help specific length
regimes.

Second, the reinforcement tuning phase exhib-
ited training collapse, and we only mitigated it
operationally (by selecting the last stable check-
point) rather than fully diagnosing or fixing the
underlying cause. A deeper study of rollout diver-
sity, reward shaping, and clipping strategies would
likely improve stability.

Third, we did not exhaust the RLVR design
space: we did not compare against vanilla GRPO
(Shao et al., 2024) without sequence-level group-
ing, nor did we test alternative reward configura-
tions such as single-metric rewards versus our com-
pound setup. These choices may affect both final
quality and robustness.

Finally, the reported $50 training cost reflects
only the successful run on a single 80GB GPU.
When including exploratory and failed runs, the

total compute was closer to 70 GPU-hours (about
$100), so the true end-to-end cost of reproducing
this work may be higher than the headline number.
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A Prompts

The system prompt was outlined as follows:

System Prompt

You are a precise summarizer for legal materi-
als. Follow the user "Instruction" steps exactly.

For instruction prompt, we sampled different
summary item from the training sample and ex-
tract key patterns found in the summarization. The
prompt is outlined below.

Instruction Prompt

## Instruction

You are given an Indian court judgment in En-
glish to summarize. Your task is to summarize
the judgment based on the following strategies
on summarizing the judgment:

1) Identify the authority (court, commission,
regulator, ministry or parliamentary body) and
its action in the opening clause — name the
institution and state what it did (granted/-
denied/quashed/stayed/notified/imposed, etc.),
adding the date if given.

2) Summarise the parties and the core issue
in one sentence — who is involved (petitioner,
accused, complainant, regulator) and what the
underlying dispute/offence/claim is, keeping
background facts concise.

3) Mention the legal basis or tests only when
they appear in the source — specify Acts, Sec-
tions, Articles, Rules or Regulations exactly
as provided; never invent citations if none are
given.

4) Convey the key reasoning and observa-
tions succinctly — what the bench or adjudi-
cating authority held/observed/noted and why,
paraphrasing where possible and using short
quoted phrases only when present.

5) Finish with the outcome and operative direc-
tions — note the practical effect (e.g. bail grant-
ed/refused, penalty imposed, matter stayed),
any deadlines, next-hearing dates or compli-
ance steps. If the source lists multiple direc-
tions, collapse them into one sentence sepa-
rated by semicolons rather than using bullets

or separate lines.

## Style & constraints:

- Neutral, factual tone in past tense and active
voice.

- Prefers in paragraphic format not in bullet
points.

- Do not include headings, bullet points or com-
mentary.

- Preserve names, numbers and dates exactly;
if a detail is absent in the source, simply omit
it rather than guessing.

## Input Judgment
{{judgment}}

## Output Summary:

N J

We also provide our naive summary prompt here.

Naive Summary Prompt

Summarize the following judgement:

## Input Judgment:
{{judgment}}

## Output Summary:

A

B Performance of Models Under
Reinforcement Tuning Across Training
Steps

In Section 4, we discussed that the reinforcement
tuning stage sometimes exhibited a collapse of the
reward signal as training progressed. To better
understand this phenomenon, we conducted two
runs that differed only in LoRA rank and learning
rate.

The first run (denoted as GSPO_r1_1e-4 in
Table 3) followed the hyperparameters in Sec-
tion 3.2, except that we used a LoRA rank of
1 and a learning rate of le-4. The second run
(our best-performing configuration), denoted as
GSPO_r2_8e-5, followed the settings in Section 3.2
with a higher LoRA rank 2 and a lower learning
rate 8e-5.

In Figure 2, which plots the reward over training
steps, GSPO_r1_1e-4 corresponds to the red line,
while GSPO_r2_8e-5 corresponds to the

. We observe that GSPO_r1_1e-4 collapses rel-
atively early, around checkpoint 190. To improve
stability, we therefore reduced the learning rate and
increased the LoRA rank. This second run was
indeed more stable, but it still eventually collapsed
at around the 520th step.
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To check whether the model’s task performance
actually improved before the collapse, we saved
a checkpoint every 50 steps and evaluated each
checkpoint on our internal validation split. The
results are shown in Table 3.

Model Ckpt Avg ROUGE-2 ROUGE-L BLEU
Internal validation results
GSPO_r1_1le-4 50  26.29 32.15 31.64 15.09
GSPO_r1_1e-4 100  28.60 33.79 32.53 19.47
GSPO_r1_1e-4 150 28.36 33.95 32.89 18.26
GSPO_r2_8e-5 300 31.50 35.59 33.99 24.92
GSPO_r2_8e-5 400 31.11 35.75 33.97 23.61
GSPO_r2_8e-5 500 32.71 35.60 34.43 28.11
Test leaderboard results
GSPO_r1_1e-4 150 27.21 33.36 32.25 16.01
GSPO_r2_8e-5 500 2991 3491 33.34 21.49

Table 3: Internal validation and test leaderboard per-
formance across different reinforcement tuning steps.
“Avg” is the average of the reported metrics.

Overall, we observe an upward trend in down-
stream metrics as training progresses, despite the
reward curve eventually collapsing. For example,
in the more stable run (GSPO_r2_8e-5), BLEU in-
creases from 24.92 at step 300 to 28.11 at step 500
on the internal validation split, and the correspond-
ing test leaderboard score at step 500 is 21.49. At
the same time, ROUGE-2 and ROUGE-L either im-
prove slightly or remain in a similar range across
checkpoints. These results suggest that the appar-
ent instability in the reward signal is not primarily
caused by degraded task learning, but is more con-
sistent with other factors (e.g., inference—training
mismatch) discussed in Section 4.
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