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Abstract

Human-agent teaming refers to humans and ar-
tificial agents working together toward shared
goals, and recent advances in artificial intel-
ligence, including large language models and
autonomous robots, have intensified interest in
using these agents not only for automation but
also to augment higher-order cognition. Higher-
order thinking involves complex mental pro-
cesses such as critical thinking, creative prob-
lem solving, abstract reasoning, and metacog-
nition, and intelligent agents hold the poten-
tial to act as genuine teammates that comple-
ment human strengths and address cognitive
limitations. This tutorial' synthesizes emerg-
ing research on human-agent teaming for cog-
nitive augmentation by outlining the founda-
tions of higher-order thinking and the psycho-
logical frameworks that describe it, reviewing
key concepts and interaction paradigms in hu-
man—AlI collaboration, and examining appli-
cations across education, healthcare, military
decision-making, scientific discovery, and cre-
ative industries, where systems such as lan-
guage models, decision-support tools, multi-
agent architectures, explainable Al, and hybrid
human—AI methods are used to support com-
plex reasoning and expert judgment. It also dis-
cusses the major challenges involved in achiev-
ing meaningful augmentation, including the
calibration of trust, the need for transparency,
the development of shared mental models, the
role of human adaptability and training, and
broader ethical concerns. The tutorial further
identifies gaps such as limited evidence of long-
term improvement in human cognitive abilities
and insufficient co-adaptation between humans
and agents. Finally, it outlines future direc-
tions involving real-time cognitive alignment,
long-term studies of cognitive development,
co-adaptive learning systems, ethics-aware Al
teammates, and new benchmarks for evaluat-
ing collaborative cognition, offering a com-
prehensive overview of current progress and
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a roadmap for advancing human-agent teaming
as a means of enhancing higher-order human
thinking.

1 Human-Agent Teaming

Traditional Al or automation has often been viewed
as a tool that a human uses — a passive instru-
ment executing tasks under human direction. In
contrast, human-agent teaming (HAT) envisions
Al systems as active team members that collabo-
rate with humans in a more symmetric, interde-
pendent manner. In a HAT scenario, the human
and Al share a common goal, and each contributes
their distinct capabilities to jointly achieve out-
comes that neither could alone as effectively. HAT
is sometimes termed human—Al teaming (HAIT),
human—autonomy teaming, or human—AlI collab-
oration — reflecting overlapping concepts. Across
these definitions, the emphasis is on leveraging the
complementary strengths of humans (e.g. intuition,
ethical judgment, creativity) and Al agents (e.g.
speed, data processing, precision) in an integrated
way. For example, an Al might generate options
or analyze large datasets while the human makes
contextual judgments and provides oversight, to-
gether making a better decision than either could
alone. Crucially, HAT is seen as a human-centered
approach to Al deployment: its aim is not just raw
efficiency, but also to ensure human well-being,
learning, and motivation by making the Al a sup-
portive partner rather than a black-box replacer.
As Al technologies become more autonomous
and “smart,” people begin to perceive them as so-
cial agents rather than mere devices. This opens
the door to designing Al that engages in teamwork
behaviors — communicating, adapting, even exhibit-
ing social qualities like encouragement or etiquette
— thereby fitting more naturally into human teams.
Make an Al feel like a teammate instead of a tool,
including the agent’s agency (ability to act inde-
pendently), benevolence (being oriented to help the
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human), communicativeness, interdependence (its
actions depend on human actions and vice versa),
synchrony (coordination and timing in interaction),
and a team focus (shared goals). When humans
perceive these attributes in an Al — for instance, an
Al that proactively updates a plan in response to a
human’s change in strategy (showing interdepen-
dence and initiative) — they are more likely to trust
and “team up” with it rather than treat it as just an
automated tool (Lyons et al., 2021).

An important aspect of HAT is the level of auton-
omy the agent has. Early framework (Sheridan and
Parasuraman, 2005) defined levels ranging from
complete human control to full machine control.
In HAT contexts, instead of replacing the human
at high autonomy, the goal is a balance where the
Al has enough autonomy to act proactively as a
teammate, but not so much that the human is out of
the loop. Lyons et al. (2021) suggest that to qualify
as a “teammate,” an agent must possess a degree of
autonomy (to sense, decide, and act) and adaptive
behavior — it cannot be completely pre-scripted or
it would be a tool, not a partner. Levels of Auton-
omy (LOA) in human-agent teams refer to how
decision-making responsibility is allocated. For
example, one common scale is: at low LOA the Al
might only suggest options and the human decides;
at medium LOA the Al makes a recommendation
which the human can approve or veto; at high LOA
the Al can decide and execute actions on its own un-
less the human intervenes (Rebensky et al., 2022).
Each level has trade-offs in human workload, trust,
and team effectiveness. A recent study on multi-
agent teaming in a simulated drone surveillance
task found that varying the LOA impacted the hu-
man operator’s workload, stress, and trust in the
agents. Higher autonomy reduced the operator’s
micro-management burden but also required the
human to trust the agents’ decisions — underscoring
the importance of calibrating autonomy to human
preferences and situational demands. In general,
the literature suggests that an optimal HAT often in-
volves a dynamic autonomy approach (sometimes
called adjustable or adaptive autonomy), where the
level of agent independence can shift as needed,
maintaining an appropriate division of labor and
authority between human and Al

Human-agent interactions can be characterized
along a spectrum from loosely coupled to tightly
coupled collaboration. A useful taxonomy distin-
guishes between: co-existence, where humans and
Als work in parallel with minimal direct interac-
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tion; coordination/cooperation, where they share
some information and resources but have mostly
separate sub-tasks; collaboration, where they work
more closely on shared tasks and must synchro-
nize their actions; and teaming, which is the most
interdependent form of collaboration often imply-
ing shared intentions, continuous mutual adjust-
ment, and even social bonding akin to human teams.
Teaming implies a high degree of interdependence
— each agent (human or Al) relies on the other’s
actions — and often involves a sense of mutual com-
mitment or cohesion. In concrete terms, consider
a spectrum in a driving context: a self-driving car
that simply drives while the human passenger does
unrelated work is automation (co-existence at best);
a driver-assist system that can take over in some
situations if the human requests is coordination;
whereas a car that actively converses with the driver
about navigation choices, taking over routine con-
trol so the human can focus on situational strategy
(and vice versa in complex scenarios), could be
seen as teaming. The latter requires rich communi-
cation and each partner understanding the other’s
roles — hallmarks of teaming. Indeed, the form of
interaction is a key part of HAT design: whether
the interaction is through natural language dialogue,
through a GUI with visualized Al reasoning, via
implicit signals (e.g. the Al picking up on human
behavior patterns), etc., all influence how effec-
tively the human and Al can function as a team.

One well-known paradigm is the CASA (Com-
puters as Social Actors) concept, which notes that
people tend to apply social rules even to computers
given minimal cues (Nass et al., 1996). Modern
Al with human-like conversational ability or em-
bodiment amplifies this effect. This means design-
ers can leverage social interaction patterns — for
example, having an Al explain its reasoning or ac-
knowledge errors — to improve teamwork. Another
paradigm is mixed-initiative systems, where both
human and Al can initiate actions or changes in
the task based on who is best suited at the moment.
Effective HAT often calls for transparency (the Al
reveals its intent and reasoning) and shared con-
trol, enabling fluent turn-taking or simultaneous
contributions. For instance, in a writing assistant
scenario, a mixed-initiative agent might not only
generate text when asked, but also pose questions
or highlight potential improvements unprompted,
thus actively engaging the writer in a back-and-
forth creative process.

Shared Mental Models and Teaming: In human



teams, a critical factor for success is a shared men-
tal model — a common understanding among team
members of the task, the goals, each other’s roles,
and the state of the environment. Similarly, for
human—AI teams, researchers emphasize the need
for the Al to form (or approximate) a model of the
human’s intentions and preferences, and for the hu-
man to develop an accurate mental model of what
the Al can do, how it behaves, and when to rely
on it. Without this, the human may be surprised
by the AI’s actions or not trust it appropriately.
The National Academies (2022) identified condi-
tions for successful human—Al teams, including:
the human’s ability to understand and anticipate
the AI’s behavior, to maintain appropriate trust, to
use the AD’s outputs effectively in decisions, and
to effectively control or intervene in the AI’s op-
erations. These conditions allude to alignment of
mental models — the human must grasp the Al’s
capabilities/limits and the Al ideally should adapt
to the human’s goals and provide information in a
way the human can make sense of. Research on
“teachable AI” or “partner AI” explores methods
for agents to learn a user’s preferences over time
or to engage in dialogue to clarify goals, thereby
improving the team’s shared understanding. For
example, an Al assistant might learn a particular
scientist’s experimental style and pre-filter results
accordingly, or a planning Al might ask “Do you
prefer a faster route or a more scenic one?”’ to
ensure it models the driver’s priorities correctly.
As noted, balancing Al autonomy with human
control is a central design decision. If the Al is
too unassertive (always waiting for explicit human
commands), it might under-utilize its abilities and
burden the human with micro-management. If it
is too assertive (acting without human awareness
or input), the human can become out-of-the-loop,
leading to mistrust or misuse (e.g. over-relying on
an autonomous system without monitoring it). A
taxonomy by O’neill et al. (2022) discusses human-
autonomy teaming where the human and Al contin-
uously negotiate control — sometimes the Al leads,
other times the human leads, depending on who has
the advantage in that situation. In practical terms,
many HAT systems implement adaptive autonomy:
the Al might take over routine tasks autonomously
but will defer to the human for critical or ambigu-
ous decisions, or it might ask permission when it
is unsure. Research in contexts like military UAV
control has tested autonomous agents that handle
low-level flying and surveillance tasks, freeing the
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human operator to focus on higher-level mission
strategy. Initial results suggest that such agents
can improve overall mission performance if the
human can maintain situation awareness of what
the agents are doing and intervene when necessary.
Thus, interface design (alerts, explanations, etc.)
that supports coordination is crucial. The concept
of “continua of autonomy”” has emerged — envision-
ing a slider or flexible assignment of function that
adjusts as a mission or task evolves. Such flexibil-
ity is key to treating the Al as a teammate whose
level of initiative can change rather than a fixed
autopilot.

In summary, human-agent teaming is an evolu-
tion from simple ‘“human-in-the-loop” automation
to a partnership model. It demands careful consid-
eration of roles, communication, autonomy, and
trust. The Al must be designed not just for task
performance but for teamwork performance, which
includes being predictable, transparent, and adap-
tive to the human. The human, on the other hand,
may take on new roles such as a supervisor, collab-
orator, or student in relation to the AI. With these
concepts in mind, we will discuss how HAT is be-
ing applied in various domains where higher-order
thinking is critical. Each domain illustrates differ-
ent ways that intelligent agents can augment human
cognition — and the unique challenges that arise.

2 Higher-Order Thinking

Higher-order thinking (HOT) broadly refers to cog-
nitive processes that involve going beyond rote
memorization or basic comprehension to engage
in analysis, synthesis, evaluation, and creation. A
classic definition by Lewis and Smith (1993) de-
scribes HOT as occurring “when a person takes
new information and information stored in memory
and interrelates and/or rearranges and extends this
information to achieve a purpose or find possible
answers in perplexing situations.” In other words,
it entails transforming knowledge to solve novel
or non-routine problems. Lewis and Smith note
that HOT is used in tasks such as “deciding what
to believe or do; creating a new idea or artistic
expression; making a prediction; and solving a non-
routine problem.” Higher-order thinking skills are
often contrasted with lower-order skills that involve
recall or routine procedures.

Key Components of HOT: include the following
cognitive skills under the HOT umbrella (Yatani
et al., 2024):



Critical Thinking: The capacity for purposeful, rea-
soned, and goal-directed thinking in evaluating evi-
dence, forming judgments, and solving problems.
Halpern (2013) defines critical thinking as “think-
ing that is purposeful, reasoned, and goal-directed
— the kind of thinking involved in solving problems,
formulating inferences, calculating likelihoods, and
making decisions.” It also implies a disposition of
reflective skepticism, i.e., being willing to ques-
tion assumptions. Critical thinking enables one to
analyze arguments, identify biases, and avoid be-
ing misled — a skill increasingly essential in the
information age.

Creative Thinking: The ability to generate novel
and valuable ideas or solutions. Torrance (2018)
describes creativity as “the process of sensing gaps
or missing elements; forming ideas or hypotheses
concerning them; testing these hypotheses; and
communicating the results.” Creative thinking is
not limited to the arts; it is vital for innovation
in sciences, engineering, business, and everyday
life. It involves divergent thinking (exploring many
possible solutions) as well as convergent thinking
(synthesizing information into a workable idea).
Notably, both critical and creative thinking can be
cultivated through practice in reasoning, analysis,
and open-ended problem solving. In addition to
cognitive strategies, attitudes matter: effective crit-
ical thinkers tend to be willing to plan, persistent,
self-correcting, and mindful of bias, and creative in-
dividuals benefit from confidence in their creativity
and a willingness to take intellectual risks.

Problem Solving: The process of working through
details of a challenge to reach a solution when the
path is not immediately obvious. Mayer and Wit-
trock (1996) famously define problem solving as
“cognitive processing directed at achieving a goal
when no solution method is obvious to the problem
solver.” This definition highlights that true prob-
lem solving requires more than applying a known
formula; it involves dealing with uncertainty, de-
vising or discovering methods, and often, iterative
trial and error. Problem solving encompasses sub-
skills like problem representation (understanding
and framing the problem), strategy formulation,
reasoning through possible actions, and evaluating
outcomes. Complex, ill-defined problems (e.g., de-
signing a new product or diagnosing an unfamiliar
patient case) particularly demand higher-order rea-
soning, as opposed to well-defined problems that
might be solved by routine application of learned
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rules.

Metacognition: Commonly described as “thinking
about thinking,” metacognition involves awareness
and regulation of one’s own cognitive processes. It
includes metacognitive knowledge (knowing one’s
cognitive strengths, weaknesses, and the strategies
available) and metacognitive regulation (planning,
monitoring, and adjusting one’s approach to a cog-
nitive task). Metacognition plays a supporting role
in higher-order thinking by helping individuals se-
lect appropriate strategies and reflect on the effec-
tiveness of their thinking. For example, a person
solving a complex problem uses metacognition to
plan how to approach it, monitor their progress
(“Have I considered all possible options?”’), and
revise strategy if stuck. Strong metacognitive skills
are associated with better application of critical
thinking and problem-solving skills. Notably, as Al
systems take on more cognitive tasks, researchers
point out that humans may face metacognitive de-
mands in working with Al — e.g., checking Al out-
puts and understanding their limits — which in turn
requires support. Tankelevitch et al. (2024) argue
that generative Al can impose heavy metacognitive
load on users and propose incorporating metacog-
nitive support into Al tools to help users manage
this load.

Abstract Reasoning: The ability to reason with con-
cepts that are not tied to concrete experiences, of-
ten involving recognizing patterns, logical relation-
ships, or general principles that can be applied in
new contexts. Abstract reasoning is closely related
to fluid intelligence — the capacity to solve novel
problems independent of acquired knowledge. Ex-
amples include understanding metaphorical or sym-
bolic representations, solving puzzles like analo-
gies or matrix patterns, or constructing models of
complex systems. Abstract reasoning allows one to
think conceptually and handle complexity by men-
tally manipulating ideas. It enables “thinking about
things that are not immediately present or tangi-
ble ... using concepts, patterns, and relationships.”
This skill underpins higher-order tasks like theo-
retical reasoning in science or strategic planning,
where one must infer general rules from specifics
or envision possibilities beyond the here-and-now.

These components are interrelated and often
used together. For instance, solving a real-world
problem might require critical analysis of infor-
mation, creatively brainstorming solutions, using
abstract reasoning to model the problem, and mon-



itoring one’s problem-solving approach metacog-
nitively. Collectively, they enable “effective use of
higher-order thinking skills like analysis, evalua-
tion, and creation” to deal with unfamiliar, complex
challenges. Developing higher-order thinking has
long been an educational goal, as it equips indi-
viduals to adapt and learn in new situations — a
need that is ever more pressing in the face of rapid
technological change.

3 Scope of the Tutorial and
Cross-Domain Synthesis

Building on the conceptual foundations of hu-
man-agent teaming and the cognitive frameworks
underlying higher-order thinking, this tutorial pro-
ceeds to explore how these ideas manifest across
multiple real-world domains. In the sections
that follow, we examine diverse application set-
tings—including education, healthcare, scientific
discovery, creative industries, military and safety-
critical operations, and knowledge-intensive profes-
sional work—where human—Al collaboration holds
particular promise for augmenting complex reason-
ing, decision-making, and metacognitive processes.
Each domain illustrates both the opportunities and
constraints of treating Al systems as cognitive part-
ners rather than passive tools, revealing how con-
textual factors such as expertise level, task struc-
ture, risk profile, and social expectations shape the
dynamics of teaming.

Across these domains, common patterns begin
to emerge. First, effective augmentation depends
on an alignment of human and agent mental mod-
els, where the Al not only communicates its inter-
nal states, uncertainties, and intentions, but also
adapts to human goals, preferences, and cognitive
styles. Second, higher-order thinking augmenta-
tion is most successful when the Al supports—not
replaces—core human reasoning processes: help-
ing users reflect, plan, generate alternatives, ex-
plore conceptual space, and evaluate competing
hypotheses. Third, challenges such as trust cal-
ibration, over-reliance, cognitive offloading, and
the opacity of model reasoning recur regardless of
domain, underscoring the need for interaction de-
signs that balance autonomy with interpretability.
Finally, the empirical evidence highlights substan-
tial gaps: while short-term performance gains are
often observed, there is limited understanding of
whether Al teammates can foster long-term cog-
nitive growth, transfer of reasoning strategies, or
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durable improvements in critical and creative think-
ing.

By synthesizing these cross-domain insights, the
tutorial aims to provide a unifying perspective on
how intelligent agents can be designed to meaning-
fully augment human higher-order cognition. We
conclude by identifying open research directions
that offer a roadmap for advancing the practice of
human-agent teaming for cognitive augmentation.
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