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Abstract

Theory of Mind (ToM) is the ability to un-
derstand others’ mental states, which is essen-
tial for human social interaction. Although re-
cent studies suggest that large language mod-
els (LLMs) exhibit human-level ToM capabili-
ties, the underlying mechanisms remain unclear.
“Simulation Theory” posits that we infer oth-
ers’ mental states by simulating their cognitive
processes, which has been widely discussed in
cognitive science. In this work, we propose a
framework for investigating whether the ToM
mechanism in LLMs is based on Simulation
Theory by analyzing their internal representa-
tions. Following this framework, we success-
fully steered LLMs’ ToM reasoning through
modeled perspective-taking and counterfactual
interventions. Our results suggest that Simu-
lation Theory may partially explain the ToM
mechanism in state-of-the-art LLMs, indicating
parallels between human and artificial social
reasoning.

1 Introduction

For large language models (LLMs) to communicate
smoothly with users, they need to understand the
users’ knowledge, intentions, beliefs, and desires.
This capability to infer the mental states of others is
called Theory of Mind (ToM). ToM is pivotal for so-
cial interactions such as communication (Milligan
et al., 2007), moral judgment (Moran et al., 2011),
and cooperation (Markiewicz et al., 2024; Li et al.,
2023a). One prominent account of ToM in cog-
nitive science and psychology is Simulation The-
ory (Gordon, 1986), which posits that we under-
stand others’ minds by simulating their cognitive
processes. This process of adopting the viewpoint
of others is called perspective-taking, a founda-
tional ability under Simulation Theory (Barlassina
and Gordon, 2017). Such simulation need not be
explicit; for instance, mirror neurons (Gallese and
Goldman, 1998) activate both when performing an
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Figure 1: A schematic diagram of our experiment. Gray
circles and squares denote the LLM’s internal repre-
sentations across layers. We intervene in the internal
representation while the LLM is solving the false-belief
task so that its perspective-projected representation
approaches the representation of the post-perspective-
taking true-belief task. We then observe changes in the
answer.

action and when observing someone else perform
it, suggesting an implicit simulation process.

Meanwhile, recent work has found that some
LLMs acquire ToM abilities comparable to those
of humans (Strachan et al., 2024; Kosinski, 2024;
Street et al., 2024). At the same time, the robust-
ness of many ToM tests has been questioned, and
there is ongoing debate about whether current mod-
els genuinely possess ToM or merely exploit arti-
facts of these benchmarks (Ullman, 2023; Shapira
et al., 2024). This debate emphasizes the impor-
tance of not only evaluating their behavioral perfor-
mance but also investigating the underlying mecha-
nisms (Hu et al., 2025). Nevertheless, the mecha-
nism of ToM in LLMs, particularly its relationship
to Simulation Theory, remains poorly understood.
In this work, we investigate whether the internal
representations of LLMs align with Simulation
Theory by proposing a framework for modeling
perspective-taking. We use counterfactual inter-
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False-Belief Task

Story: Noor is working as a barista at a busy coffee shop. Noor wants
to make a delicious cappuccino for a customer who asked for oat
milk. Noor grabs a milk pitcher and fills it with oat milk. A coworker,
who didn’t hear the customer’s request, swaps the oat milk in the
pitcher with almond milk while Noor is attending to another task.
Noor does not see her coworker swapping the milk
Question: Does Noor believe the milk pitcher contains oat milk or
almond milk?
Choose one of the following:
a) Noor believes the milk pitcher contains almond milk.
b) Noor believes the milk pitcher contains oat milk.
Answer:

Post-Perspective-Taking False-Belief Task

Story: You are working as a barista at a busy coffee shop. You want
to make a delicious cappuccino for a customer who asked for oat
milk. You grab a milk pitcher and fill it with oat milk.
Question: Do you believe the milk pitcher contains oat milk or
almond milk?
Choose one of the following:
a) I believe the milk pitcher contains oat milk.
b) I believe the milk pitcher contains almond milk.
Answer:

True-Belief Task

Story: Noor is working as a barista at a busy coffee shop. Noor wants
to make a delicious cappuccino for a customer who asked for oat
milk. Noor grabs a milk pitcher and fills it with oat milk. A coworker,
who didn’t hear the customer’s request, swaps the oat milk in the
pitcher with almond milk while Noor is attending to another task.
Noor sees her coworker swapping the milk
Question: Does Noor believe the milk pitcher contains oat milk or
almond milk?
Choose one of the following:
a) Noor believes the milk pitcher contains almond milk.
b) Noor believes the milk pitcher contains oat milk.
Answer:

Post-Perspective-Taking True-Belief Task

Story: You are working as a barista at a busy coffee shop. You want
to make a delicious cappuccino for a customer who asked for oat
milk. You grab a milk pitcher and fill it with oat milk. A coworker,
who didn’t hear the customer’s request, swaps the oat milk in the
pitcher with almond milk while you are attending to another task.
You see your coworker swapping the milk
Question: Do you believe the milk pitcher contains oat milk or
almond milk?
Choose one of the following:
a) I believe the milk pitcher contains oat milk.
b) I believe the milk pitcher contains almond milk.
Answer:

Figure 2: Examples of false-belief and true-belief tasks from the BigToM benchmark and their corresponding
post-perspective-taking versions. (Top Left) A false-belief task consists of five sentences: Context, Desire,
Action, Causal Event, and Percept. (Top Right) The post-perspective-taking false-belief task removes information

unknown to the protagonist and rewrites the text in second/first person. (Bottom Left) A true-belief task differs
from false-belief only in the Percept, where the protagonist is aware of the Causal Event. (Bottom Right) The
post-perspective-taking true-belief task retains all sentences and rewrites them in second/first person.

ventions in these internal representations to assess
their causal effect on the model’s outputs. Figure 1
shows an overview of our experiment.

2 Related Work

Some studies have shown that internal representa-
tions in LLMs encode information about beliefs,
especially for dissociating reality from false be-
lief (Zhu et al., 2024; Bortoletto et al., 2024; Jamali
et al., 2023). While these analyses suggest the
presence of ToM-relevant structures, they do not
establish explicit links to Simulation Theory.

3 Setup for Verifying Simulation Theory
in LLMs

Model. We evaluate two instruction-tuned LLMs:
Llama-3.1-70B-Instruct (Grattafiori et al., 2024)
and Qwen2.5-72B-Instruct (Qwen et al., 2024).
Both are Transformer-based autoregressive lan-
guage models with 80 Transformer blocks. We
set the temperature to 0 to ensure deterministic
outputs.

Dataset. In this work, we use the false-belief
tasks from the social reasoning benchmark Big-
ToM (Gandhi et al., 2023). A false-belief task
assesses whether an individual recognizes that oth-
ers may hold beliefs different from their own, serv-
ing as a test for ToM. As shown in Figure 2, each
BigToM benchmark item comprises five elements:
Context, Desire, Action, Causal Event, and Percept.
We also use the true-belief tasks from BigToM.
The false-belief and true-belief tasks are identi-
cal except for the Percept. In a false-belief task,
the Percept contains information indicating that the
protagonist is unaware of the Causal Event. In con-
trast, the Percept in a true-belief task indicates
that the protagonist is aware of the Causal Event.

Data Preprocessing. We split the false-belief
tasks which the LLMs answered correctly1 into
training and test subsets at a ratio of 8:2. The train-
ing tasks are used to train the perspective projection

1Out of 200 questions, Llama-3.1-70B-Instruct answered
198 correctly, and Qwen2.5-72B-Instruct answered 196 cor-
rectly.
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(§ 4.3), and the test tasks are reserved for the inter-
vention experiments (§ 4.4).

4 Framework for Testing Simulation
Theory in LLMs

Simulation Theory posits a two-step process for
inferring others’ mental states:

1. Perspective-Taking: Simulate being in an-
other person’s situation.

2. Attribution: Infer their mental state from that
simulation.

We adapt these steps for LLMs as follows:

1. Modeling Perspective-Taking: We generate
post-perspective-taking (PPT) tasks to sim-
ulate the LLM “stepping into others’ shoes”
(§ 4.1). Using the internal representations
when the LLM solves the PPT tasks (§ 4.2),
we train a linear transformation called per-
spective projection that projects the repre-
sentations within the LLM into a hypothetical
perspective-taking space, thereby modeling
perspective-taking (§ 4.3).

2. Testing Mental State Attribution: We per-
form counterfactual interventions in the inter-
nal representations to test if the encoded PPT
representations are used for ToM reasoning
(§ 4.4).

Here, the internal representation refers to the resid-
ual stream, which denotes the output of each Trans-
former block in this paper.

4.1 Generating Post-Perspective-Taking Tasks
To model perspective-taking, we need the internal
representation of the situation in which another
person’s perspective is replaced with the model’s
own. To derive this representation, we gener-
ate input texts, which we call post-perspective-
taking (PPT) tasks. Specifically, we generate two
types of PPT tasks, a PPT false-belief task and a
PPT true-belief task.

As shown in Figure 2, each PPT task is gener-
ated by applying the following transformations to
a false-belief or true-belief task:

1. Remove the information unknown to the pro-
tagonist from the original story. That is, for
a false-belief task, remove the Causal Event
and Percept (two sentences); for a true-belief
task, keep all sentences unchanged.

2. Change the protagonist’s name to the sec-
ond person (“you/your”) in the remaining
story and question, and to the first person
(“I/me/my”) in the choices to make the pro-
tagonist’s perspective the LLM’s own2.

From these steps, we obtain a dataset{
(fi, pi, p̃i)

}N

i=1
, where N is the dataset size,

fi denotes a false-belief task, pi is the corre-
sponding PPT false-belief task, and p̃i is the
PPT true-belief task.

4.2 Extracting Internal Representations

Next, we run the LLM on each task fi, pi, and p̃i
and extract the residual stream at the same specific
layer for the final token position. We also pre-
pare a variant with reversed choice ordering for the
PPT false-belief and PPT true-belief tasks and

take the average of the resulting residual streams
across the original and reversed versions. This aver-
aging ablates the information about choice symbols
(“a”, “b”) from the representations.

Let xi,yi, ỹi ∈ Rd (d is the residual stream di-
mension) denote the representations of fi, pi, and
p̃i, respectively. The PPT false-belief representa-
tion yi serves as the gold standard for the perspec-
tive projection (§ 4.3), while the PPT true-belief
representation ỹi is used for intervention (§ 4.4).

4.3 Perspective Projection

According to Simulation Theory, if the model sim-
ulates others’ minds through perspective-taking,
then the internal representation when observing
another’s situation should contain the internal rep-
resentation that would occur if one were in the
same situation as that person. To verify this hy-
pothesis, we train a linear transformation3 to map
xi (the false-belief representation) to yi (the
PPT false-belief representation). We call this lin-

ear transformation perspective projection.
We derive the weight matrix W ∈ Rd×d of per-

spective projection by solving a ridge regression
problem using input data X = (x1, · · · ,xN )⊤

and target data Y = (y1, · · · ,yN )⊤ as follows:

Ŵ = argmin
W

{
∥XW − Y ∥2F + λ∥W ∥2F

}
(1)

= (X⊤X + λI)−1X⊤Y , (2)

where λ is the regularization strength. We set λ =
1e-4 in our experiments based on cross-validation.

2We use gpt-4o-mini-2024-07-18 for these transforma-
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Figure 3: Net intervention effect across model layers and regularization strengths. The heatmap shows the difference
in proportions of flipped answers between true-belief and false-belief interventions ( true-belief − false-belief ).
The bar plot on the right shows the sum of the difference in each layer.

4.4 Counterfactual Representation
Intervention

Perspective projection can show correlation but not
causation the between PPT representation and the
LLM’s answers. Simulation Theory requires, how-
ever, a causal link where the PPT representation is
used to attribute mental states to others. We, there-
fore, perform counterfactual interventions (Vig
et al., 2020; Geiger et al., 2021; Meng et al., 2022;
Li et al., 2023b; Ghandeharioun et al., 2024) in
the LLM’s internal representations to test whether
the PPT representations are indeed used in ToM
reasoning.

True-Belief Intervention. As illustrated in Fig-
ure 1, we update the false-belief representation
xi such that its projection with W approaches the
PPT true-belief representation ỹi. We compute

the updated representation x̃i by solving:

x̃i = argmin
x

{
∥Wx− ỹi∥22 + α∥x− xi∥22

}

(3)

= (W⊤W + αI)−1 (W⊤ỹi + αxi), (4)

where α is the regularization strength to avoid ill-
posed problems in which the updated representa-
tion diverges drastically from the original. If the
LLM uses the PPT representation for ToM rea-
soning, then after this intervention, the LLM’s re-

tions.
3This linear transformation approach is grounded in the lin-

ear representation hypothesis (Elhage et al., 2022; Park et al.,
2024). Based on this hypothesis, we assume that two internal
representations share a common linear subspace. Hence, these
internal representations can be mapped to each other through
an appropriate linear transformation.

sponse to the false-belief task should flip from the
false-belief choice to the true-belief choice (e.g.,
“b” → “a”).

False-Belief Intervention. We also perform a
control experiment where we replace ỹi (the
PPT true-belief representation) with yi (the
PPT false-belief representation) to study how the

error in perspective projection affects the interven-
tion. Ideally, intervening with yi should produce
little change in the model’s answer if perspective
projection generalizes well to the test data.

Net Intervention Effect. Finally, for each layer
l and regularization strength α, we compute
Fliptrue(l, α) − Flipfalse(l, α) as the “net interven-
tion effect,” where Fliptrue and Flipfalse represent
the proportion of tasks where the model’s answer
flips to the true-belief choice under the true-belief
and false-belief intervention, respectively.

5 Results

Layer-wise Intervention Effect. Figure 3
presents the results of the net intervention
effect. In both Llama-3.1-70B-Instruct and
Qwen2.5-72B-Instruct, the effect increases in
the later layers. This suggests that these later
layers encode perspective-taking information, i.e.,
representations of the simulated others’ mental
states.

Effect of Regularization Strength. Figure 4 il-
lustrates the effect of the regularization strength
α on the intervention. The intervention, which
is an inverse and ill-posed problem, causes catas-
trophic interference when α is excessively small
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Figure 4: The proportion of tasks where the Llama’s
answer flips from the false-belief to the true-belief
choice under intervention in the 75th layer. The “TB
Interv.” line shows the result of the intervention with the
PPT true-belief representation; the “FB Interv.” line

shows the result with the PPT false-belief representa-
tion.

(α ≤ 10−4). This leads the model to output a token
irrelevant to the choice symbols (“a”, “b”), result-
ing in a low flip proportion. Conversely, when α
is excessively large (α ≥ 10−2), the intervention
becomes too weak to change the model’s response.
As a result, the flip proportion reaches its maximum
when α is between 10−4 and 10−2.

6 Conclusion

In this work, we developed a framework for inves-
tigating whether LLMs’ Theory of Mind aligns
with Simulation Theory. Applying this frame-
work to Llama-3.1-70B-Instruct and Qwen2.5-72B-
Instruct, we found evidence that later layers may
encode representations consistent with perspective-
taking. This suggests that Simulation Theory may
partially explain the ToM mechanism in state-of-
the-art LLMs.

Limitations

Potential Nonlinear Representations. We as-
sumed a linear transformation to model perspective-
taking. This is motivated by the linear repre-
sentation hypothesis (Elhage et al., 2022; Park
et al., 2024). However, mental-state representations
could be distributed nonlinearly because some non-
linear representations have also been found (Engels
et al., 2025). Our linear approach may therefore
capture only a subset of the structures underlying
ToM reasoning.

Limited Net Intervention Effect. The maximum
net intervention effect observed in our experiments

is still relatively small compared to the ideal value
of 1, which would indicate perfect alignment with
Simulation Theory. While our results suggest
that Simulation Theory partially explains the ToM
mechanism in LLMs, we cannot claim that it fully
accounts for the mechanism. The model may use
additional mechanisms for ToM reasoning, such
as heuristics (Nikankin et al., 2025; Shapira et al.,
2024).
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A Prompts for Generating
Post-Perspective-Taking Tasks

Below is a template of the prompts used to convert
the original text to second-person or first-person
narratives. Here, {{text}} is replaced with the
text to be converted, and {{protagonist_name}}
is replaced with the protagonist’s name.

Prompt for converting story and question to
second person

Text: {{text}}
Change “{{protagonist_name}}” to
“you/your” in this text to make
it second-person. Pay attention
to verb conjugation and grammar to
ensure the text is grammatically
correct. Output only the converted
text.

Prompt for converting multiple-choice op-
tions to first person

Text: {{text}}
Change “{{protagonist_name}}” to
“I/me/my” in this text to make it
first-person. Pay attention to verb
conjugation and grammar to ensure
the text is grammatically correct.
Output only the converted text.

B Connection to Mirror Neurons

Perspective projection is inspired by mirror neu-
rons, which respond similarly when performing
an action and when observing another individual
perform that action (Gallese and Goldman, 1998).
Mirror neuron studies, however, focus on local neu-
ronal activity correlations, whereas our approach
considers linear correspondences across entire lay-
ers of neuron activations in an LLM.

C Flip Proportion for Each Layer

Figures 5 and 6 show the proportion of tasks where
the LLM’s answer flips from the false-belief to the
true-belief choice under intervention
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Figure 5: Proportion of flipped answers for layers 5 through 80 under intervention in Llama-3.1-70B-Instruct. The
“TB Interv.” line shows the result of the intervention with the PPT true-belief representation; the “FB Interv.” line
shows the result with the PPT false-belief representation.

103



10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
o
rt

io
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(a) Layer 5

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
o
rt

io
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(b) Layer 10

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
o
rt

io
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(c) Layer 15

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
o
rt

io
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(d) Layer 20

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(e) Layer 25

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(f) Layer 30

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(g) Layer 35

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(h) Layer 40

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(i) Layer 45

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(j) Layer 50

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(k) Layer 55

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
on

 o
f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(l) Layer 60

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
o
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(m) Layer 65

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
o
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(n) Layer 70

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
o
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(o) Layer 75

10−6 10−5 10−4 10−3 10−2 10−1

Regularization Strength α

0.0

0.1

0.2

0.3

0.4

P
ro

p
or

ti
o
n
 o

f 
F
li
p
p
ed

 A
n
sw

er
s

TB Interv.

FB Interv.

(p) Layer 80

Figure 6: Proportion of flipped answers for layers 5 through 80 under intervention in Qwen2.5-72B-Instruct (see
Figure 5 for a more detailed explanation).
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