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Abstract

Large language models show strong perfor-
mance on knowledge intensive tasks such
as fact-checking and question answering,
yet they often struggle with numerical rea-
soning. We present a systematic evalua-
tion of state-of-the-art models for veracity
prediction on numerical claims and evi-
dence pairs using controlled perturbations,
including label-flipping probes, to test ro-
bustness. Our results indicate that even
leading proprietary systems experience ac-
curacy drops of up to 62% under certain
perturbations. No model proves to be ro-
bust across all conditions. We further find
that increasing context length generally re-
duces accuracy, but when extended context
is enriched with perturbed demonstrations,
most models substantially recover. These
findings highlight critical limitations in nu-
merical fact-checking and suggest that ro-
bustness remains an open challenge for
current language models.

1 Introduction

Verifying claims in social media, political de-
bates, and press releases has become essential.
While platforms such as Politifact, Snopes, and
FullFact support manual fact-checking, their
scalability is limited. Numerical claims, in
particular, are tedious and error prone for hu-
man annotators (Aly et al., 2021). Neural lan-
guage models provide a promising alternative
for evidence retrieval and preliminary veracity

Numerical Perturbation Example

Original Claim: “In 2020, the company’s revenue
was 5,000,000 dollars, making a significant growth
from the previous year”.
[Label: TRUE, Model Prediction: TRUE ✓]

Perturbed Claim: “In 2020, the company’s rev-
enue was fifty million dollars making a significant
growth from the previous year.”
[Label: FALSE, Model Prediction: TRUE ✗]

Evidence: “A market analysis by MNO Research
Group, published in 2021, states: ’PQR Innova-
tions experienced significant growth (...). The rev-
enue for the year 2020 reached 5,000,000 dol-
lars.”[1em]

Figure 1: Example illustrating how the original ‘TRUE’
claim is perturbed into a ‘FALSE’ claim, yet the model
predicts ‘TRUE’.

assessment (Guo et al., 2022; Dmonte et al.,
2024; Setty, 2024). Yet, recent studies show
that both transformer models fine-tuned for nu-
merical claim verification and general purpose
large language models struggle with numerical
reasoning (Wallat et al., 2024; V et al., 2024;
Akhtar et al., 2023), and the reasons remain
unclear.

Although prior work has studied LLM
fragility in numerical reasoning for QA (Xu
et al., 2022) and tabular NLI (Akhtar et al.,
2023), no systematic analysis exists for verac-
ity prediction in long-context fact-checking.
Our results indicate that models are prone to er-
rors with longer context and reasoning chains.
To address this gap, we evaluate state-of-the-
art models of different sizes and architectures
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under varied prompting settings with systemati-
cally perturbed numerical claims and evidence.

Manipulating numerical values in unstruc-
tured text requires care to ensure that perturba-
tions remain meaningful. We define six probe
types: Numeration (Num), Approximation (Ap-
prox), Range, Masking (Mask), Random Re-
placement (Rand-Repl), and Negative Number
(Neg-Num) (see Table 1) to systematically mod-
ify numbers while preserving claim intent. In
some cases, these perturbations also flip the
factual label (e.g., changing $5,000,000 to fifty
million; see Figure 1). All perturbations are
manually verified to ensure correctness and rel-
evance. This study addresses three research
questions:

RQ1 : Which models in our selection of di-
verse sizes are most and least robust?

RQ2 : Which numerical perturbations most
affect performance?

RQ3 : How do context length and reasoning
chains influence robustness?

To answer this, we test models on
claim–evidence pairs, comparing base-
line predictions with those on numerically
perturbed claims. Larger gaps reflect weaker
robustness. We use truthful probes that keep
the original label and label-flipping probes
that contradict the evidence, under zero-shot,
two-shot, and perturbation aware prompts
(PAP).

Our results show that all state-of-the-art
models are highly vulnerable to numerical per-
turbations, particularly under Mask and Neg-
Num. We also notice that zero-shot settings
outperform two-shot, while providing a few
perturbed examples (PAP prompt) helps mod-
els recover in most cases. These findings reveal
weaknesses in LLM veracity prediction.

2 Related work

The interpretability of LLMs is critical for
knowledge-intensive tasks like question an-
swering and fact-checking. Probing studies
have revealed their opaque decision processes
(Belinkov, 2022). For instance, Yang et al.
(2024); Lu et al. (2023); Frieder et al. (2024)
showed that while LLMs can perform com-
plex reasoning, they often struggle with basic
numeracy.

Several works have examined numerical rea-
soning in LLMs. Wallace et al. (2019) probed
embeddings from BERT and GloVe, finding in-
herent but inconsistent numeracy. Akhtar et al.
(2023) evaluated models on tabular data with
a hierarchical taxonomy, showing no model
excels across all tasks. Xu et al. (2022); Zhou
et al. (2024) demonstrated that numerical per-
turbations in QA often mislead LLMs, while
Paruchuri et al. (2024); Chen et al. (2024) high-
lighted weaknesses in numerical reasoning.
Several studies also reveal that LLMs for fact-
checking are brittle to textual perturbations,
and adversarial edits (Mamta and Cocarascu,
2025; Przybyła et al., 2024; Liu et al., 2025).

Despite prior advances, key gaps remain.
Most work does not examine numerical rea-
soning in open-domain fact-checking with real-
world, long-context data, and reproducibility is
often limited. For instance, Akhtar et al. (2023)
rely on synthetic tabular inputs with short con-
text, provide incomplete perturbation details,
and lack an accessible repository. In contrast,
we evaluate numerical reasoning in realistic,
unstructured settings, introduce perturbations
that preserve semantic validity, and release full
code and data to ensure reproducibility.

3 Methodology

Our study examines veracity prediction models
by systematically perturbing numerical values
in claims to assess their impact on label predic-
tion. The methodology involves (1) curating
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a dataset with diverse numerical expressions
(e.g., statistics), (2) applying controlled pertur-
bations (e.g., scaling, replacements, masking).
(3) Extensive error analysis leveraging the rea-
soning tokens.

Table 1: The number of claims per perturbation type that
remain ‘True’ (T→T), remain ‘False’ (F→F), or switch
from ‘True’ to ‘False’ (T→F). Unperturbed baseline has
260 True claims and 604 False claims.

Category T → T F → F T → F

Num 213 490 213
Approx 170 404 170
Range 188 411 188
Mask ✗ 490 213
Rand-Repl ✗ 490 213
Neg-Num ✗ 89 51

3.1 Dataset and Preprocessing

We use the QuanTemp dataset (V et al., 2024),
which contains real world claim-evidence
pairs with numerical focus from reputable fact
checking sources. Each pair is labeled as True,
False, or Conflicting. For our evaluation,
we exclude the Conflicting class due to its in-
herent ambiguity. To prevent shortcut learning,
we remove summaries from all pairs, requiring
models to assess veracity solely from evidence.

Each claim is processed with the spaCy
NER tagger (covering Cardinal, Money, Per-
cent, Time, Date, and Ordinal), and numeri-
cal values are normalized to digits using the
Word2Number library (similar to (Akhtar et al.,
2023; Wallace et al., 2019; Xu et al., 2022)).
Perturbed claims are manually verified for va-
lidity, and invalid cases are removed.

3.2 Perturbation Techniques

We adopt the numerical reasoning taxonomy
of Akhtar et al. (2023) (see Table 1). The Num,
Approx, and Range settings perturb numbers
while remaining consistent with the evidence,
so True claims stay True. Conversely, Mask,
Rand-Repl, and Neg-Num modify values such

that True claims flip to False, while False
claims remain unchanged. We do not perturb
False to True, since falsity can stem from
multiple factors and counterfactual claims are
often infeasible. Exploring this direction is left
for future work. Now we explain the different
perturbation techniques:
Num: Tests whether models recognize equiv-
alence between digits and words (e.g., “12”
vs. “twelve”), preserving the original label
for non-flipping probes. Perturbation applies
to Cardinal, Percent, and Money, but not
to Ordinal, Time, or Date, except for cardi-
nal numbers within Time (e.g., “24 hours” to
“twenty four hours”). For the label-flipping
probes, the original number is modified (e.g.,
“12” could be perturbed to “fifteen”).
Approx: Non-flipping probes reduces pre-
cision by rounding and adding about (e.g.,
“1,025 dollars” to “about 1000 dollars”), re-
taining truth when close to the evidence. For
the label-flipping probes, the original value is
altered so that it is no longer reflective of the
true amount (e.g., original“1,025 dollars” to
“about 1200 dollars”).
Range: Non-flipping probes replaces exact val-
ues with spans (e.g., “25 percent” to “between
20 and 30 percent”), testing reasoning over in-
tervals. The label-flipping probes modifies the
span such that the original number is not within
it (e.g., the original “25 percent” is perturbed
to “between 30 and 40 percent”).
Rand-Repl: Replaces numbers with random
values of equal digit length (e.g., “100,000” to
“423,823”), mismatching the evidence.
Mask: Hides numbers with “#” tokens accord-
ing to digit length, including delimiters (e.g.,
“100,000” to “#######”), requiring inference
from evidence.
Neg-Num: Converts values to negatives (e.g.,
“4%” to “-4%”), applied only to percentages
since other entities (money, time, dates) typi-
cally use linguistic cues like “decrease.”
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3.3 Prompting Strategy

All models use identical instructions under
three prompting strategies: (1) Zero-shot with
only instructions and no demonstrations (see
Appendix B), (2) Two-shot prompt that ex-
tends the zero-shot prompt with one True
and one False demonstration from training
data with evidence and rationale (Brown et al.,
2020). (3) We also test models with a per-
turbation aware prompt (PAP), which pairs a
perturbed claim with one sentence evidence
for each perturbation type and flipped label. A
similar approach is used by (Hu et al., 2024)
in a RAG setting. Full prompts are provided in
Appendix B.

4 Experimental Setup

This section describes our experimental frame-
work, including the language models used, and
evaluation methods.

4.1 Model Selection

Open-weight LLMs: DeepSeek-R1-32B,
Qwen3-32B, Llama3.3-70B, Llama 3.2-1B,
and Mistral-7B (All models are from Ollama
framework1 with Q4_K_M quantization).

Proprietary LLMs: GPT-4o (v2024-08-06),
GPT-4o-mini (v2024-07-18), GPT-5 (v2025-
08-07), GPT-o3 (v2025-04-16), and Gem-
ini 2.5 Flash (v2025-06) (All models are ac-
cessed via their respective official APIs)
Models with thinking are marked with su-

perscript T . All models ran with temperature
0 and JSON output; open-weight and OpenAI
models used default (medium) reasoning effort.
For Gemini 2.5 FlashT , we fixed the thinking
budget to 8192 (vs. the default 1) for cost ef-
ficiency. Other settings followed defaults. We
exclude Llama 3.2-1B and Mistral-7B from the
main results due to limited robustness; details
are in Appendix A.2. Invalid predictions are

1https://ollama.com/search

rare, except for DeepSeek-R1T , which yields
6.8% invalid outputs under zero-shot. Think-
ing variants generally produce more invalid
outputs than their non-thinking counterparts
(see Appendix C). Code and data can be ac-
cessed though our GitHub repository2.

4.2 Evaluation

Robustness is assessed by comparing baseline
performance on non-perturbed claims with per-
formance on perturbed ones. We use per-class
accuracy metric. We use accuracy as the pri-
mary metric for T → F evaluations. To gain
greater insight into model errors, we manu-
ally analyze reasoning tokens of zero-shot vs.
PAP for T→ F claims to look for common pat-
terns that models fall into while evaluating a
claim.

5 Results

We report results across models and perturba-
tion settings. We first describe performance
on unperturbed claims, then analyze changes
under non-flipped and flipped label conditions.
Results for False→ False cases are omitted
here for brevity (see Appendix A.2). Models
are evaluated under three prompting regimes
defined in Section 3.3 (see Appendix B for full
prompts).

5.1 True→ False

We start with the most challenging case: label-
flipping perturbations (True→ False), shown
in Table 2. Since the claim and ground-truth
label are flipped, all reported results reflect the
flipped label. A drop in performance means
models still predict True instead of the ex-
pected False and less robust. Performance on
unperturbed True claims is given in the “Origi-
nal” column as the baseline for each prompting
regime.

2https://github.com/iai-group/
adversarial_attack_numerical_claims/
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Table 2: Accuracy (reported in %) for ‘True’ dataset split for label flips perturbations (True → False),
and comparing accuracy variance between the flipped probes to model performance on unaltered original
claims accuracy (-x indicates a drop; +x indicates an increase). Values in bold denote the highest accuracy
within each perturbation setting, separated by open-weight and proprietary models.

Model Original Approx Neg-num Num Rand-repl Range Mask

Zero-shot

Llama3.3-70B 87.32 87.65+0.32 62.75-24.58 68.54-18.78 91.08+3.76 82.45-4.88 10.80-76.53

DeepSeek-R1-32B 81.69 89.41+7.72 39.22-42.47 56.34-25.35 88.73+7.04 81.91+0.22 23.47-58.22

DeepSeek-R1-32BT 87.44 85.06-2.37 31.91-55.52 69.43-18.01 84.73-2.71 86.98-0.46 10.63-76.81

Qwen3-32B 84.35 78.24-6.12 43.14-41.21 58.78-25.57 84.51+0.16 80.32-4.03 16.43-67.92

Qwen3-32BT 85.99 89.38+3.38 34.04-51.95 78.24-7.75 87.88+1.89 87.64+1.65 12.38-73.61

GPT-4o 80.00 88.82+8.82 47.06-32.94 73.24-6.76 90.61+10.61 91.49+11.49 19.25-60.75

GPT-4o-Mini 85.38 68.24-17.15 25.49-59.89 56.81-28.58 78.87-6.51 75.00-10.38 11.27-74.12

GPT-5T 76.15 93.53+17.38 33.33-42.82 86.38+10.23 89.20+13.05 92.02+15.87 19.72-56.44

GPT-o3T 75.77 89.41+13.64 25.49-50.28 84.98+9.21 88.73+12.96 90.96+15.19 21.60-54.17

Gemini 2.5F 82.69 95.29-+12.60 54.90-27.79 83.57+0.88 96.71+14.02 93.09+10.39 25.82-56.87

Gemini 2.5FT 71.54 88.82+17.29 58.82-12.71 82.63+11.09 89.67+18.13 90.43+18.89 16.90-54.64

Two-shot

Llama3.3-70B 91.55 72.35-19.20 33.33-58.22 46.48-45.07 78.26-13.29 57.98-33.57 8.92-82.63

DeepSeek-R1-32B 89.67 65.29-24.38 21.57-68.10 37.09-52.58 74.70-14.97 58.51-31.16 12.21-77.46

DeepSeek-R1-32BT 86.32 88.55+2.23 22.00-64.32 71.15-15.17 88.49+2.17 87.17+0.85 9.43-76.89

Qwen3-32B 79.81 70.59-9.22 37.25-42.56 49.77-30.05 66.40-13.41 72.87-6.94 20.66-59.15

Qwen3-32BT 83.49 86.98+3.49 27.45-56.04 78.20-5.29 88.76+5.26 87.23+3.74 12.74-70.75

GPT-4o 86.54 82.35-4.19 33.33-53.21 68.54-17.99 87.32+0.79 85.64-0.90 13.62-72.92

GPT-4o-Mini 89.62 67.06-22.56 27.45-62.16 50.70-38.91 77.46-12.15 73.94-15.68 20.19-69.43

GPT-5T 77.69 91.18+13.48 29.41-48.28 84.04+6.35 88.26+10.57 88.83+11.14 18.78-58.91

GPT-o3T 75.77 89.41+13.64 23.53-52.24 85.45+9.68 89.67+13.90 90.43+14.66 22.07-53.70

Gemini 2.5F 85.00 87.06+2.06 35.29-49.71 70.89-14.11 94.37+9.37 85.64+0.64 22.90-62.10

Gemini 2.5FT 74.23 90.00+15.77 52.94-21.29 82.16+7.93 92.02+17.79 88.83+14.60 15.96-58.27

Perturbation Aware Prompt (PAP)

Qwen3-32B 79.34 89.41+10.07 76.47-2.87 73.71-5.63 90.61+11.27 89.36+10.02 67.61-11.74

Qwen3-32BT 71.23 95.27+24.04 74.00+2.77 90.14+18.91 94.37+23.14 94.62+23.40 44.85-26.38

Gemini 2.5F 81.92 97.06+15.14 74.51-7.41 84.98+3.05 97.18+15.26 94.68+12.76 29.11-52.82

Gemini 2.5FT 63.08 91.76+28.69 88.24+25.16 86.85+23.78 92.02+28.94 90.96+27.88 26.29-36.79

5.1.1 Performance on Unperturbed
Claims

In zero-shot, most models cluster in the low to
high eighties, with Llama 3.3-70B perform-
ing best at about 87% and Qwen3-32BT is
close behind at 86%. Proprietary models are
slightly lower, with GPT-4o-Mini reaching
about 85% as the strongest performer. This
suggests that larger models may require more
specified prompts to achieve higher accuracy.

With two-shot prompting, baselines increase

for Llama 3.3-70B, the GPT variants, and
DeepSeek-R1. Llama 3.3-70B surpasses 91%.
In contrast, Qwen3-32B variants decline, Gem-
ini 2.5F drops slightly, and its thinking vari-
ant shows a modest improvement. Under PAP,
both Qwen and Gemini models exhibit per-
formance declines. Models get confused by
PAP since it contains counterfactual examples.

Overall, adding few-shot examples improves
baselines for Llama and GPT models but tends
to reduce them for Qwen and Gemini. No-
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Table 3: Accuracy (reported in %) on the ‘True’
dataset split under non label-flipping perturbations
(True → True). The table compares perturbed ac-
curacy to unaltered original claim accuracy (-x in-
dicates a drop; +x indicates an increase). Values
in bold denote the highest accuracy within each
perturbation setting, separated by open-weight and
proprietary models.

Model Approx Num Range

Zero-shot

Llama3.3-70B 71.76-15.56 86.38-0.94 70.21-17.11

DeepSeek-R1 75.29-6.40 82.63+0.94 67.55-14.14

DeepSeek-R1T 81.44-6.00 84.62-2.82 79.23-8.20

Qwen3 73.53-10.82 85.88+1.53 62.23-22.12

Qwen3-32BT 79.39-6.60 85.02-0.97 78.24-7.76

GPT-4o 68.82-11.18 80.28+0.28 55.32-24.68

GPT-4o-Mini 81.18-4.21 92.96+7.57 79.79-5.60

GPT-5T 75.29-0.86 77.00+0.84 73.40-2.75

GPT-o3T 74.71-1.06 77.46+1.70 77.66+1.89

Gemini 2.5F 60.69-22.00 79.81-2.88 43.92-38.78

Gemini 2.5FT 68.24-3.30 71.76+0.22 61.70-9.84

Two-shot

Llama3.3-70B 84.71-6.84 90.14-1.41 85.64-5.91

DeepSeek-R1 88.82-0.85 90.61+0.94 86.70-2.97

DeepSeek-R1T 82.25-4.07 87.50+1.18 77.13-9.19

Qwen3-32B 72.94-6.87 81.69+1.88 67.02-12.79

Qwen3-32BT 81.66-1.83 84.43+0.94 77.72-5.77

GPT-4o 77.06-9.48 85.92-0.62 63.83-22.71

GPT-4o-Mini 81.18-8.44 89.67+0.06 76.06-13.55

GPT-5T 78.82+1.13 80.28+2.59 73.94-3.76

GPT-o3T 75.29-0.48 79.34+3.57 74.47-1.30

Gemini 2.5F 75.88-9.12 87.79+2.79 70.74-14.26

Gemini 2.5FT 74.12-0.11 76.53+2.30 71.28-2.95

PAP

Qwen3-32B 58.82-14.39 72.74-0.47 44.41-28.79

Qwen3-32BT 62.13-15.46 77.60+0.02 66.94-10.65

Gemini 2.5F 60.00-21.92 81.69-0.23 53.19-28.73

Gemini 2.5FT 57.65-5.43 63.38+0.30 54.79-8.29

tably, the thinking variants consistently per-
form slightly worse than their non-thinking
counterparts, possibly due to the “overthinking”
phenomenon as defined by (Sui et al., 2025), in
which reasoning models produce unnecessar-
ily long and elaborate chains of reasoning that
ultimately reduce problem-solving efficiency –
a pattern confirmed by our error analysis (see
Section 6.1). Among open-weight LLMs, per-
formance is stronger in zero-shot and two-shot

prompts, but when label-flipping examples are
included, Gemini 2.5F outperforms Qwen3-
32B.

Performance on unperturbed false claims
is generally higher, reflecting the fact that
fact-checking tasks predominantly target false
claims. Consistent with earlier observations,
open-weight models exhibit slightly stronger
results than proprietary counterparts. A
comprehensive analysis is presented in Ap-
pendix A.2.

5.1.2 Performance on Perturbed Claims
Now we summarize the change in performance
under numerical perturbation. The Table 2
shows the change in accuracy values in red
or green superscript depending on if the accu-
racy deceases or increases to the corresponding
baseline with unperturbed original claims.

Masking and negative number perturbations
are consistently the most challenging across
prompting regimes. Masking yields very low
accuracy in zero-shot setting (max 26%), as
models often treat masked tokens as place-
holders and predict True. With negative num-
bers, accuracy typically falls below 20% for
masking and 30–50% overall, except Llama
3.3-70B, which maintains 63%; many mod-
els dismiss negatives as typos. Range and ap-
proximation perturbations raise accuracy for
Qwen, DeepSeek, GPTs (not Mini), and Gem-
ini, showing a preference for approximate over
exact values. Numeration perturbations hurt
open-weight models (Qwen3-32B, Llama 3.3-
70B) but help proprietary systems (GPT-5T ,
GPT-o3T , Gemini 2.5F), reflecting stronger
handling of surface forms.

In two-shot settings, similar trend to zero-
shot is observed with slight drop in perfor-
mance overall. With notable exceptions being
DeepSeek-R1, Llama 3.3-70B, and Qwen3-
32B drop sharply on approximation, while
thinking models, GPT-5T , GPT-o3T , and Gem-
ini 2.5FT , gain on approximate perturbations.
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For the rest of the perturbations, a similar trend
to that of zero-shot is observed.

Finally, we find that introducing a single
label-flipping demonstration for each pertur-
bation type (PAP, shown in Appendix B) sub-
stantially boosts performance across all per-
turbations. The most striking gains appear
in reasoning-oriented models, which display
far greater robustness than their non-thinking
counterparts. In the case of Neg-Num, these
models not only surpass their baselines but
also achieve strong improvements on pertur-
bations such as simple numeration and ranged
replacements. Notably, Qwen3-32B recovers
to over 67%, underscoring the effectiveness of
this model to leverage perturbed demonstra-
tions, although masking remains a persistent
challenge for Gemini. For Qwen, enabling the
thinking variant consistently strengthens per-
formance in most cases, whereas for Gemini
the benefits are more uneven—showing im-
provements in certain perturbations but mini-
mal change in others.

5.2 True→ True

Table 3 shows the results for True→ True per-
turbations. Neg-Num, Rand-Repl and Mask are
not relevant when preserving labels.

With few exceptions, most models struggle
on Approx and Range perturbations, though the
drop is modest compared to True→ False set-
ting. This suggests that replacing numerical
values with approximations or ranges, while
preserving truth, can still mislead models into
predicting False. In contrast, performance
under Num perturbations remains relatively ro-
bust. Unlike label-flipping cases, perturbed
PAP does not improve performance; instead,
they often confuse models into misclassifying
True claims as False. Surprisingly, GPT-4o-
Mini, despite being smaller performs the best
under this setting.

6 Discussion

RQ1: Across all experiments, no single model
emerges as universally the most robust, though
Gemini 2.5F and Qwen3-32B models come
closest. Our results show that models are gen-
erally more robust on False claims (Tables 5
and 4) than on True claims (Tables 2 and 3).
With perturbed false demonstrations, Gemini
2.5FT achieves near-ceiling accuracy on Ap-
prox, Range, and Rand-Repl, and shows the
largest recovery on Neg-Num; without such
calibration, Gemini 2.5F offers the best de-
fault balance, consistently leading on Rand-
Repl and Range.

Among open-weight systems, Qwen3-32BT

is the most stable across regimes and uniquely
strong on Mask when provided perturbed ex-
amples, while Llama 3.3-70B excels on zero-
shot Neg-Num but becomes brittle under two-
shot. By contrast, DeepSeek-R1 is the least
stable, showing sharp two-shot degradations
on Approx and Num, indicative of harmful an-
choring effects.

RQ2: Neg-Num and Mask appear to be
the hardest perturbations among all prompt
settings. With perturbation aware prompt
(PAP), there is modest recovery and even then
the gains are model-dependent (e.g., Gem-
ini 2.5FT ). The Rand-Repl and Range per-
turbations are the most straightforward, con-
sistently improving accuracy across models
and prompting regimes. The Num and Ap-
prox perturbations fall in the middle: “think-
ing” models such as GPT-5T , GPT-o3T , and
Gemini 2.5FT often gain from these perturba-
tions, while many open-weight base models
lose accuracy under two-shot prompts, likely
because demonstrations with different numeri-
cal notation confuse the models—suggesting
that these rely more heavily on superficial for-
matting cues, making them more sensitive to
inconsistencies in numeric representation.

RQ3: Across both Gemini 2.5FT and

84



Qwen3-32BT , misclassified instances consis-
tently involve longer inputs than correct pre-
dictions. For Gemini 2.5FT , misclassifications
show ∼15% more total tokens than correct
cases, largely driven by a ∼38% increase in
reasoning tokens (877 vs. 635 on average).
For Qwen, the effect is even stronger: mis-
classified examples carry ∼41% more total to-
kens, with reasoning length nearly doubling
(∼876 vs. 397, a ∼120% increase). Prompt
tokens also inflate in misclassifications, albeit
more modestly (e.g., ∼3–10% increases across
models). Taken together, these findings sug-
gest that models tend to fail when they have
longer prompt and reasoning tokens (overthink-
ing (Sui et al., 2025)), with inflated reasoning
chains being a strong marker of misclassifi-
cation. While PAP prompts introduce longer
inputs overall, they provide targeted demon-
strations that help mitigate these failures by
guiding models toward more stable reason-
ing. Detailed breakdowns are presented in Ap-
pendix B.5.

6.1 Error Analysis

To better understand model errors, we analyze
thinking tokens under the T → F setting for
Qwen3-32BT and Gemini 2.5FT , focusing on
zero-shot errors that recover in PAP. Appendix
C, Table 10 shows specific samples. Our anal-
ysis reveals the following reasoning patterns:

Numerical strictness: In PAP reasoning,
models tend to interpret numbers more rigidly
than in zero-shot. For instance, a claim citing
$330,000 against evidence of $300,000 was
treated as a minor discrepancy in zero-shot, but
as a significant mismatch in PAP, predicting
False.

Masking fallacies: In the zero-shot setting,
masked numbers were often treated as place-
holders, leading the model to “complete” the
claim from evidence rather than verify it. Un-
der PAP reasoning, the model more frequently

flagged missing values as critical, aligning with
the masked prompt examples and rejecting un-
verifiable claims. In some cases, however, it
ignored the masking and reached the correct
verdict, but for spurious reasons such as assum-
ing small discrepancies in the evidence.

Typo interpretation: In the negative-
number perturbation setting, under zero-shot,
models often interpreted the negative sign (–)
as a typo, treating it as a misplaced hyphen
and discarding it during evaluation, which led
to misclassifications. Under PAP prompting,
however, the model highlighted the negative
sign as a crucial discrepancy, correctly identi-
fying it as evidence that invalidated the claim.

Overthinking: In some cases, models gen-
erate unnecessarily elaborate reasoning that
obscures straightforward evidence. For exam-
ple, for the claim “Of the [more than 2 million]
work opportunities created, more than 1 mil-
lion have been taken up by the youth”, the
evidence clearly shows 2.5 million created and
1.1 million taken by youth (45%). Instead of
rejecting the claim directly, the model specu-
lated about time windows and approximation
thresholds, leading to a wrong verdict. This
illustrates how excessive reasoning can derail
simple numerical checks.

7 Conclusion and Future Work

We introduced a framework for systematically
perturbing numerical claims in claim–evidence
pairs to evaluate the robustness of state-of-the-
art LLMs in veracity prediction. Our results
show that even leading systems suffer sharp
performance drops under controlled numeri-
cal edits, providing the first comprehensive
evidence that numerical robustness in long-
context fact-checking remains an open chal-
lenge. Beyond prior work on textual or ad-
versarial perturbations, our study is novel in
designing semantically valid numerical pertur-
bations and demonstrating that perturbation-
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aware prompting can partially recover perfor-
mance.

As a preliminary step, this work opens sev-
eral directions: perturbing the evidence side of
claim–evidence pairs, designing fine-grained
probes that target sub-claims, and extending
the framework to multi-hop reasoning and
counterfactual scenarios.

8 Limitations

Our experiments are constrained by the se-
lection of models tested. Additionally, they
were conducted in a black-box environment, re-
stricting access to model weights, parameters,
and other internal insights. Some perturbation
datasets are also limited in size; a larger and
more diverse sample would enhance the robust-
ness of our findings. For reasons discussed in
previous sections, our experiments focus exclu-
sively on binary veracity classification (‘True’
and ‘False’), omitting more granular classifica-
tions and False-to-True perturbations. Expand-
ing the scope to include these aspects could
offer a more comprehensive understanding of
model performance under different conditions.
Lastly, as with most classification tasks involv-
ing LLMs, there is a potential risk of data leak-
age from training data, which could influence
the final evaluation and affect the results.

9 Ethical Considerations

Our research highlights the strengths and weak-
nesses of various models in binary veracity and
counterfactual classification. While this type
of research presents valuable opportunities to
enhance model security and resilience. How-
ever, it also necessitates a thoughtful approach
to ethical concerns. For our experiments, some
models outperform others, yet we do not en-
dorse any specific model for fact-checking
tasks. Fact-checking itself is a nuanced and
complex issue. Journalists, fact-checkers, and
researchers alike risk introducing inadvertent

bias into their work, a concern that also extends
to the use of LLMs.

Additionally, while the goal of our experi-
ments is to bring greater attention to LLM per-
formance in specific tasks, these findings also
highlight vulnerabilities and encourage the de-
velopment of more robust models. However,
these techniques have multipurpose potential
and could be exploited for harmful purposes if
misapplied.
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A Appendix

The appendix includes additional details of the
perturbation methods used, a summary of the
False → False evaluation, and the evidence
document and evaluation for the two-shot ex-
amples.

A.1 Perturbation Details

This section provides a brief description of
additional details regarding the perturbation
methods. For full script details, refer to the
GitHub repository3.

A.1.1 Numeration
For numbers that should not match the original
numerical value in the unperturbed claim, the
value is increased by 10%, then converted from
digits to words.

A.1.2 Approximation
Each type applies context-specific rounding to
create conversational approximations round-
ing, and adds “about” as an approximation pre-
fix. If all numbers, if it is less than 10 and a
decimal number, the number gets round to the
nearest .5.

• Cardinal: Rounds to tens, hundreds, thou-
sands, or hundred-thousands based on magni-
tude.

• Percentage: Rounds to tens or hundreds, pre-
serving exact values for small percentages.

• Money: Similar to Cardinal—with a currency
symbol and preserves decimal detail for small
amounts.

• Date: Rounds to the nearest decade.
• Time: Rounds to tens or hundreds depending

on magnitude.
For the label-flipping probes, the original

numerical value is multiplied randomly by a
factor 0.5, 0.6, 1.4, or 1.5, and then rounded as
described above.

3https://github.com/iai-group/
adversarial_attack_numerical_claims/
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Table 4: Accuracy performance for the ‘False’ class, in the‘False’ dataset split with perturbations where
numerical values have been adjusted to remain similar to the original false claim while maintaining the
label, i.e., False → False (-x indicates a drop; +x indicates an increase). Values in bold denote the highest
accuracy within each perturbation setting, separated by open-weight and proprietary models.

Model Original Approx Num Range

One-shot

Llama 3.2-1B 5.71 5.45-0.27 6.53+0.82 6.81+1.10

Llama 3.3-70B 93.67 94.06+0.39 93.47-0.20 92.21-1.46

Mistral-7B 96.53 95.79-0.74 96.33-0.20 95.62-0.91

DeepSeek-R1 97.14 97.28+0.13 96.94-0.20 96.84-0.31

DeepSeek-R1T 95.86 95.56-0.31 96.13+0.27 94.56-1.30

Qwen3-32B 96.12 96.29+0.16 96.12 97.32+1.20

Qwen3-32BT 95.92 94.99-0.93 95.90-0.01 95.15-0.76

GPT-4o 96.52 97.28+0.75 97.14+0.62 97.08+0.56

GPT-4o-Mini 93.05 93.32+0.27 92.45-0.60 93.19+0.14

GPT-5 95.20 95.05-0.15 96.12+0.92 95.13-0.06

GPT-o3 95.36 94.06-1.30 95.92+0.55 94.40-0.96

Gemini 2.5F 93.21 95.05+1.84 93.88+0.67 96.11+2.90

Gemini 2.5FT 92.05 90.84-1.21 90.69-1.36 90.02-2.03

Two-shot

Llama 3.2-1B 10.00 6.93-3.07 10.20+0.20 9.73-0.27

Llama 3.3-70B 95.92 96.04+0.12 95.51-0.41 93.19-2.73

Mistral-7B 87.76 88.12+0.36 88.78+1.02 87.10-0.65

DeepSeek-R1 95.92 95.79-0.13 95.71-0.20 96.84+0.92

DeepSeek-R1T 96.07 95.73-0.34 96.27+0.20 94.35-1.72

Qwen3-32B 97.76 97.28-0.48 97.76 97.32-0.43

Qwen3-32BT 95.91 96.04+0.13 96.33+0.42 94.88-1.03

GPT-4o 96.36 97.28+0.92 96.12-0.24 97.32+0.97

GPT-4o-Mini 92.38 95.79+3.41 93.88+1.49 95.38+2.99

GPT-5 95.20 94.55-0.64 96.12+0.92 95.13-0.06

GPT-o3 94.87 94.55-0.31 95.10+0.23 94.89+0.02

Gemini 2.5F 92.72 95.54+2.83 94.49+1.77 95.62+2.91

Gemini 2.5FT 92.38 91.58-0.80 94.08+1.70 90.27-2.12

PAP

Qwen3-32B 96.12 96.78+0.66 96.53+0.41 97.20+1.08

Qwen3-32BT 96.72 96.40-0.32 96.39-0.33 95.84-0.89

Gemini 2.5F 92.88 95.30+2.42 92.24-0.64 95.13+2.25

Gemini 2.5FT 93.54 90.84-2.70 92.65-0.89 90.02-3.52

A.1.3 Range

In the range perturb setting, for when the nu-
merical values should be within the span of
the original, the lower bounds we perturb the
number by ±10%. For ordinal, we subtract
and add 1 to the original value to create the
range bound.

In instances where the labels are flipped, the
numerical span will be outside of the range of
the original number.
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Table 5: Accuracy performance for the False class, in the‘False’ dataset split with perturbations where
numerical values have been modified to differ from the original false claim while preserving the label, i.e.,
False→ False (-x indicates a drop; +x indicates an increase). Values in bold denote the highest accuracy
within each perturbation setting, separated by open-weight and proprietary models.

Model Original Approx Neg-num Num Rand-repl Range Mask

Zero-shot

Llama2-1B 5.71 5.45-0.27 5.62-0.10 6.33+0.61 4.90-0.82 5.35-0.36 5.92+0.20

Llama3.3-70B 93.67 96.53+2.86 93.26-0.42 96.12+2.45 96.73+3.06 95.62+1.95 92.86-0.82

Mistral-7B 96.53 97.28+0.75 95.51-1.02 96.33-0.20 96.73+0.20 96.35-0.18 95.31-1.22

DeepSeek-R1 97.14 98.51+1.37 96.63-0.51 97.96+0.82 98.16+1.02 98.30+1.15 97.55+0.41

DeepSeek-R1T 95.86 96.57+0.71 91.57-4.30 97.42+1.56 97.61+1.75 97.44+1.58 93.74-2.13

Qwen3-32B 96.12 98.27+2.14 95.51-0.62 97.96+1.84 97.96+1.84 98.30+2.17 95.31-0.82

Qwen3-32BT 95.92 96.74+0.83 94.32-1.60 98.22+2.30 97.74+1.82 98.03+2.11 94.01-1.91

GPT-4o 96.52 97.77+1.25 96.63+0.11 98.16+1.64 98.16+1.64 97.81+1.29 96.53+0.01

GPT-4o-Mini 93.05 96.04+2.99 92.13-0.91 95.71+2.67 95.92+2.87 96.84+3.79 93.27+0.22

GPT-5 95.20 96.29+1.09 91.01-4.19 97.55+2.35 97.35+2.15 96.84+1.64 95.51+0.31

GPT-o3 95.36 96.04+0.68 91.01-4.35 96.94+1.57 96.94+1.57 96.84+1.47 95.51+0.15

Gemini 2.5F 93.21 97.28+4.07 94.38+1.17 96.94+3.73 97.96+4.75 97.08+3.87 93.88+0.67

Gemini 2.5FT 92.05 93.30+1.25 87.64-4.41 95.31+3.25 94.90+2.84 96.09+4.04 88.98-3.07

2-S

Llama2-1B 10.00 7.92-2.08 7.87-2.13 7.76-2.24 9.18-0.82 9.25-0.75 7.76-2.24

Llama3.3-70B 95.92 97.52+1.61 95.51-0.41 96.73+0.82 97.87+1.95 95.38-0.54 95.10-0.82

Mistral-7B 87.76 87.38-0.38 87.64-0.11 88.57+0.82 88.78+1.02 87.35-0.41 87.35-0.41

DeepSeek-R1 95.92 98.27+2.35 93.26-2.66 96.73+0.82 85.26-10.66 98.05+2.14 95.51-0.41

DeepSeek-R1T 96.07 96.50+0.43 94.25-1.81 97.32+1.25 96.79+0.73 98.03+1.97 94.61-1.46

Qwen3-32B 97.76 99.01+1.25 97.75-0.00 98.98+1.22 98.93+1.18 98.54+0.79 97.55-0.20

Qwen3-32BT 95.91 97.52+1.61 94.38-1.53 97.96+2.05 98.04+2.13 97.57+1.66 96.11+0.20

GPT-4o 96.36 98.51+2.16 98.88+2.52 97.55+1.19 97.96+1.60 98.05+1.70 95.51-0.85

GPT-4o-Mini 92.38 96.29+3.90 94.38+2.00 95.92+3.53 96.94+4.55 97.08+4.70 95.31+2.92

GPT-5 95.20 96.04+0.84 92.13-3.06 97.55+2.35 97.35+2.15 97.08+1.88 96.12+0.92

GPT-o3 94.87 96.53+1.67 91.01-3.86 97.35+2.48 96.94+2.07 97.08+2.21 95.31+0.44

Gemini 2.5F 92.72 97.03+4.31 95.51+2.79 96.94+4.22 96.73+4.02 96.36+3.64 93.88+1.16

Gemini 2.5FT 92.38 94.31+1.92 89.89-2.50 95.94+3.56 96.13+3.75 96.11+3.72 90.82-1.57

PAP

Qwen3-32B 95.10 98.51+3.41 95.51+0.40 98.16+3.06 98.57+3.47 98.54+3.44 97.55+2.45

Qwen3-32BT 97.13 97.77+0.65 95.51-1.62 98.98+1.85 98.57+1.44 98.54+1.41 95.88-1.25

Gemini 2.5F 92.88 97.52+4.64 96.63+3.75 97.14+4.26 98.16+5.28 97.81+4.93 94.29+1.40

Gemini 2.5FT 93.54 94.31+0.76 92.13-1.41 96.94+3.40 96.94+3.40 95.62+2.08 89.39-4.16

A.2 Summary of Model Behavior Under
Numerical Perturbations for False
Dataset Split (False → False)

Table 5 presents False → False perturbations
where numerical values are modified while pre-
serving the false label. Our experiments reveal
that large models (e.g., GPT-4o, GPT-4o-Mini,

Gemini 2.5F) and open-weight DeepSeek-R1T

maintain high robustness across perturbations,
with accuracies typically above 90%. Smaller
models such as Llama 3.2-1B and Mistral-
7B degrade sharply, especially under Approx
and Range. Qwen3-32BT performs consis-
tently well across shots, rivaling proprietary
systems. Notable anomalies include Gemini
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Example 1 Example 2

Claim: Claim:
As Republicans try to repeal the Affordable
Care Act, they should be reminded every
day that 36,000 people will die yearly as a
result.

We see a quarter-billion dollars in a pension
fund that needs to be funded at $1.2 billion.

Evidence: Evidence:
Gift Article Share
"As Republicans try to repeal the Afford-
able Care Act, they should be reminded ev-
ery day that 36,000 people will die yearly as
a result." — Sen. Bernie Sanders (D-Vt.),
in a tweet, Jan. 12, 2017.

Providence Mayor Angel Taveras had to
deal with near bankruptcy in the capital city
after he took office in 2011. As the city
struggled to fix its budget problems, he won
union concessions to reduce pension costs.
The most recent figures show the plan is
only 31.4-percent funded.

Evaluation: False Evaluation: True

Table 6: True and False examples of claims and their labels based on evidence used in the prompt.

2.5F’s drop under Approx (−5 to −6 points)
despite strong overall performance, and GPT-
4o-Mini’s unexpected gains in two-shot (+3
points). Reasoning-enabled (T ) variants gen-
erally improve robustness, though Gemini’s
thinking variant remains more variable.

The table 4, reports accuracy metric for the
False class in the False dataset split with per-
turbations. Perturbations significantly mod-
ify numerical values while preserving the la-
bel (False → False). Results are presented
for multiple LLMs including Llama, Mistral,
DeepSeek, GPT, Gemini, and Qwen across
three evaluation setups: Zero-shot, two-shot,
and Perturbation-Aware Prompt (PAP). The
columns indicate different perturbation types:
Original (baseline), Approx, Neg-num, Num,
Rand-repl, Range, and Mask. Superscripts
with negative values denote drops relative to
the baseline, and positive values denote im-
provements.

In the zero-shot setting, DeepSeek-R1, GPT-
4o, and Qwen3-32BT achieve the highest and
most stable performance, maintaining accura-
cies between 96% and 98% across perturba-

tions. Gemini 2.5F is also stable with scores in
the range of 93% to 97%. In contrast, smaller
models such as Llama 3.2-1B perform poorly
with accuracies around 5–6%. Mid-sized mod-
els like Llama 3.3-70B and Mistral-7B perform
well but remain slightly below the frontier mod-
els.

In the two-shot setting, accuracy improves
slightly compared to Zero-shot, especially for
the smaller models. DeepSeek-R1 remains
strong with scores around 96–97%, GPT-4o
reaches 95–98%, Qwen3-32BT achieves 94–
98%, and Gemini 2.5FT remains consistent
with 90–96%. Llama 3.2-1B, however, con-
tinues to perform poorly with accuracies only
between 7% and 10%.

Perturbation-Aware Prompt (PAP) delivers
the highest overall accuracies. Qwen3-32BT

and DeepSeek-R1T achieve 95–99% across all
perturbations, while Gemini 2.5FT also shows
strong performance with accuracies between
89% and 97%. PAP consistently improves the
already strong models by about 1–2 percentage
points compared to zero-shot and two-shot.

In general, model scale is critical. Small
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models such as Llama 3.2-1B collapse under
this evaluation, while large-scale and frontier
models like DeepSeek, GPT-4o, Qwen, and
Gemini perform near ceiling. Prompting with
two-shot increases stability across most mod-
els, and PAP proves to be the most robust
method, yielding the best and most consistent
results overall.

B Prompt

For the LLMs we use the same instruction
and two-shot examples. The zero-shot only
includes the instruction, whereas the two-shot
includes the instruction and the sample data.
The following two-shot examples are snippets
of the examples used. For the full prompt, refer
to our GitHub repository.

B.1 System Prompt

The following prompt was used as the model
system prompt:

You are a professional fact checker, your
task is to classify whether the given claim is
true or false based on the evidence text pro-
vided.

B.2 Instruction

The following prompt was used along with two
examples from Table 6:

Given the claim and evidence provided, clas-
sify the claim as "label": true if it is true, and
"label": false if it is false.

B.3 Two-shot Examples

Table 6 presents two examples of fact-checking
claims used in the prompt for LLMs along with
their corresponding evidence and veracity eval-
uations. The two examples are used for all
LLMs and all perturbation inputs to be consis-
tent. And each of the two example represents
the two distinct labels in the dataset.

B.4 Perturbation Aware Prompt

The following prompt was added to the instruc-
tion prompt for the negative example experi-
ments:

The numbers in the evidence may not match
the claim. For example:

Claim: The Eiffel Tower is three hundred
and fifty-one meters tall. Evidence: The Eiffel
Tower is 330 meters tall. "label": false

Claim: The year-over-year U.S. inflation
rate at the end of 2024 was -2.9%. Evidence:
The year-over-year U.S. inflation rate at the
end of 2024 was 2.9"label": false

Claim: The birth rate in Japan in 2023 was
between 2 to 2.5. Evidence: The birth rate in
Japan in 2023 was 1.2. "label": false

Claim: The population of Canada in 2023
was about 45 million. Evidence: The popula-
tion of Canada in 2023 was 40.5 million by
October 2023. "label": false

Claim: Saturn has 789 moons. Evidence:
Discoveries bring Saturn’s total moon count to
274, nearly triple Jupiter’s and more than the
total number of known moons around the other
planets. "label": false

Claim: The Wembley Stadium in London
has a seating capacity of ######. Evidence:
The Wembley Stadium in London has a seating
capacity of 90,000. "label": false

B.5 Prompt Length Analysis

We perform prompt length analysis for misclas-
sified instances compared to correct classifica-
tions for the two most stable models–Gemini
2.5FT and Qwen3-32BT .

Gemini 2.5FT In misclassified instances,
Gemini 2.5-Flash tends to have longer reason-
ing token length overall, with average total
token length increasing by 15% compared to
correct predictions (2103 vs. 1822 tokens).
Prompt tokens show only a modest difference
(+3%). The distribution further suggests that
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Perturbation Prompt Tokens Reasoning Tokens

Misclassified Correct Misclassified Correct

Approximation 2158.7 1303.9 1265.1 371.2
Negative Number 1214.5 1073.2 846.5 339.0
Numeration 1648.2 1239.6 796.1 378.4
Random Replacement 1576.4 1323.8 713.2 363.8
Range 1963.4 1315.1 698.4 401.1
Masking 1234.7 1017.8 717.1 427.7

Table 7: Comparison of average prompt and reasoning token lengths for Qwen3-32BT between misclassi-
fications and correct classifications in the Zero-shot setting.

errors are associated with longer and more vari-
able reasoning chains (max reasoning length
over 6k tokens), whereas correct predictions
are achieved with more compact reasoning.
In other words, misclassifications correlate
strongly with overthinking.

Qwen3-32BT For Qwen3-32BT , misclassi-
fied cases consistently exhibit inflated reason-
ing lengths compared to correctly classified
instances in the Zero-shot setting (Table 7).
For example, reasoning tokens nearly triple in
Approx (1265 vs. 371) and more than double
in Num (796 vs. 378) and Range (698 vs. 401).
Prompt lengths are also consistently higher for
misclassifications, with the most pronounced
gap in Approx, where prompts expand by over
65% (2159 vs. 1304). The anomaly occurs
with Mask, where reasoning remains high even
in misclassifications (717 vs. 428), indicating
that masked inputs elicit extended elaboration
regardless of correctness. Overall, Qwen3-
32BT tends to over-reason when it misclassi-
fies, while correct predictions are characterized
by shorter, more efficient reasoning chains and
more compact prompts. All token lengths for
Qwen3-32BT zero-shot settings are shown in
Table 7.

C Invalid Output Analysis

As shown in Table 8, across the open-weight
models, invalid outputs are virtually absent

Model Total Instances Invalid % Invalid

Zero-shot
DeepSeek-R1:32B 8841 0 0.00
DeepSeek-R1:32BT 6837 477 6.98
LLaMA-3.2 1B-Instruct 6837 0 0.00
LLaMA-3.3 70B 6837 0 0.00
Mistral-7B 6837 0 0.00
Qwen-3 32B 7041 0 0.00
Qwen-3 32BT 6553 165 2.52

Two-shot
DeepSeek-R1:32B 6951 0 0.00
DeepSeek-R1:32BT 6951 78 1.12
LLaMA-3.2 1B-Instruct 6837 0 0.00
LLaMA-3.3 70B 6951 0 0.00
Mistral-7B 6837 0 0.00
Qwen-3 32B 6951 0 0.00
Qwen-3 32BT 6951 23 0.33

PAP
DeepSeek-R1:32B 6837 0 0.00
DeepSeek-R1:32BT 6837 92 1.35
LLaMA-3.2 1B-Instruct 6837 0 0.00
LLaMA-3.3 70B 6837 0 0.00
Mistral-7B 6837 0 0.00
Qwen-3 32B 6837 0 0.00
Qwen-3 32BT 6837 55 0.80

Table 8: Invalid outputs across open-weight mod-
els, grouped by shot setting. Thinking-enhanced
variants are marked with T . Percentages are calcu-
lated as invalid/total × 100.

in the non-thinking variants: Llama 3.3-70B,
Llama-3.2 1B instruct, Mistral-7B, Qwen3-
32B, and DeepSeek-R1 consistently produce
0.00% invalidity across all shot settings. By
contrast, enabling thinking introduces instabil-
ity. For instance, DeepSeek-R1T exhibits a
sharp rise in invalid generations under zero-
shot (6.98%), which decreases under two-shot
(1.12%) and PAP (1.35%), indicating some
recovery with examples. Similarly, Qwen3-
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Model Total Instances Invalid % Invalid

Zero-shot
GPT-4o 5298 0 0.00
GPT-4o-mini 5298 0 0.00
GPT-5 5298 0 0.00
GPT-o3 5298 1 0.02
Gemini-2.5T 5295 174 3.29
Gemini-2.5 5298 1 0.02

Two-shot
GPT-4o 5298 0 0.00
GPT-4o-mini 5298 0 0.00
GPT-5 5298 0 0.00
GPT-o3 5298 2 0.04
Gemini-2.5T 5298 82 1.55
Gemini-2.5 5298 42 0.79

PAP
Gemini-2.5T 5298 231 4.36
Gemini-2.5 5298 0 0.00

Table 9: Invalid outputs across proprietary models
and Gemini variants, grouped by shot setting. Per-
centages are calculated as invalid/total × 100.

32BT yields 2.52% invalidity in zero-shot, re-
duced to 0.33% under two-shot, but climbing
again to around 0.80–1.33% with perturbation-
aware prompts.

These findings reveal a clear pattern: while
open-weight models without reasoning remain
robust against invalid outputs, their reasoning-
enabled counterparts are consistently more
error-prone. Zero-shot is the most unstable
regime, two-shot offers stabilizing effects, and
PAP shows mixed outcomes depending on the
model.

As shown in Table 9, for proprietary sys-
tems, invalid outputs are exceedingly rare ex-
cept in the Gemini family. GPT-4o, GPT-4o-
Mini, GPT-5T , and GPT-o3Tmaintain near-
perfect robustness across all shot settings, with
invalid rates between 0.00–0.04%. By con-
trast, Gemini 2.5F demonstrates a higher sus-
ceptibility to invalid generations. In particular,
Gemini 2.5FT reaches 3.29% invalidity under
zero-shot, improves to 1.55% with two-shot
calibration, but rises again to 4.36% under PAP.
Its non-thinking counterpart is much more sta-
ble, remaining below 1% invalidity in all cases.

Overall, proprietary models without reason-
ing capabilities (GPT family and Gemini 2.5F)
are extremely stable, while reasoning-enabled
variants of Gemini incur significantly higher in-
valid rates, especially in zero-shot and PAP set-
tings.
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True → False Perturbed
Claims

Reasoning Output Snippets Analysis Summary

The various offices of
state government have
purchased more than
$########## in vehicles,
not counting leases, for
use from the Governor on
down during the last two
years.

Gemini 2.5FT zero-shot: “(...)While
the claim uses a placeholder, the
evidence substantiates the ‘more than
$11 millionf́igure with precision. I
will now mark the claim as true.”
Gemini 2.5FT PAP:“(...)I’m now
certain the claim is false. The
instruction’s emphasis on placeholders
makes the ’more than’ condition
irrelevant. The claim is inherently
un-verifiable (...)”

In the zero-shot
evaluation the model
assumes that the model
needs to find the missing
value. PAP nudges the
model in the correct
direction, predicting the
claim as false for the
correct reasons.

Some states, like
Montana and Nebraska,
are getting more than
three hundred and thirty
thousand dollars in
federal stimulus money
per reported COVID-19
case. New York is the
hardest-hit state and yet
we are getting only about
thirteen thousand, two
hundred dollars per case.

Gemini 2.5FT zero-shot: “(...) I am
also considering whether the small
discrepancy in the funding figures
makes the overall claim inaccurate (...)
The claim is essentially true, even with
minor discrepancies”
Gemini 2.5FT PAP: “(...) claim states
‘$13,200’ per case for New York,
whereas the evidence consistently
states ‘$12,000’. Since the numbers
don’t align, I must classify the claim
as false.”

PAP highlights that the
10% difference in the
claim’s numerical values,
compared to the evidence
as “significant numerical
discrepancies”. Zero-shot
evaluation is more
forgiving with regarding
the discrepancies.

My opponent, Rick Gunn,
blocked the expansion of
Medicaid — costing half
a million people health
insurance, including
about 34,000 veterans.

Qwen3-32BT zero-shot: “(...)The
claim states 34,000 veterans, but the
evidence only supports up to 23,000 or
14,000. The user’s claim says 34,000,
which is higher than both estimates
(...)” (starts to overthink).
Qwen3-32BT PAP: “(...) The 34,000
figure isn’t present in the evidence; the
highest is 23,000. Therefore, the claim
is false because the specific number
provided doesn’t match the evidence.”

During zero-shot, the
model starts to overthink,
going in
circles–outputting nearly
7000 reasoning tokens,
citing the number in the
evidence “23,000”, 198
times, and the claim
number “34,000”, 135
times. During PAP, the
model does correctly
identify the discrapancy
effectively, and keeps the
reasoning token output of
around 200.

Table 10: Examples of claims, reasoning, and analysis for Gemini 2.5FT and Qwen3-32BT where reasoning
improves for PAP, compared to zero-shot.
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