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Abstract

Reliable evaluation of Question Answering
(QA) systems in low-resource Indic languages
poses a significant challenge due to the lim-
ited availability of annotated datasets, linguis-
tic diversity, and the lack of suitable evalua-
tion metrics. Languages such as Sindhi, Ma-
nipuri, Dogri, Konkani, and Maithili are partic-
ularly underrepresented, creating difficulty in
assessing Large Language Models (LLMs) on
QA tasks. Existing metrics, including BLEU,
ROUGE-L, and BERTScore, are effective in
machine translation and high-resource settings;
however, they often fail in low-resource QA
due to score compression, zero-inflation, and
poor scale alignment. To overcome this, the
Language-Robust Metric for Generative QA
(LRMGS) is introduced to capture semantic and
lexical agreement while preserving the score
scale across languages. LRMGS is evaluated
across 8 Indic languages and multiple LLMs,
consistently demonstrating higher concordance
with reference-based chrF++ scores, as mea-
sured using the Concordance Correlation Co-
efficient (CCC). Experimental results indicate
that LRMGS provides more accurate discrimi-
nation of system performance in languages with
very low resources compared to existing metrics.
This work establishes a robust and interpretable
framework for evaluating QA systems in low-
resource Indic languages, supporting more reli-
able multilingual model assessment.

1 Introduction

India’s linguistic landscape is among the richest
globally, yet many languages with millions of speak-
ers remain underrepresented in Natural Language
Processing (NLP) and continue to be classified
as low-resource due to the scarcity of annotated
corpora and benchmarks. Large Language Mod-
els (LLMs) hold significant promise for address-
ing this gap by transferring knowledge from high-
resource to low-resource languages through cross-
lingual pretraining and generation. Models such
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as GPT-4 (OpenAl et al., 2024) have demonstrated
strong performance in tasks including summariza-
tion (Pu et al., 2023; Goyal et al., 2023) and ques-
tion answering (Zhao et al., 2023), although their
training and evaluation processes remain predom-
inantly English-centric. As a result, LLMs fre-
quently struggle to generalize effectively across lan-
guages (Lai et al., 2023; Zhang et al., 2023; Ahuja
et al., 2023), exhibiting substantial performance
disparities between proprietary and open-source
models (Ahuja et al., 2024). While multilingual pre-
training extends generative capabilities to a wider
range of languages (Jiang et al., 2024), evaluation
efforts remain constrained by benchmarks domi-
nated by understanding-focused tasks with limited
generative coverage (Lai et al., 2023; Asai et al.,
2023) and by the continued reliance on expensive
reference-based annotations. LLM-based evalua-
tion approaches (Liu et al., 2023) provide an emerg-
ing alternative; however, these methods often in-
troduce biases such as a preference for longer out-
puts or self-generated responses (Zheng et al., 2023;
Shen et al., 2023).

Although several Indic QA datasets (Clark et al.,
2020; Asai et al., 2021; Singh et al., 2025) have
contributed to expanding multilingual evaluation,
the core challenge remains the lack of effective
evaluation methods for languages with very low
resources. Prior efforts often relied on translation-
based evaluation (Singh et al., 2024; Chollampatt
et al., 2025), which is inadequate for QA since the
task requires not only fluent generation, factual cor-
rectness, grounding in context, and the preservation
of key entities and information. Existing reference-
based metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), BERTScore (Zhang* et al.,
2020), and chrF++ (Popovié, 2017) fall short in
this setting: they compress score ranges, exhibit
weak alignment with human judgments, and often
produce unstable rankings across systems. More
critically, these metrics operate primarily at the sur-
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face or semantic similarity level, thereby overlook-
ing factual aspects of QA such as numeric accu-
racy, consistency of named entities, and hallucina-
tions. As a result, models that generate fluent yet
factually incorrect answers may still receive inflated
scores. Cross-lingual protocols aim to mitigate cer-
tain issues while introducing new risks, including
reference leakage, dependency on expensive anno-
tations, and uncertainty regarding the reliability of
scorer LLMs for non-English text.

Example from our result

Language: Dogri System: GPT-4.1 Domain:
Politics

Question: et — g dere WA < At
A T FI AT et ¢ aT & ?
Translation: Which of the following movements
in India was the Gandhi—Irwin Pact associated
with?

Reference: ieh-z3fae dae o7 wEy vk
HAT ATl Tt Bl

Translation: The Gandhi—Irwin Pact was asso-
ciated with the Civil Disobedience Movement.
Output: TTiEft — AT Uere FfAaT 37T Stigia
&l 2 AT &

Translation: The Gandhi—Irwin Pact is associ-

ated with the Civil Disobedience Movement.

chrF++ BLEU BERTScore LRMGS
0.4852  0.0560 0.9338 0.9290

Metrics

To address the evaluation gap in very low-
resource Indic languages, this study builds on
the L3Cube-IndicQuest benchmark (Rohera et al.,
2024), which includes underrepresented languages
such as Sindhi, Manipuri, Dogri, Konkani, and
Maithili. The proposed Language-Robust Met-
ric for Generative QA (LRMGS) is a composite
evaluation framework that integrates semantic sim-
ilarity through pivoted multilingual BERTScore,
nugget-level factual coverage, penalties for numeric
mismatches, and evidence-faithfulness checks. Hu-
man annotation in these languages remains ex-
tremely limited due to the scarcity of bilingual ex-
perts, script diversity, and the high cost of large-
scale annotation, making direct human correlation
infeasible at scale. Consequently, chrF++ is em-
ployed as a reproducible reference metric for assess-
ing score stability and cross-system concordance.
The metric operates purely at the character level
and functions as a proxy to examine relative consis-
tency across systems, without modeling semantic or
factual correctness. This design allows validation
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of LRMGS in a principled and language-agnostic
manner, even in the absence of human evaluation
resources.

2 Evaluation Protocol

2.1 Problem Definition

The task considered in this work is the evaluation
of QA outputs across eight low-resource Indic lan-
guages. Each evaluation instance is represented as
a pair (@, R), where () denotes the question posed
in one of the target languages and R is its gold refer-
ence answer. Given a system prediction A produced
by a LLM, the objective is to define an evaluation
function £ : (R, A) — s € [0,1], that assigns a
score s reflecting the quality of A relative to R.

2.2 Evaluation Metric

To overcome the limitations of BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), BERTScore
(Zhang* et al., 2020), and chrF++ (Popovi¢, 2017),
which approximate £ via lexical or embedding sim-
ilarity, the LRMGS is introduced. It integrates se-
mantic similarity, question-aware nugget coverage,
numeric fidelity, and contextual grounding. For-

mally,
11

kE{BERT,
KC,NUM,EF}

LRMGS = EN-k(Ren, Aep, Cop ),

ey
where >\BERT = 09, >\KC = 08, and )\NUM =
)\EF = 1.

Notation. A QA instance is represented as
(Q, R), where @ is the Indic question, R the gold
answer, and A the system prediction. English trans-
lations of () and R are provided, and A is trans-
lated via IndicTrans2 (Gala et al., 2023) for consis-
tent evaluation. Let Q¢p,, Repn, and Aen denote the
English forms of the question, reference, and sys-
tem output, with context C'en = c1, ..., ¢, repre-
senting the English question sentences for ground-
ing. For EN-BERTScore, token embeddings ri
and aj are obtained using RoBERTa-large (Zhang*
et al., 2020). For key-nugget coverage (KC) and
evidence faithfulness (EF), Sentence-Transformers
(Reimers and Gurevych, 2019) encode nuggets ki
and context sentences ¢. Nuggets correspond to fac-
tual clauses segmented from Ren, with attention
weights a; derived via softmax-normalized similar-
ity to Qen, emphasizing the most relevant clauses.
Numeric sets Nz and N A contain expressions ex-
tracted through regular expressions.



Semantic similarity (EN-BERT).

|Ren|
EN—BERT(Ren,Aen) = |R1€n| Z mjax ‘cos(ri,aj)}.
. @)
Question-aware nugget attention (EN-KC).
EN-KC(Ren, Qen) — ") 3)
en; Wen) — 2?21 exp(%)7

where k; and q are embeddings of clause ¢; (from
Rep) and question Qep, 1 is the number of clauses,
and 7 is the temperature controlling attention sharp-
ness. A smaller 1 yields peaked attention, whereas
a larger value smooths the distribution. Top-k
nuggets with the highest attention weights are re-
tained as key concepts for coverage computation.

Numeric fidelity (EN-NUM).

_INRN Ny

EN-NUM(R.p,, Acp) = NN
A

“)

A partial penalty is applied when the reference con-
tains numbers; however, the hypothesis does not, as
reflected in the implementation.

Evidence faithfulness (EN-EF).

EN-EF(C.p,, Ae,) = max cos(a, ¢),

CGCen

= (&)
which ensures contextual grounding by requiring
the generated answer to align semantically with
at least one translated question sentence. The full
algorithmic implementation of LRMGS is provided
in Appendix D.

3 Evaluation and Dataset

Two kinds of evaluation have been done in this work:
(1) Meta-evaluation and (2) LLM Comparison.

Meta-evaluation: The ability of LRMGS to sub-
stitute conventional reference-based metrics for
multilingual QA evaluation is examined by comput-
ing its concordance with carF++ (Popovié, 2017),
a metric shown to align well with human judgments
in multilingual text generation (Singh et al., 2024).
The Concordance Correlation Coeflicient (CCC)
(ccc, 1989) is employed, as it evaluates both preci-
sion (Pearson correlation) and accuracy (closeness
to the identity line), thereby capturing true agree-
ment rather than only monotonic consistency.
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Language BLEU BScore LRMGS
Assamese  0.406 0.0229 0.627
Dogri 0.376  0.0172 0.538
Hindi 0.541 0.0286 0.646
Konkani 0.356  0.0209 0.597
Maithili 0.430 0.0210 0.563
Manipuri  0.413  0.0153 0.580
Sanskrit 0.276  0.0222 0.601
Sindhi 0.569 0.0221 0.642
Average 0.421 0.0213 0.599

Table 1: Comparison of correlation-based agreement
with cHrRF++ across metrics for each low-resource Indic
language. The results show that LRMGS consistently
achieves higher concordance with cHrRF++ than BLEU
and BERTScore(BScore).

System BLEU BScore LRMGS
Airavata-7B 0.361 0.017 0.539
Aya-23-8B 0.515  0.012 0.586
BLOOMZ-7B 0.736  0.006 0.362
GPT-4.1 0.390  0.024 0.571
Gemma-2-9B-it 0.498  0.020 0.565
Llama-3.1-8B 0.445  0.018 0.542
Mistral-7B 0.212  0.005 0.430
OpenHathi7B-Hi 0.101 0.006 0.486
Qwen2.5-7B-Inst.  0.375  0.013 0.502
Yi-1.5-9B-Chat 0.648  0.001 0.311
Average 0.418 0.013 0.500

Table 2: System-level comparison of correlation-based
agreement with cHrRF++ across evaluation metrics. LR-
MGS achieves the highest average concordance (0.500),
outperforming BLEU and BERTScore(BScore) across
diverse multilingual systems.

Formally, for score sets X = {z;}' ; and Y =
{viticy,

2p0x0y
0% + 0% + (nx — py)?’

Pc = (6)

where p denotes the Pearson correlation coefficient
between X and Y, while p. and o2 denote the mean
and variance, respectively. A value of p. = 1 indi-
cates perfect concordance.

CCC is reported at two levels of granularity, con-
sistent with the evaluation protocol: (i) language-
level, where for each language ¢, CCC is computed
between LRMGS and cHrF++ over all samples be-
longing to ¢; (ii) system-level, where for each sys-
tem s, CCC is computed between LRMGS and
curF++ over all samples generated by s without



Assamese Dogri Hindi Konkani Maithili Manipuri Sanskrit Sindhi
OpenHathi-7B-Hi-Base 0.051 0.199 0.248  0.153 0.209 0.041 0.159 0.051
Yi-1.5-9B-Chat 0.056 0.052 0.045 0.044 0.049 0.046 0.044  0.051
BLOOMZ-7B1-mt 0.118 0.129 0.162  0.088 0.124 0.04 0.121 0.067
Aya-23-8B 0.17 0.224 0.238  0.222 0.239 0.044 0.22 0.149
Mistral-7B 0.218 0.224 0.252  0.209 0.244 0.085 0.166  0.181
Airavata-7B 0.253 0.258 0.268  0.229 0.27 0.037 0.242 0.2
Qwen2.5-7B-Instruct 0.28 0.294 0305 0.289 0.305 0.136 0.278 0.269
Gemma-2-9B-it 0.29 0.284 0331 0.278 0.309 0.169 0.266  0.254
Llama-3.1-8B-Instruct 0.282 0.327 0348 0314 0.336 0.215 0.297 0.279
GPT-4.1 0.411 0.394 0.434 0.39 0.422 0.267 0.361 0.38

Table 3: System X language matrix of LRMGS scores with prompts in English. The results highlight consistent
cross-lingual trends, with GPT-4.1 achieving the highest scores across all eight Indic languages.

pre-averaging.

LLM Comparison: Using LRMGS, multilingual
QA evaluation across ten LLMs shows stronger
agreement in medium-resource languages like
Hindi and Assamese, while very low-resource ones
such as Sindhi and Dogri reveal large performance
gaps. GPT-4.1 achieves the best overall results,
though open-source models like Gemma-2-9B-IT
and LLaMA-3.1-8B-Instruct are competitive and
surpass larger proprietary systems in some cases.
These results underline the strengths of proprietary
models while highlighting the growing potential
of open-source alternatives. Further details about
LLMs and prompt are given in Appendix E.

Dataset: The study uses the L3Cube-IndicQuest
dataset (Singh et al., 2025), containing 4,000 QA
pairs across 20 languages, each with 200 ques-
tions from five domains. The questions were
originally authored in English, manually verified
for correctness, and subsequently translated into
the other Indic languages. For this work, eight
low-resource languages, Assamese, Dogri, Hindi,
Konkani, Maithili, Manipuri, Sanskrit, and Sindhi,
are selected to examine multilingual evaluation un-
der data scarcity. Further details about the dataset
are mentioned in Appendix A.

4 Results

Tables 1 and 2 establish the reliability of LR-
MGS as an evaluation protocol across Indic lan-
guages and multilingual systems. Unlike BLEU
and BERTScore, which underperform in very low-
resource scenarios, LRMGS demonstrates stronger
concordance with cHrRF++ both across languages
and across systems. This robustness is most appar-
ent for Dogri and Manipuri, where surface-based
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metrics fail to capture semantic fidelity or factual
adequacy. At the system level, BLEU occasionally
aligns with curF++ for certain models yet fluctu-
ates sharply for others, while BERTScore remains
uniformly weak. LRMGS provides stable and in-
terpretable agreement, confirming its suitability
for benchmarking multilingual QA tasks in low-
resource conditions.

To illustrate how individual components of LR-
MGS contribute to the final score, Table 4 presents
representative GPT-4.1 outputs. These examples
illustrate how the metric captures semantic fidelity,
factual grounding, numeric consistency, and align-
ment with contextual evidence, in contrast to con-
ventional metrics that rely solely on surface over-
lap. High LRMGS values correspond to fluent and
factually correct paraphrases, whereas mid-range
or low scores indicate partial factual omission or
semantic drift. This qualitative behavior explains
the improved discriminative reliability of LRMGS
across languages and systems.

The results reveal several key insights. First, LR-
MGS exhibits greater score stability across Indic
languages of varying resource levels, maintaining
consistent scale alignment even in the presence of
translation noise. Second, correlation with cHRF++
confirms that LRMGS preserves rank consistency
across systems while extending evaluation to fac-
tual and contextual dimensions that cHRF++ does
not capture. Third, LRMGS demonstrates stronger
discriminative power in identifying fine-grained
differences among LLMs, particularly between pro-
prietary and open-source models. These insights
validate the interpretability and robustness of LR-
MGS as a framework for evaluation.

Although the metric employs English pivoting
through translation, the direct application of En-



Table 4: Tlustrative GPT-4.1 examples highlighting the contribution of each LRMGS component (EN-BERT, EN-KC,
EN-NUM, EN-EF) in evaluating semantic, factual, numeric, and contextual faithfulness.

Language: Sanskrit

Question (EN): In which caves is the Kailasha temple located?

Reference (EN): The Kailasha temple is located in the Ellora caves.

Output (EN): The Kailash Temple is located in the Ellora Caves.

Scores: BLEU =0.427 chrF++=0.803 EN-BERT=0.970 EN-KC=0.928 EN-NUM=1.000 EN-EF
=0.978 LRMGS =0.896

Interpretation: A fluent paraphrase preserving all factual elements. Despite moderate BLEU, both EN-BERT
(Eq. 2) and EN-EF (Eq. 5) remain near 1.0, reflecting semantic and contextual fidelity. LRMGS correctly assigns
a high score (0.896) while surface metrics undervalue it.

Language: Assamese
Question (EN): How did Hamlet’s father die?

Scores: BLEU =0.008
=0.942 LRMGS =0.495

Reference (EN): Hamlet’s father was killed by his brother Claudius with a drink laced with poison.
Output (EN): Hamlet’s father was killed by his brother Claudius.
chrF++=0.187 EN-BERT=0.887 EN-KC=0.513

Interpretation: A semantically correct yet contextually reduced answer. High EN-BERT yet lower EN-KC
indicate factual alignment with partial omission of narrative context. This illustrates how Equation (3) penalizes
incomplete nugget coverage, leading to a mid-range LRMGS score.

EN-NUM=1.000 EN-EF

glish metrics, such as BLEU or ROUGE, to trans-
lated text is unreliable. Translation artifacts fre-
quently alter lexical structure and token boundaries,
reducing the validity of token-based similarity. LR-
MGS mitigates these effects by performing seman-
tic alignment on the pivoted text and incorporating
numeric and evidence-based checks that remain
stable under translation noise. This hybrid design
enables reliable cross-lingual evaluation while pre-
serving the linguistic and factual characteristics of
the original Indic content.

Having validated the metric, Table 3 applies LR-
MGS to compare large language models across
eight Indic languages. The results reveal clear
variation across models and languages. Newer
instruction-tuned architectures, including LLaMA-
3.1-8B-Instruct and Gemma-2-9B-it, consistently
outperform earlier baselines such as BLOOMZ
and Yi-1.5-9B-Chat, indicating the benefit of re-
cent training improvements for low-resource QA.
Airavata-7B and Qwen2.5-7B-Instruct achieve com-
petitive scores, although challenges persist for Ma-
nipuri and Sindhi, where most models display sharp
performance degradation. GPT-4.1 attains the high-
est LRMGS values across all languages, reflecting
both the disparity between proprietary and open-
source systems and the capability of LRMGS to
capture these nuanced differences. Comprehen-
sive results for BLEU, ROUGE-L, chrF++, and
BERTScore, along with visualizations, are pro-
vided in Appendix C.
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5 Conclusion

This work introduced LRMGS, a composite evalua-
tion metric designed for generative QA in very low-
resource Indic languages. By combining seman-
tic similarity, nugget-level coverage, numeric con-
sistency, and evidence faithfulness, LRMGS cap-
tures both factual and contextual dimensions of QA
quality. Experiments across eight Indic languages
show that LRMGS consistently achieves higher con-
cordance with curRF++ compared to BLEU and
BERTScore. The results highlight its robustness in
ranking multilingual systems and its ability to reveal
performance gaps in underrepresented languages.
LRMGS thus provides a reliable and interpretable
framework for benchmarking QA systems in low-
resource settings.

Limitations

This work has several limitations. First, LRMGS
relies on translation to English through IndicTrans2,
which may introduce translation errors and slightly
influence the resulting evaluation scores. Second,
the evaluation is limited to eight Indic languages
due to the availability of suitable datasets, leav-
ing a substantial number of low-resource languages
unexamined. Third, meta-evaluation is performed
against cHRF++ rather than direct human judgments
for all languages, thereby constraining the strength
of conclusions regarding alignment with human
evaluations.
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A Dataset

Dataset size and length characteristics. Table 5
summarizes per—language dataset statistics. Each
language has 200 QA pairs, and average guestion
length ranges from 7.56 (Sanskrit) to 11.22 tokens
(Dogri), while average answer length ranges from
19.32 (Sanskrit) to 30.50 tokens (Dogri/Sindhi).
Across languages, answers are roughly 2.5x—3x
longer than questions, indicating that systems must
handle short prompts with substantially longer gen-
erations.
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Language Samples Avg Q tokens Avg A tokens
Assamese 200 8.55 23.08
Dogri 200 11.22 30.5
Hindi 200 11.01 29.8
Konkani 200 8.3 22.16
Maithili 200 11.08 30.48
Manipuri 200 8.62 23.36
Sanskrit 200 7.56 19.32
Sindhi 200 11.02 30.48

Table 5: Dataset statistics per language: number of sam-
ples and average token lengths of questions/answers.

Token length distributions (all languages combined)

Question length
Answer length

100 150

Tokens

Figure 1: Token—length distributions aggregated across
all languages. Questions are short and tightly clustered;
answers are longer and right—skewed with a long tail.

Figure 1 shows the combined token—length
distributions over all languages. Question
lengths are tightly concentrated in the 5—15 token
range, whereas answer lengths exhibit a broader,
right—skewed distribution with a long tail (occasion-
ally exceeding 200 tokens). The separation between
the two histograms suggests limited confounding
between prompt length and response length, and the
heavy—tailed answers motivate clause—level scoring
and attention mechanisms.

B Experimental Setup and Metrics

Experiments are conducted across eight low-
resource Indic languages: Assamese, Dogri, Hindi,
Konkani, Maithili, Manipuri, Sanskrit, and Sindhi,
using 200 QA pairs per language. For each (ques-
tion, reference) pair, model outputs are generated
and evaluated using both automatic reference-based
metrics and human-aligned LLM ratings. All exper-
iments are inference-only, with no model updates
or gradient computations. Results are reported per
language and per system, followed by correlation
analysis using Pearson, Spearman, and Kendall’s 7.

Generation Settings. Inference is performed
using the transformers library in float16 preci-
sion with device__map=auto across 2x NVIDIA
V100 PCIe 32 GB GPUs. Decoding uses deter-



ministic greedy search (do_sample=false) with
a limit of 128 new tokens. Tokenizers use left
padding and truncation, defaulting to the eos_ to-
ken when the pad_ token is undefined. Random
seeds are fixed to 42 for Python, NumPy, and Py-
Torch to ensure reproducibility. Batch size is one,
and no gradients are computed.

Automatic Metrics. Evaluation includes BLEU,
ROUGE-L (LCS F1), chrF++ (6=2), and English-
projected BERTScore (F1), along with the pro-
posed LRMGS metric that captures semantic and
factual grounding in multilingual QA. BLEU scores
are computed using a maximum of four-gram over-
lap (BLEU-4) with standard smoothing (method 1).
Lower-order BLEU variants (1-3) were additionally
examined for consistency, and system-level rank-
ings remained stable across all configurations. All
BLEU results reported in the tables correspond to
BLEU-4.

C Visualization plots and Example
Analysis

Analysis of Metric Correlation with chrF++.
Figures 2-8 provide a detailed comparison of how
different metrics correlate with chrF++ across lan-
guages, systems, and individual sentences.

CCC of Metrics vs chrF (per Language)

rrrrrr

m— LRMGS

&

Figure 2: CCC of metrics vs. chrF++ across Indic lan-
guages. LRMGS consistently achieves the highest cor-
relation.

Language-level correlation. Figures 2 and 3 re-
port the concordance correlation coefficient (CCC)
between chrF++ and each other metric (BLEU,
ROUGE-L, BERTScore, LRMGS) across eight In-
dic languages. BLEU exhibits moderate agreement
with chrF++ (=0.28-0.57): e.g., Assamese =0.41,
Dogri =0.38, Hindi =0.54, Konkani =0.36, Maithili
=0.43, Manipuri =0.41, Sanskrit =0.28, Sindhi
=0.57. ROUGE-L remains weak (=0.00-0.27) and
even slightly negative in Manipuri, reflecting brittle
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span matching under rich morphology and ortho-
graphic variation. BERTScore is near zero every-
where (=0.015-0.03), indicating that sentence-level
embedding similarity poorly tracks character over-
lap in these low-resource settings (saturation and in-
sensitivity to small lexical differences). In contrast,
LRMGS is uniformly higher and tightly clustered
(=0.54-0.65)—e.g., =0.63 for Assamese, =0.65
for Hindi, =0.60 for Konkani/Sanskrit, =0.64 for
Sindhi—demonstrating robust concordance with
chrF++ across scripts and families. The bar plot
reiterates this: LRMGS dominates BLEU/ROUGE-
L/BERTScore for every language, with especially
strong margins in Assamese, Hindi, and Sindhi.

Why these patterns arise. BLEU’s token-level
n-gram matching favors languages with relatively
stable tokenization (e.g., Hindi, Sindhi), while its
effectiveness declines for morphologically rich or
compound-heavy languages such as Sanskrit and
Konkani, where surface forms diverge substantially
from reference expressions. ROUGE-L’s reliance
on the longest common subsequence makes it highly
sensitive to word order and segmentation, both
of which vary considerably across Indic scripts,
thereby reducing correlation with human judgments
(CCC). BERTScore frequently saturates at high co-
sine similarity values, leading to limited variance
and consequently weaker alignment with chrF++.
In contrast, LRMGS integrates semantic similarity,
question-aware nugget coverage, numeric fidelity,
and contextual grounding, generating scores that
vary meaningfully with factual and semantic align-
ment, thereby exhibiting stronger concordance with
chrF++ patterns.

System-level correlation. Figure 4 presents CCC
between chrF++ and each metric by model.
BLEU is variable across systems (higher for some
instruction-tuned or stronger decoders, lower for
others such as BLOOMZ and Mistral-7B). ROUGE-
L remains uniformly small (roughly 0.05-0.20),
while BERTScore is near zero for all systems.
LRMGS is consistently mid-to-high (typically
=0.43-0.59) with a narrow spread across model
families (Gemma, LLaMA, Qwen, GPT, etc.), indi-
cating stable agreement with chrF++ irrespective
of architecture or size.

Takeaways. (i) LRMGS demonstrates the high-
est and most consistent CCC with chrF++ across
both languages and systems; (ii) BLEU remains
functional yet inconsistent, with performance vary-



ing by language morphology and model type;
(iii) ROUGE-L and BERTScore serve as unreli-
able correlates of chrF++ under multi-script, low-
resource conditions due to segmentation sensi-
tivity in ROUGE-L and embedding saturation in
BERTScore.

CCC of Metrics vs chrF (per Language)
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Figure 3: Language-level CCC bar plots comparing met-
rics with chrF++. LRMGS shows consistent improve-
ments.

CCC of Metrics vs chrF (per System)

Metric
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Figure 4: System-level CCC across multiple LLMs. LR-
MGS remains stable compared to BLEU, ROUGE-L,
and BERTScore.

Sentence-level scatter plots. Figures 5-8 exam-
ine sentence-level correlations. Figure 5 shows
LRMGS vs. chrF++ with a dense positive trend
and strong linearity, validating its reliability at fine
granularity. Figure 6 shows BLEU vs. chrF++ with
weaker and noisier alignment; BLEU often fails to
capture quality when chrF is moderate-to-low. Fig-
ure 7 shows BERTScore vs. chrF++, where values
saturate near 1.0, leading to compressed scores and
poor discrimination. Finally, Figure 8 compares
chrF++ and LRMGS, highlighting that LRMGS
captures semantic fidelity while maintaining corre-
lation with character-level overlaps. This balance
explains why LRMGS consistently shows higher
concordance across languages and systems.
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LRMGS vs chrF (sentence-level)
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Figure 5: Sentence-level correlation of LRMGS

vs. chrF++. Strong positive alignment validates reli-
ability.

Example Analysis. Table 6 presents six GPT-4.1
QA examples across Assamese, Dogri, Maithili,
and Manipuri, each showing the gold reference (In-
dic and English) alongside the model’s output (In-
dic and English) evaluated using four metrics. In
the first four rows (two Assamese and two Dogri
examples), the model’s outputs closely paraphrase
the references, maintaining alignment in names,
facts, and phrasing. This results in consistently
high chrF++ scores (0.875-0.905), moderate BLEU
values (0.531-0.809), very high BERT similarities
(0.990-0.997, except 0.970/0.981), and strong LR-
MGS scores (0.896-0.930), collectively indicating
strong semantic fidelity and contextual coverage.
The Maithili example illustrates a clear failure case:
the model hallucinates an unrelated religious cere-
mony for “FERA,” causing chrF++ and BLEU to
collapse (0.157/0.012), BERT similarity to drop
(0.826), and LRMGS to approach zero (0.018), re-
flecting both lexical and semantic divergence. The
Manipuri example shows partial comprehension yet
limited grounding and structural coherence; metrics
are mixed (chrF++ 0.304, BLEU 0.268, high BERT
0.949 due to token overlap, and very low LRMGS
0.017), demonstrating that surface similarity can be
misleading. LRMGS, in contrast, effectively penal-
izes unfaithful or non-answering content. Overall,
faithful factual matches yield high scores across
metrics, whereas semantic errors or off-topic re-
sponses are strongly penalized, most notably by
LRMGS.



bleu vs chrF (sentence-level)
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Figure 6: Sentence-level correlation of BLEU
vs. chrF++. BLEU shows weaker correlation and noisy
behavior.

Algorithm 1: Computation of LRMGS
Metric (Symbolic Form)

Input: (Q, R), A, weights

{ABERT, AkC; ANUM, AEF },
temperature 7)
Output: LRMGS € [0, 1]

1. Preprocessing:

Translate using IndicTrans2:
Qens Ren, Aen < TranslndicTransZ(Q7 R, A); split question
sentences as Cey, = {C1,...,Cm }.

2. Semantic Similarity (EN-BERT):

EN-BERT = [zt— 37, max; | cos(r;, a;)|.

3. Question-Aware Nugget Coverage (EN-KC):
Segment R, into factual clauses {c; };-_; and embed
k; = ST_embed(c;), q = ST_embed(Qecr ),
a; = ST_embed(Aen).

ecos(ki a)/n

Compute nugget attention a; = , and compute

22 @i max; | cos(ki, ;)|
2o .

4. Numeric Fidelity (EN-NUM):

Npgr = RegexNums(Rc,), N;z = RegexNums(AEn),

[INrR NN 4]

INr UN 4|

5. Evidence Faithfulness (EN-EF):

a = ST_embed(Ac,, ), ¢ = ST_embed(Cley),
EN-EF = max.cc,,, cos(a,c).

coverage EN-KC =

EN-NUM =

6. Aggregation:

LRMGS =
(EN-BERT)*BERT (EN-KC)*KC (EN-NUM ) *NUM (EN-EF) *EF ,

D Evaluation Algorithm (Symbolic)

The overall procedure for computing the Language-
Robust Metric for Generative QA (LRMGS) is
formalized in Algorithm 1. It integrates four
components: semantic similarity (EN-BERT),
question-aware keypoint extraction and coverage
(EN-KP/EN-KC), numeric consistency (EN-NUM),
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bertscore vs chrF (sentence-level)
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Figure 7: Sentence-level correlation of BERTScore
vs. chrF. Scores saturate near 1.0, limiting discrimina-
tion.

and evidence faithfulness (EN-EF). The algorithm
ensures reproducible evaluation of QA systems un-
der multilingual and low-resource settings.

E Large Language Models and
Experimental Setup

For benchmarking, a diverse suite of large language
models (LLMs) was employed, encompassing both
open-source Indic models and general-purpose mul-
tilingual LLMs. All models were evaluated within a
unified framework designed to ensure reproducibil-
ity and fairness across Indic languages.

Models. The following LLMs were included:

 Mistral-7B (causal decoder-only), Hugging
Face mistralai/Mistral-7B-v0.1.

OpenHathi-7B-Hi-Base, optimized for Hindi
and related Indic languages.

Qwen2.5-7B-Instruct, trained with multilin-
gual instruction-following data.

Yi-1.5-9B-Chat, a decoder-only chat-tuned
model.

GPT-4.1, accessed via API, serving as a high-
capacity commercial baseline.

Gemma-2-9B-it, Google’s instruction-tuned
Gemma model with strict chat templates.

e Airavata-7B, an Indic-focused model from
Al4Bharat using open-instruct style prompt-
ing.
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Figure 8: Comparison of chrF++ vs. LRMGS at the
sentence level. LRMGS maintains correlation while
capturing semantic fidelity.

e Aya-23-8B, multilingual instruction-tuned
model, designed for cross-lingual tasks.

* LLaMA-3.1-8B-Instruct, a chat-aligned
model with strict system—user templates.

* BLOOMZ-7B1-mt, multilingual instruction-
tuned model by BigScience.

Prompting formats. Two prompting styles were
employed across models to ensure consistency and
reproducibility.

General format

Answer the following question in [LAN-
GUAGE] clearly and concisely. Ques-
tion: {question} Answer:

This general instruction-based template was used
for all causal and instruction-tuned models (Mis-
tral, OpenHathi, Qwen, Yi, Gemma, Airavata, Aya,
LLaMA, BLOOMZ). It explicitly enforces the tar-
get LANGUAGE] and promotes concise answers.

GPT-4.1 (chat format)

“role”: “user”, “content”: “Question:
{question}”

GPT-4.1 requires a chat-style JSON format with
explicit user roles. This reflects its native API de-
sign, which allows role-based conversation manage-
ment.
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Table 6: Illustrative GPT-4.1 examples with Question, References (Indic & EN), Outputs (Indic & EN), and scores
(chrF++/BLEU/BERT/LRMGS).

Language: Assamese

Question (EN): Khandesh region was captured by Mughal Emperor Akbar in which year?

Reference (Indic): 505 519 (9] FHIG WAL A S=26eT HReT (S |

Reference (EN): In 1601, the Mughal Emperor Akbar conquered the Khandesh region.

Output (Indic): LT W SL0S 5T (NI FHG WFICS AL ISR |

Output (EN): The Khandesh region was conquered by the Mughal Emperor Akbar in 1601.

Scores: chrF++=0.800 BLEU =0.531 BERT=0.970 LRMGS =0.930

Language: Assamese

Question (EN): Which Anglo-Maratha war resulted in merging the Peshwas’ territories with the Bombay
Presidency?

Reference (Indic): TR Q-5 oS ToT© (AT 9@ ¥ 1891101 C1Ce afae 27 |
Reference (EN): The Third Anglo-Maratha War united the territory of the Peshwas with the Bombay
Presidency.

Output (Indic): TR QTA-NII] To TeT© (IR T 07 1Zifex 0w ufas Cafeet |

Output (EN): The Third Anglo-Maratha War united the Peshwa territory with the Bombay Presidency.
Scores: chrF++ =0.883 BLEU =0.588 BERT =0.981 LRMGS =0.906

Language: Dogri

Question (EN): The words “Satyameva Jayate” in the State Emblem adopted by the Government of India
have been taken from which Upanishad?

Reference (Indic): “Tcada SQ” 2765 5ok SUNG AT od e |

Reference (EN): The words “Satyameva Jayate” are taken from the Mundaka Upanishad.

Output (Indic): “TTHT TG 68 JUSH IUNG I oA 1S 7|

Output (EN): The words “Satyameva Jayate” are taken from the Mundaka Upanishad.

Scores: chrF++=0.905 BLEU=0.597 BERT=0.997 LRMGS =0.905

Language: Dogri

Question (EN): In which caves is the Kailasha temple located?

Reference (Indic): SeleT #feR Tkt 1T 9 f&ra T

Reference (EN): Kailasha Temple is located in the Ellora Caves.

Output (Indic): ST Hie TART THT T fq T

Output (EN): Kailash Temple is located in Ellora Caves.

Scores: chrF++=0.875 BLEU=0.809 BERT=0.990 LRMGS =0.896

Language: Maithili

Question (EN): What is FERA and when was it introduced?

Reference (Indic): 1973 & fadsft 71 fam= srfafaam () fadsit 71, ufasifaass, qa1 & smard s frafa
31 fadeiter & g1 e Hufr & fewgur | Heiferd forg oram o Fafd o & ot Teher At ©.
Reference (EN): The Foreign Exchange Regulation Act of 1973 (FERA) regulates foreign exchange,
securities, currency, and certain payments related to acquisition of immovable property by foreigners.
Output (Indic): T Tehel U1 AFISH I & @ o # faares g7 gizd A1 T[S U Aifed e aH
R-IY g IR SR GH-gH & U Sred Ao | W1 @ g 7 7% 71 <7 Sf 9 99 9 L& 9

Output (EN): Fera is a religious ceremony in Sikhism performed during marriage, where the couple
circles the Guru Granth Sahib four times; it dates back to the time of Guru Nanak Dev Ji.

Scores: chrF++=0.157 BLEU=0.012 BERT=0.826 LRMGS =0.018

Language: Manipuri

Question (EN): When was the Employment Guarantee Scheme (EGS) introduced in Maharashtra?
Reference (Indic): SFNCRETY TETRf QEFF (55.21.T°0.) TOF RER P, SEBIN
7 sCHENRf I

Reference (EN): The Employment Guarantee Scheme (EGS) was introduced on 28 March.

Output (Indic): %.2f.T°M. ERRAMT, 7 TCHERIFMT TRO RATQSES SHRIX

Output (EN): E.G.S.—when did you start the scheme in Maharashtra?

Scores: chrF++=0.304 BLEU =0.268§ BERT=0.949 LRMGS =0.017
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