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Abstract
In this paper, we combine two-step knowledge
distillation, structured pruning, truncation, and
vocabulary trimming for extremely compress-
ing multilingual encoder-only language mod-
els for low-resource languages. Our novel ap-
proach systematically combines existing tech-
niques and takes them to the extreme, reducing
layer depth, feed-forward hidden size, and in-
termediate layer embedding size to create sig-
nificantly smaller monolingual models while re-
taining essential language-specific knowledge.
We achieve compression rates of up to 92%
while maintaining competitive performance,
with average drops of 2–10% for moderate
compression and 8–13% at maximum com-
pression in four downstream tasks, including
sentiment analysis, topic classification, named
entity recognition, and part-of-speech tagging,
across three low-resource languages. Notably,
the performance degradation correlates with the
amount of language-specific data in the teacher
model, with larger datasets resulting in smaller
performance losses. Additionally, we conduct
ablation studies to identify the best practices
for multilingual model compression using these
techniques.

1 Introduction

Small multilingual encoder language models
(LMs), such as mBERT (Devlin et al., 2019), XLM-
R (Conneau et al., 2020), and Glot-500m (Imani
et al., 2023), have demonstrated strong perfor-
mance across a diverse range of low-resource lan-
guages (Hu et al., 2020; Asai et al., 2024), often
outperforming large-scale proprietary models on
various sequential tasks (Adelani et al., 2024; Gur-
gurov et al., 2025). However, even these relatively
compact multilingual models may still be exces-
sively large for use in individual languages due to
redundant capacity and expensive inference (Singh
and Lefever, 2022; Cruz, 2025).

To address this, we propose a novel combina-
tion of model compression approaches for trans-

Figure 1: Overview of our multilingual model compres-
sion methodology. We use (1) knowledge distillation to
reduce layers, (2) structured pruning to eliminate redun-
dant feed-forward network width, and (3) hidden size
reduction and another round of knowledge distillation
from the previous student model. Finally, (4) vocabulary
trimming is applied to retain language-specific tokens.

forming multilingual encoder-only models into
maximally small, efficient, language-specific al-
ternatives while retaining competitive performance.
Our methodology integrates knowledge distillation
(Hinton et al., 2015), structured pruning (Kim and
Hassan, 2020; Hou et al., 2020), weight truncation,
and vocabulary trimming (Abdaoui et al., 2020;
Ushio et al., 2023) to systematically reduce model
size by compressing the depth (number of layers),
feed-forward intermediate width, hidden size, and
tokenizer vocabulary. Our experiments demon-
strate that this pipeline achieves compression rates
of up to 92%, with performance drops of 2-10% for
moderate compression (up to 87%) and 8-13% at
maximum compression on downstream tasks such
as sentiment analysis, topic classification, named
entity recognition, and part-of-speech tagging. No-
tably, for moderate compression levels, the extent
of degradation depends more on the strength of the
teacher model than on the compression itself.
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Beyond compression, we investigate the im-
pact of using multilingual versus monolingual
teacher models, evaluate different initialization
strategies for knowledge distillation, and ana-
lyze additional compression variables. Our find-
ings contribute to the development of highly effi-
cient, environmentally friendly models (Strubell
et al., 2020) for low-resource languages and ex-
plore how strongly models can be compressed.
The code for our experiments is made publicly
available at https://github.com/d-gurgurov/
Multilingual-LM-Disitillation.

2 Methodology

In this section, we present our multilingual model
compression strategy, illustrated in Figure 1. Our
approach combines several existing compression
techniques in a novel way that, to the best of our
knowledge, has not been explored in this combina-
tion within the multilingual context.

2.1 Layer Reduction via Knowledge
Distillation

We reduce the number of transformer layers in the
teacher model by half to obtain an initial compact
student model (Sanh et al., 2020). The student is
initialized with the layers of the teacher and trained
using a combination of Masked Language Model-
ing (MLM) (Devlin et al., 2019) and Mean Squared
Error (MSE) loss for knowledge distillation (Hin-
ton et al., 2015) for 10 epochs. Both losses are
weighted equally (α=0.5, though other values were
explored; see Appendix 8). The teacher is a multi-
lingual encoder fine-tuned on the target language
(see Section 4).

2.2 Width Reduction via Structured Pruning

We apply structured pruning (Kim and Hassan,
2020) to reduce the intermediate size of the feed-
forward layers from 3072 to 2048. Neuron impor-
tance is estimated using first-order gradient infor-
mation accumulated from forward and backward
passes over MLM validation data. At each layer,
neurons are ranked by their absolute gradient val-
ues, and the least important ones are removed based
on a target pruning ratio. The remaining neurons
are then reordered to preserve model functionality.
For consistency, the same pruning ratio is applied
across all layers.

2.3 Hidden Size Compression with Secondary
Knowledge Distillation

We compress the hidden embedding dimension
from 768 to either 312, 456, or 564 via truncation,
retaining the first k dimensions.1 A second round
of knowledge distillation is then performed, using
the width-reduced model from the previous step as
the new teacher, similar to Wang et al. (2023), with
training for 10 epochs.

2.4 Vocabulary Reduction

We reduce the vocabulary size by selecting the top
40,000 most frequent tokens from a target-language
corpus, along with their corresponding embeddings
(Ushio et al., 2023). This ensures that the resulting
model retains only language-specific tokens, which
significantly reduces the overall model size.

3 Experiments

Below, we describe the datasets, languages, tasks,
and baseline systems used in our evaluation.

3.1 Knowledge Distillation Data

We use GlotCC (Kargaran et al., 2025), a large-
scale multilingual corpus derived mainly from
CommonCrawl (Wenzek et al., 2020), as the pri-
mary dataset for both stages of knowledge distilla-
tion. Data distributions for the selected languages
are reported in Appendix F. We use GlotCC for
training, and the FLORES-200 development set
(Team et al., 2022) for validation during training.

3.2 Languages and Tasks

We evaluate our models on four tasks: Topic Clas-
sification (TC), Sentiment Analysis (SA), Named
Entity Recognition (NER), and Part-of-Speech Tag-
ging (POS), covering three low-resource languages–
Maltese, Slovak, and Swahili (Joshi et al., 2020).
For TC, we use the 7-class SIB-200 dataset (Ade-
lani et al., 2024), and for SA, we compile binary
sentiment datasets from multiple sources (Dingli
and Sant, 2016; Cortis and Davis, 2019; Pecar et al.,
2019; Muhammad et al., 2023a,b). For NER, we
use WikiANN (Pan et al., 2017), and for POS, we
use Universal Dependencies v2.15 (de Marneffe
et al., 2021) and MasakhaPOS (Dione et al., 2023).
For all tasks, we train Sequential Bottleneck task
adapters (Pfeiffer et al., 2020) with fixed hyperpa-
rameters (see Appendix H). Performance is mea-

1The hidden size must be divisible by the number of atten-
tion heads.
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sured using macro-averaged F1 (Sokolova et al.,
2006) for TC and SA, and "seqeval" F1 (Nakayama,
2018) for NER and POS.

3.3 Models and Baselines

We compress two encoder multilingual models–
mBERT (Devlin et al., 2019) and XLM-R-base
(Conneau et al., 2020)–adapted to target languages
through fine-tuning on language-specific data, and
compare the reduced models to two baselines: (1)
the original, non-adapted models, and (2) language-
adapted versions. In both cases, we train an iden-
tical task adapter using the same task-specific
datasets as for the compressed models.

4 Findings

Our key findings are outlined below.

4.1 Distillation

Distilling knowledge from a multilingual teacher
into a monolingual student model is less effective
than using a target-language adapted teacher, as ev-
idenced by the differences in validation accuracies
shown in Figure 2. This discrepancy possibly stems
from the multilingual teacher’s broad cross-lingual
representations, which are not directly aligned with
the requirements of a monolingual student. In con-
trast, monolingual teachers provide more targeted,
language-specific representations, resulting in bet-
ter student performance.

Distillation loss: We compare KL divergence
and MSE as distillation loss functions, and observe
that MSE leads to better and faster convergence
(Appendix A), in line with prior work (Kim et al.,
2021; Nityasya et al., 2022).

4.2 Weight Initialization

Weight initialization plays a crucial role in train-
ing the student model, with knowledge distilla-
tion providing only a marginal additional perfor-
mance improvement (Figure 2). This partly aligns
with the findings of Wibowo et al. (2024), who
explored distilling multilingual abilities for multi-
lingual tasks, whereas our focus is on monolingual
distillation. Training a student-sized model initial-
ized with teacher weights, but without knowledge
distillation, results in a slight performance drop
compared to a fully distilled model.

Initialization Strategies: Among various ini-
tialization strategies, initializing the student with
the last k layers for mBERT and every other layer

(a) Maltese (mBERT) (b) Maltese (XLM-R)

(c) Slovak (mBERT) (d) Slovak (XLM-R)

(e) Swahili (mBERT) (f) Swahili (XLM-R)

Figure 2: First-step KD validation accuracies for
mBERT and XLM-R with models initialized using the
last k layers. mBERT- and XLM-R-mt, sk, sw refer
to models adapted to the target language; distilled de-
notes models trained with distillation loss, while student
refers to identically trained models without distillation
loss. The best accuracy is in all cases achieved when
distilling from a target-language adapted model.

(stride) for XLM-R consistently outperforms alter-
natives such as using the first k layers and com-
bining first and last layers (Appendix B). Random
initialization performs significantly worse, empha-
sizing the importance of weight reuse (Sun et al.,
2019; Singh and Lefever, 2022).

4.3 Pruning and Truncation

Distilled models can be compressed further using
structured pruning, hidden size reduction, and vo-
cabulary trimming, while maintaining competitive
performance.

Intermediate size reduction: Reducing the in-
termediate size of feed-forward layers from 3072
to 2048 via structured pruning results in negligible
performance loss (Table 1). However, more aggres-
sive reductions degrade quality significantly, mak-
ing 2048 a practical lower bound. We do not prune
attention heads, as removing even a minimal num-
ber (e.g., three) causes severe degradation (>50%
performance drop in preliminary experiments).

Hidden size reduction: We reduce the hidden
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Compression Stage Params Size Task Performance (F1) Avg
Maltese Slovak Swahili

TC SA NER POS TC SA NER POS TC SA NER POS

Baselines
Multilingual 279M 279M 68.1 56.0 54.3 89.9 88.1 95.6 91.1 97.3 78.4 81.5 84.6 89.4 81.2
Language-adapted 279M 279M 85.0 76.2 69.2 95.4 86.2 94.8 91.0 97.1 87.5 84.1 82.7 89.2 86.5

Compression Pipeline (minimal degradation)
Layer reduction 236M (-15%) 236M 84.0 77.2 63.5 94.3 86.3 92.9 90.1 96.3 82.9 81.3 82.9 89.2 85.1
+ FFN pruning 226M (-20%) 226M 84.7 78.6 60.1 94.2 86.1 93.4 90.0 96.1 82.4 82.7 83.6 89.5 85.1
+ Hidden 564 163M (-40%) 163M 83.4 74.9 53.0 93.7 84.9 92.7 89.1 96.8 85.8 81.0 80.8 89.4 83.8
+ Vocabulary 45M (-85%) 45M 84.1 72.4 60.9 93.0 85.3 92.9 89.3 96.4 85.7 80.9 82.0 89.1 84.3

Further compression (moderate degradation)
+ Hidden 456 131M (-53%) 131M 78.5 69.9 62.5 92.7 86.0 93.0 88.3 96.3 83.1 79.3 80.7 88.9 83.3
+ Vocabulary 35M (-87%) 35M 78.5 70.7 63.3 92.5 86.1 92.9 88.4 96.3 82.5 79.0 80.2 89.0 83.3

Maximum compression (higher degradation)
+ Hidden 312 89M (-68%) 89M 66.9 70.1 35.7 87.6 84.0 90.9 88.0 95.5 76.4 80.1 80.7 88.3 78.7
+ Vocabulary 23M (-92%) 23M 67.2 71.4 37.1 87.5 84.0 90.5 88.2 95.6 78.0 80.5 79.2 88.0 78.9

Table 1: Progressive compression of XLM-R-base. Stages are grouped by degradation level. Highlighted rows
indicate the baseline (gray) and optimal compression point (green, 85% reduction with 2.5% drop). Maximum
compression rows (red) show higher degradation rates (7.6% drop). All F1 scores are averaged over 3 independent
runs with different random seeds mBERT in Appendix J.

embedding size to 564, 456, and 312, truncating it
to the first k dimensions. Training is performed un-
der the supervision of the student from the previous
stage. We find that using the original teacher leads
to worse results, possibly due to the bigger knowl-
edge gap (Wang et al., 2023). We also tested SVD-
based dimensionality reduction but found trunca-
tion to be more effective (see Appendix C).

Vocabulary trimming: Restricting the vocabu-
lary to the top 40K most frequent tokens for each
target language introduces no measurable perfor-
mance loss compared to the previous step, while
further improving efficiency. Reducing below 40K
works for some languages but does not generalize
well across all cases (Appendix E), consistent with
Ushio et al. (2023).

4.4 Downstream Performance
Our results show that model compression through
knowledge distillation, structured pruning, and vo-
cabulary reduction leads to modest performance
drops (Tables 1 and 6). Below, we report results for
XLM-R; results for mBERT follow similar patterns
and are presented in Appendix J.

Language-specific resilience: The extent of
degradation varies by language and correlates with
teacher model quality. At maximum compression
(92% parameter reduction), Slovak (1032MB fine-
tuning (FT) data) experiences only a 2.9% perfor-
mance drop, Swahili (332MB) shows a 5.2% drop,
while Maltese (188MB) degrades by 19.2%. This
pattern demonstrates that stronger teacher models–
trained on larger datasets–enable more robust com-

pression outcomes.
Task-specific patterns: Different tasks exhibit

varying compression sensitivities. POS tagging
shows the highest resilience across all languages,
with performance drops of only 4-13% at 92% com-
pression. Conversely, NER demonstrates steeper
degradation, particularly for Maltese (69.2 → 37.1
F1). This severe drop is likely compounded by
the extremely small Maltese NER training set (100
examples vs. 20,000 for Slovak), indicating that
sequence labeling tasks are especially vulnerable to
compression in low-resource settings. In contrast,
sentence-level classification tasks such as SA and
TC remain relatively stable under heavy compres-
sion, with performance decreases below 10% even
at 85–90% size reduction.

Optimal compression trade-offs: The 85%
compression level (hidden size 564 with 40k vocab-
ulary) offers the best balance for most scenarios,
with only a 2.5% average performance drop (84.3
vs 86.5 avg F1). For high-resource languages like
Slovak, even 87% compression incurs only a 3.8%
drop. Notably, vocabulary trimming often yields
slight improvements (e.g., Maltese TC: 84.11 vs
83.43 F1), suggesting it reduces vocabulary noise
while compensating for hidden size reduction.

Staged compression effects: Layer reduction
(15%) and intermediate size pruning (20%) induce
minimal degradation (<2% drop), with the primary
performance impact occurring during hidden size
reduction. Performance degrades gradually up to
85% compression, but deteriorates more rapidly
beyond this threshold (4-6% drop per additional
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stage).
Adapter capacity: We experiment with varying

the reduction factor r to adjust task adapter capacity
(Appendix I, Figure 10). While r = 16 suffices
for larger models, smaller models (hidden sizes
564, 456, 312) benefit from lower r values (r =
2), yielding modest performance gains. Results in
Tables 1 and 6 use r = 2 for these compressed
models.

5 Related Work

In knowledge distillation, a smaller student model
is trained to replicate the behavior of a larger
teacher model (Hinton et al., 2015), often combin-
ing MLM loss with teacher supervision (Sun et al.,
2019; Sanh et al., 2020). DistilBERT (Sanh et al.,
2020) reduces model size by selecting every other
layer from BERT (Devlin et al., 2019) and distills
on large corpora using dynamic masking. Patient
distillation further improves results by matching
intermediate representations (Sun et al., 2019).

Recent work has explored distilling multilin-
gual models into compact monolingual models.
Singh and Lefever (2022) train student models
for languages such as Swahili and Slovenian us-
ing a composite loss (distillation, cosine, MLM),
and show that distilled models often outperform
mBERT while using a reduced vocabulary (Ab-
daoui et al., 2020). Ansell et al. (2023) introduce
a two-phase bilingual distillation pipeline, com-
bining general-purpose and task-specific guidance
with sparse fine-tuning, outperforming multilingual
baselines.

Other studies emphasize the role of initialization.
Wibowo et al. (2024) show that copying teacher
weights is more effective than random initialization
in the context of multilingual distillation, and that
MSE outperforms KL divergence for distillation.
Cruz (2025) similarly distill mBERT for Tagalog
and highlight the nuanced impact of embedding
initialization.

6 Conclusion

We present an effective compression pipeline for
multilingual encoder models designed for low-
resource languages. By integrating staged knowl-
edge distillation, structured pruning, hidden size
truncation, and vocabulary reduction, we compress
models by up to 92% while maintaining compet-
itive performance, typically within 2–10% of the
original for moderate compression and 8–13% at

maximum compression, on four downstream tasks.

Limitations

Our evaluation is limited to three low-resource lan-
guages and four downstream tasks, which may af-
fect generalizability to other languages and task
types. The compression pipeline requires target-
language data for teacher adaptation, making it less
suitable for truly low-resource languages with mini-
mal corpora. We focus exclusively on encoder-only
models (mBERT and XLM-R), and our structured
pruning only targets feed-forward layers, leaving
attention head pruning unexplored due to perfor-
mance degradation.
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A KL Divergence vs MSE for Knowledge
Distillation

(a) Maltese (b) Slovak

(c) Swahili

Figure 3: MSE vs. KD validation accuracy for mBERT
with the models initialized using the last k layers.

(a) Maltese (b) Slovak

(c) Swahili

Figure 4: MSE vs. KD validation accuracy for XLM-R
with the models initialized using the last k layers.

B Initialization Strategies for Knowledge
Distillation

(a) Maltese (b) Slovak

(c) Swahili

Figure 5: Validation accuracy for various initialization
strategies for mBERT.

(a) Maltese (b) Slovak

(c) Swahili

Figure 6: Validation accuracy for various initialization
strategies for XLM-R.
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C SVD vs. Truncation for Hidden Size
Reduction

Figure 7: Validation accuracy comparing SVD vs. first-
k truncation for hidden size reduction to 312. “Small
teacher” refers to the layer-compressed (6-layer) model;
“Big teacher” is the original 12-layer language-adapted
model. Truncation consistently outperforms SVD re-
gardless of teacher size.

D Alpha Parameter in Knowledge
Distillation

(a) mBERT (b) XLM-R

Figure 8: Validation accuracy curves showing the im-
pact of the alpha parameter on knowledge distillation
performance for mBERT and XLM-R on Maltese with
the last k and stride initialization strategies for the two
models respectively.

We find that the α parameter does not have a
significant impact on mBERT during pre-training,
with α = 0.5 yielding consistently good results.
For XLM-R, higher values of α (i.e., 0.6 and 0.8),
which reduce the strength of the distillation effect,
show slightly improved validation accuracy trends
compared to lower values. In our experiments, we
adopt the default setting of α = 0.5, leaving a
more comprehensive exploration of optimal values
across different languages, dataset sizes, and model
architectures to future work.

E Vocabulary Reduction Analysis

(a) Maltese (b) Slovak

(c) Swahili

Figure 9: Impact of vocabulary reduction on TC perfor-
mance for mBERT models reduced to a hidden size of
312.

F Knowledge Distillation Data Sizes

Language KD Data Size (MB) FT Data Size (MB)

Maltese (mt) 238 188
Slovak (sk) 535 1032
Swahili (sw) 402 332

Table 2: Dataset sizes for knowledge distillation (KD)
and monolingual fine-tuning (FT) for each language.
The language-adapted models are sourced from Gur-
gurov et al. (2025), and the FT data sizes are as reported
by them.
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G Downstream Task Data Sizes

Language Train Validation Test

Text Classification (TC)

Maltese (mt) 701 99 204
Slovak (sk) 701 99 204
Swahili (sw) 701 99 204

Sentiment Analysis (SA)

Maltese (mt) 595 85 171
Slovak (sk) 3560 522 1042
Swahili (sw) 738 185 304

Named Entity Recognition (NER)

Maltese (mt) 100 100 100
Slovak (sk) 20000 10000 10000
Swahili (sw) 1000 1000 1000

Part of Speech Tagging (POS)

Maltese (mt) 1123 433 518
Slovak (sk) 8483 1060 1061
Swahili (sw) 675 134 539

Table 3: Fine-tuning data sizes for each task (Text Clas-
sification, Sentiment Analysis, Named Entity Recogni-
tion, Part of Speech Tagging) showing train, validation,
and test splits across Maltese, Slovak, and Swahili.

H Downstream Task Hyperparameters

Hyperparameter TC SA NER POS

Learning rate 1e-4 1e-4 3e-4 3e-4
Batch size 16 16 64 64
Epochs 20 20 100 100
Maximum length 256 256 512 512

Table 4: Hyperparameters for task adapter fine-tuning
across Text Classification (TC), Sentiment Analysis
(SA), and Named Entity Recognition (NER) tasks.

I Adapter Trainable Parameter Counts

To examine whether the constrained task adapter
capacity, as shown in Table 5, impacts downstream
performance in compressed models, we vary the
reduction factor r, thereby increasing adapter size
(see Figure 10). We train task adapters on top
of both full adapted models and hidden-size re-
duced models (564, 456, and 312). For the smallest
models (456 and 312), we observe that increasing
adapter capacity (r=2) leads to improved perfor-
mance. However, this increase is unnecessary for
larger mBERT variants (full and 564), while still
beneficial for all small XLM-R models. These
results suggest that for smaller models, increas-
ing adapter capacity can yield modest performance

Model Configuration Task Adapter Size

mBERT XLM-R

Base 894,528 894,528
Base-[mt, sk, sw] 894,528 894,528
KD layer red. ×2 447,264 447,264
inter. layer red. → 2048 447,264 447,264

* KD hid. size red. → 564 240,474 240,474
vocab. red. → 40k 240,474 240,474

* KD hid. size red. → 456 156,120 156,120
vocab. red. → 40k 156,120 156,120

* KD hid. size red. → 312 73,122 73,122
vocab. red. → 40k 73,122 73,122

Table 5: Task adapter parameter sizes across differ-
ent model compression configurations for mBERT and
XLM-R with the default reduction factor of 16. When
the hidden size is reduced, adapter input/output dimen-
sions decrease proportionally. When the layer count is
reduced, fewer adapters are added to the model. All
other parameters use the default settings for the Sequen-
tial Bottleneck adapter as implemented in AdapterHub.

gains. Tables 1 and 6 report results using the de-
fault reduction rate of 16.
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(a) mBERT

(b) XLM-R

Figure 10: Performance of models on TC for Maltese
with varying adapter capacity for mBERT and XLM-R.
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J Downstream Results for mBERT

Compression Stage Params Size Task Performance (F1) Avg
Maltese Slovak Swahili

TC SA NER POS TC SA NER POS TC SA NER POS

Baselines
Multilingual 179M 179M 68.7 65.8 60.0 89.0 85.3 92.0 91.4 97.0 69.6 64.6 83.8 87.6 79.6
Language-adapted 179M 179M 84.9 73.6 65.0 94.0 86.3 91.9 90.4 96.9 86.7 81.3 82.5 88.7 85.2

Compression Pipeline (minimal degradation)
Layer reduction 135M (-25%) 135M 80.1 73.9 59.0 93.2 85.4 90.4 87.4 96.9 82.8 77.3 80.7 88.4 83.0
+ FFN pruning 126M (-30%) 126M 79.0 74.7 58.1 92.7 85.3 90.2 88.5 96.7 83.2 75.9 79.8 88.5 82.7
+ Hidden 564 90M (-50%) 90M 79.5 70.2 61.1 92.6 83.4 90.5 88.1 96.3 83.5 76.1 79.7 88.4 82.5
+ Vocabulary 45M (-75%) 45M 80.2 70.8 61.1 92.5 83.5 90.7 87.7 96.3 84.3 76.0 80.3 88.6 82.7

Further compression (moderate degradation)
+ Hidden 456 71M (-60%) 71M 80.2 70.1 57.2 92.1 83.9 90.4 87.5 95.9 85.1 78.6 80.3 88.3 82.5
+ Vocabulary 35M (-80%) 35M 81.0 69.7 55.9 92.0 84.2 90.4 87.4 96.0 83.0 78.5 79.8 88.4 82.2

Maximum compression (higher degradation)
+ Hidden 312 48M (-73%) 48M 73.1 72.0 39.5 90.3 80.9 90.4 86.5 95.5 81.8 76.5 79.6 87.7 79.5
+ Vocabulary 23M (-87%) 23M 73.0 72.1 40.4 90.2 81.9 90.1 86.2 95.3 81.7 76.0 77.1 87.7 79.3

Table 6: Progressive compression of mBERT. Stages are grouped by degradation level. Highlighted rows indicate the
baseline (gray) and optimal compression point (green, 75% reduction with 2.5% drop). Maximum compression rows
(red) show significant degradation (5.9% drop). TC=Topic Classification, SA=Sentiment Analysis, NER=Named
Entity Recognition, POS=Part-of-Speech Tagging. F1 scores averaged over 3 runs.
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