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Abstract

Continual learning (CL) presents a significant
challenge for large pre-trained models, pri-
marily due to catastrophic forgetting and the
high computational cost of sequential knowl-
edge updating. Parameter-Efficient Transfer
Learning (PETL) methods offer reduced com-
putational burdens but often struggle to effec-
tively mitigate forgetting. This paper intro-
duces Stacked Low-Rank Adaptation (SLoRA),
a novel parameter-efficient approach that lever-
ages the additive composition of task-specific,
frozen low-rank adapters to enable modu-
lar continual learning with inherent support
for explicit knowledge modification. SLoRA
was evaluated on vision benchmarks, BERT-
base, and the 1-billion-parameter Llama-3.2-
1B model. Experiments demonstrated that
SLoRA almost completely eliminated catas-
trophic forgetting, achieving a final average
accuracy of 92.75% on Llama-3.2-1B while
perfectly preserving prior task performance.
Furthermore, SLoRA is computationally effi-
cient, enabling up to a 15x training speed-up
over full fine-tuning with 99.7% fewer trainable
parameters per update. SLoRA offers a com-
pelling balance of forgetting mitigation, param-
eter efficiency, and modularity, representing a
promising direction for developing adaptable
and efficient lifelong knowledgeable founda-
tion models.

1 Introduction

The capability to learn from a stream of tasks, incre-
mentally acquiring new knowledge, without forget-
ting prior knowledge is a central goal of Continual
Learning (CL), a necessity for NLP systems de-
ployed in dynamic environments. However, catas-
trophic forgetting, whereby performance on earlier
tasks (representing previously acquired knowledge)
is degraded upon learning new ones (acquiring new
knowledge), remains a fundamental obstacle (Zeng
et al., 2024).

The challenge is amplified by large pretrained
models (LPMs) like BERT and Llama, which de-
mand substantial resources for retraining on new
tasks. This full fine-tuning approach is often com-
putationally prohibitive and environmentally costly
(Patterson et al., 2021). Moreover, it leads to catas-
trophic forgetting, where performance on earlier
tasks is severely degraded upon learning new ones,
effectively erasing previously acquired knowledge
(Zeng et al., 2024). Parameter-efficient transfer
learning (PEFT) approaches address the computa-
tional cost by training only a small number of ad-
ditional parameters per task, making them suitable
for CL settings. Techniques including Adapters
(Houlsby et al., 2019), Prompt Tuning (Lester et al.,
2021), and LoRA (Hu et al., 2022) have shown
promise. However, as noted by Coleman et al.
(2025), preventing parameter interference during
sequential updates remains an open challenge; a
naive combination of PEFT and CL often fails as
modules still share parameter spaces, leading to
interference.

Interference, leading to the corruption of pre-
viously acquired knowledge, hampers traditional
PEFT techniques when modules are shared across
tasks (He et al., 2021; Wang et al., 2023). While
assigning isolated modules to each task prevents
forgetting, this strategy leads to unbounded growth
in parameters for storing this modular knowledge
and lacks a mechanism for explicit knowledge un-
learning. Prior works investigating routing (Zhang
et al., 2023), mixture-of-experts (Feng et al., 2024),
or orthogonal subspace projection (Wang et al.,
2023) to manage knowledge interactions often in-
troduce additional complexity or depend on known
task identity at inference for knowledge retrieval.

Recent works like InfLoRA (Liang and Li, 2024)
and SD-LoRA (Wu et al., 2025) also address cumu-
lative LoRA usage, but with different goals. These
methods target the task-agnostic Class-Incremental
Learning (CIL) scenario, requiring them to merge

36



or blend knowledge into a single model, which
forfeits the ability to unlearn. InfLoRA perma-
nently merges adapters, while SD-LoRA retrains
all adapter "magnitudes" at each step, breaking pa-
rameter isolation.

To address these challenges, we introduce
Stacked Low-Rank Adaptation (SLoRA), a
novel parameter-efficient approach for the Task-
Incremental Learning (TIL) setting. SLoRA pro-
vides strong knowledge retention with inherent
modularity by additively composing strictly frozen,
task-specific low-rank adapters. This architectural
isolation is simpler than algorithmic orthogonality
and, crucially, enables explicit knowledge modifi-
cation (i.e., unlearning) by deactivating adapters,
a feature not possible with merging or blending
approaches. Our evaluations on vision and NLP
benchmarks demonstrate SLoRA’s effectiveness in
mitigating catastrophic knowledge loss while main-
taining a competitive parameter footprint. This
work lays a strong foundation for adaptable life-
long knowledgeable foundation models.

2 Related Work

Continual Learning (CL) addresses the challenge
of learning from a sequence of tasks, incrementally
updating models with new knowledge, without for-
getting previous knowledge. A fundamental obsta-
cle in CL is catastrophic forgetting (loss of prior
knowledge), where adaptation to new tasks (acqui-
sition of new knowledge) degrades performance
on earlier ones (Zeng et al., 2024). In NLP, large
pre-trained Transformer models require efficient
adaptation to new tasks; updating all parameters
per task is prohibitively expensive when aiming for
efficient knowledge updates. Parameter-Efficient
Transfer Learning (PETL) methods tackle this by
fine-tuning only a small subset of parameters, yield-
ing benefits in compute, storage, and modularity
for injecting new knowledge (Houlsby et al., 2019;
He et al., 2021).

Adapter Modules insert small bottleneck layers
into each Transformer block, training only these
new parameters. The original Adapter approach
(Houlsby et al., 2019) demonstrated near full-fine-
tuning performance on GLUE while adding only
~3.6% parameters per task. However, naively
adding new adapters per task leads to linear growth
in parameters for storing task-specific knowledge
and can increase inference latency.

LoRA (Low-Rank Adaptation) freezes the origi-

nal weights and injects trainable low-rank decom-
position matrices into each layer, reducing trainable
parameters by orders of magnitude and incurring
no extra inference cost once merged (Hu et al.,
2022). Its performance is sensitive to the chosen
rank but matches full fine-tuning quality in many
settings for single-task knowledge adaptation.

Prompt-Based Methods, including Prefix-
Tuning (Li and Liang, 2021) and Prompt-Tuning
(Lester et al., 2021), optimize continuous prefix
vectors or soft prompt tokens prepended to inputs,
tuning as little as 0.1% of parameters. These meth-
ods can be very parameter-efficient for accessing
specific knowledge representations but need care-
ful prompt design and may vary in effectiveness
across tasks.

While PETL methods excel in single-task adap-
tation (knowledge injection), applying them to CL
(continuous knowledge updating) brings new chal-
lenges. As our results for LoRA-Cont (Section 4.4)
confirm, a naive sequential application of LoRA
fails, suffering severe catastrophic forgetting. This
highlights that a dedicated architecture is required.
A recent survey specifically on Parameter-Efficient
Continual Fine-Tuning highlights the open ques-
tions at the intersection of CL and PETL (Coleman
et al., 2025).

Several works extend LoRA for CL by enforcing
desirable properties in adapter parameters to man-
age knowledge interactions: O-LoRA encourages
orthogonality among low-rank adapters for differ-
ent tasks to reduce interference, effectively elimi-
nating forgetting (preserving knowledge) with only
marginal extra parameters (Wang et al., 2023). C-
LoRA introduces a learnable routing matrix that dy-
namically allocates subspaces for previous and new
tasks, achieving scalable continual adaptation for
managing knowledge subspaces without maintaing
separate adapters per task (Zhang et al., 2025).

Modular Adapter Approaches allocate task-
specific parameters for encapsulating knowledge
and freeze them thereafter. While this isolates
task knowledge and prevents forgetting (knowledge
loss), it leads to parameter counts growing linearly
with the number of tasks. AdapterFusion com-
bines multiple frozen adapters representing task
knowledge by learning a fusion layer that integrates
their outputs non-destructively, leveraging cross-
task knowledge transfer at the cost of extra compo-
sition parameters (Pfeiffer et al., 2020).

Beyond single-method strategies, a growing
body of work explores compositional PEFT mod-
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ules for CL and multi-task learning by combin-
ing knowledge adaptations: ReLoRA periodically
merges low-rank updates back into the model and
reinitializes adapters during training, effectively
increasing representational capacity and improv-
ing convergence speed (Lialin et al., 2023). Lo-
raHub dynamically composes multiple pre-trained
LoRA modules for few-shot generalization on un-
seen tasks, requiring no additional parameters or
gradients at inference for knowledge retrieval and
composition (Huang et al., 2023). Task Arith-
metic treats each adapter update as a vector in
weight space and performs linear operations (addi-
tion, subtraction) to combine task knowledge, en-
abling straightforward module composition (Zhang
et al., 2023). Mixture-of-LoRAs (MoA) trains
multiple domain experts via LoRA and uses an ex-
plicit routing mechanism to select and combine ex-
perts per input, blending Mixture-of-Experts princi-
ples with LoRA’s efficiency for expert-based knowl-
edge retrieval (Feng et al., 2024).

Distinctions from LoRA-based CIL Methods.
Our work is related to other LoRA-based CL meth-
ods like InfLoRA (Liang and Li, 2024) and SD-
LoRA (Wu et al., 2025), but SLoRA is fundamen-
tally different in its problem setting, mechanism,
and capabilities.

• Problem Setting: InfLoRA and SD-LoRA
are designed for Class-Incremental Learning
(CIL), which requires a single model to oper-
ate without task identity. SLoRA is designed
for the Task-Incremental Learning (TIL) set-
ting, where task identity is known at inference.

• Mechanism: To achieve its task-agnostic
goal, InfLoRA uses permanent merging (los-
ing modularity) and SD-LoRA uses collabo-
rative blending (retraining all adapter mag-
nitudes, breaking isolation). SLoRA uses
strict architectural isolation by freezing all
past adapters.

• Capability: SLoRA’s TIL design and isola-
tion mechanism provide a unique capability
the CIL methods cannot: explicit knowledge
unlearning. A task can be removed simply by
deactivating its adapter, which is impossible
in models that merge or blend parameters.

Despite these advancements, key trade-offs re-
main between stability (retaining acquired knowl-
edge), plasticity (acquiring new knowledge) and pa-
rameter growth. Our proposed Stacked Low-Rank

Adaptation (SLoRA) addresses these by stacking
individually trained and frozen low-rank adapters
additively, ensuring clear parameter isolation (for
knowledge encapsulation), straightforward compo-
sition (including unlearning), and inherently modu-
lar knowledge management.

3 Methodology

Continual Learning (CL) aims to train models
sequentially on new tasks, incrementally updat-
ing their knowledge, without forgetting previous
knowledge. A key challenge is catastrophic for-
getting (knowledge loss) in large pre-trained mod-
els, necessitating parameter-efficient adaptation for
knowledge acquisition. Stacked Low-Rank Adap-
tation (SLoRA) is proposed as a novel method
for parameter-efficient CL that mitigates forgetting
through additive composition of task-specific low-
rank adapters (representing task-specific knowl-
edge adaptations).

3.1 SLoRA Method
SLoRA builds on Low-Rank Adaptation (LoRA),
which adapts pre-trained weights W0 by adding
a low-rank update ∆W = α

rBA, where A ∈
Rr×din , B ∈ Rdout×r, r ≪ min(din, dout). LoRA
trains only A and B, keeping W0 frozen (Hu et al.,
2022). SLoRA extends this by applying additively
multiple low-rank task-specific updates. After train-
ing in T tasks (0-indexed), the effective weight
W (T−1) is the sum of W0, a base update ∆Wbase,
and stack updates (T − 1) ∆Wstack,t:

W (T−1) = W0 +∆Wbase +

T−1∑

t=1

∆Wstack,t

where ∆Wbase = αbase
rbase

BbaseAbase and
∆Wstack,t = αstack

rstack
Bstack,tAstack,t for task

t. This parallel and additive composition is
depicted in Figure 1.

The training is sequential. For the base task
(Task 0), a base LoRA adapter (Abase, Bbase) is
attached and trained with W0 frozen. For each
subsequent task t > 0 (representing the acqui-
sition of new knowledge), a new stack adapter
(Astack,t, Bstack,t) is initialized and added. Cru-
cially, W0, the base adapter, and all previously
trained stack adapters are held frozen. Only the
newly added stack adapter and the task classifier
are trained on the data of task t. This strict pa-
rameter isolation prevents interference and protects
previously acquired knowledge.
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Figure 1: SLoRA architecture: Additive composition of task-specific LoRA adapters in parallel with the base weight.
The base model (W0) and all previously trained adapters (∆Wbase, ∆Wstack,1) are frozen. Only the new adapter
for the current task (∆Wstack,2) is trained. Inference on a task k is performed by summing adapters up to k.

At inference time, to evaluate performance on
Task k (0-indexed), the effective weight matrix
W (k) is formed by summing W0, the base adapter,
and all stack adapters up to task k: W (k) =
W0 + ∆Wbase +

∑k
t=1∆Wstack,t. This "selec-

tive activation" uses only task-relevant knowledge
adaptations. A direct benefit of this modular and
additive structure is explicit knowledge modifica-
tion: Task k is "unlearned" by excluding its stack
adapter from the summation during inference (e.g.,
by adjusting a task index variable), requiring no
additional training.

3.2 Experimental Setup
Experiments were conducted on Permuted-MNIST,
Split-CIFAR100, and sequential NLP tasks using
BERT-base-uncased, across 3 random seeds. The
baselines included full fine-tuning (FT), elastic
weight consolidation (EWC) (Kirkpatrick et al.,
2017), standard continual LoRA (LoRA-Cont), and
independent LoRA adapters per task (LoRA-Ind).
The implementation used PyTorch and Avalanche
(Lomonaco et al., 2021).

For Permuted-MNIST (5 tasks), an MLP with
two linear layers was used as the base model,
adapted with SLoRA. Training used 2 epochs/task
and batch size 64. LoRA (Cont and Ind) used rank
8, alpha 16. SLoRA used base rank 8, alpha 16,
stack rank 4, alpha 16. The learning rates were
1e-3 for all methods.

For Split-CIFAR100 (10 tasks), a SimpleCNN
with frozen convolutional layers and a two-linear-
layer classifier was used. The classifier linear layers
were adapted. Training used 50 epochs/task, batch
size 64. LoRA (Cont/Ind) used rank 8, alpha 16.
SLoRA used base rank 16, alpha 32, stack rank 8,
alpha 16. LRs were 1e-3 for all methods. EWC

used lambda 1000.
For Sequential NLP Tasks (4 tasks), a frozen

BERT-base-uncased model was adapted in its lin-
ear layers. Tasks were SST-2, TREC, Yelp Polarity,
and Amazon Polarity, using a 10000-example sub-
set per task. Training used 15 epochs/task, batch
size 16, max length 128. LoRA (Cont) used rank 8.
SLoRA used base rank 8, stack rank 4. LRs were
1e-3 for all methods.

Evaluation after training each task involved mea-
suring accuracy on all tasks seen so far. SLoRA
was evaluated using selective activation based on
the task index. LoRA-Ind performance was mea-
sured by loading the saved task-specific adapter
parameters.

To assess scalability on modern LLMs,
we conducted further experiments on the
meta-llama/Llama-3.2-1B model. We used the
same sequence of four NLP tasks (SST-2, TREC,
Yelp Polarity, Amazon Polarity) with 10,000
examples per task. SLoRA was applied to the
linear layers of the attention and feed-forward
networks. The base adapter was configured with
a rank (rbase) of 8 and alpha of 16. Subsequent
task-specific stack adapters used a rank (rstack)
of 4 and alpha of 8. The model was trained for
one epoch per task with a batch size of 4 using the
AdamW optimizer.

4 Results

This section presents the empirical evaluation of
SLoRA against Full Fine-Tuning (FT), Elastic
Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), standard continual LoRA (LoRA-Cont), and
task-independent LoRA (LoRA-Ind). We first eval-
uate on standard vision benchmarks (Permuted-
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MNIST, Split-CIFAR100) for robust comparison
against prior CL literature. We then validate
SLoRA’s scalability and efficiency on large-scale,
real-world NLP tasks using BERT-base and the
1-billion-parameter Llama-3.2-1B model.

Performance is assessed based on forgetting miti-
gation (knowledge retention), overall accuracy, and
parameter efficiency. Experiments were conducted
using a single NVIDIA T4 GPU for Permuted-
MNIST and a single NVIDIA P100 GPU for Split-
CIFAR100 and BERT-base experiments. Imple-
mentation was done using PyTorch and Avalanche
(Lomonaco et al., 2021). Results for Permuted-
MNIST and Split-CIFAR100 are reported as mean
accuracy ± standard deviation over 3 random seeds.
LLM results are from a single seed due to com-
pute constraints and are interpreted as preliminary;
EWC and LoRA-Ind results were not available for
BERT.

4.1 Overall Findings Summary

Across diverse domains, SLoRA consistently
demonstrates effectiveness in mitigating catas-
trophic forgetting (knowledge loss). Methods train-
ing shared parameters (FT, LoRA-Cont) show sig-
nificant forgetting. SLoRA, by employing additive,
task-specific frozen adapters (representing isolated
knowledge adaptations), effectively preserves per-
formance on prior tasks comparable to methods
like EWC and LoRA-Ind. SLoRA maintains a
competitive parameter footprint, scaling linearly
with tasks but more efficiently than full fine-tuning.

4.2 Permuted-MNIST Results (5-Task
Sequence)

The Permuted-MNIST benchmark evaluates forget-
ting on a 5-task sequence. To specifically illustrate
forgetting on the first task over time, Table 1 shows
the performance on Task 1 after training each sub-
sequent task. Table 7 (in Appendix) summarizes
the mean accuracy ± standard deviation on each
task after training on all 5 tasks.

Table 1: Accuracy (%) on Permuted-MNIST Task 1
after Training Sequential Tasks (Mean ± SD over 3
Seeds)

Method After Task 1 After Task 2 After Task 3 After Task 4

FT 97.22 ± 0.25 92.64 ± 2.01 78.34 ± 0.82 66.36 ± 11.42
EWC 97.22 ± 0.25 94.51 ± 0.14 81.88 ± 4.09 71.93 ± 7.66
LoRA-Cont 97.22 ± 0.25 92.23 ± 2.01 79.70 ± 5.69 67.25 ± 5.68
SLoRA 97.22 ± 0.25 92.82 ± 1.22 86.30 ± 2.64 72.62 ± 8.69

Table 1 clearly shows the severe forgetting expe-

rienced by FT and LoRA-Cont. SLoRA exhibits
better retention of Task 1 knowledge. Table 7 (Ap-
pendix) confirms SLoRA achieves the highest over-
all average accuracy.

4.3 Split-CIFAR100 Results (10-Task
Sequence)

Experiments were conducted on Split-CIFAR100
(10 classes/task). Table 8 (in Appendix) presents
a concise summary, and Figure 2 plots the average
accuracy on tasks seen so far.

Figure 2: Average accuracy on tasks seen so far on Split-
CIFAR100 after training each sequential task (Averaged
over 3 Seeds, E=50). SLoRA and LoRA-Ind show near-
zero forgetting, while FT, EWC, and LoRA-Cont suffer
catastrophic forgetting.

Figure 2 and Table 8 (Appendix) clearly show
that FT, EWC, and LoRA-Cont suffer severe catas-
trophic forgetting. In contrast, LoRA-Ind and
SLoRA demonstrate significantly better knowledge
retention, maintaining high accuracy on previously
learned tasks. SLoRA achieves comparable forget-
ting mitigation to LoRA-Ind with a slightly higher
final average accuracy.

4.4 Sequential NLP Tasks (BERT-base)
Results (4-Task Sequence)

The performance of SLoRA was evaluated on a
sequence of 4 real-world NLP classification tasks
using a frozen BERT-base-uncased model. To val-
idate that a naive PEFT-CL combination fails, we
explicitly benchmark against LoRA-Cont.

As shown in Table 2, both FT and the naive
LoRA-Cont baseline suffer from severe catas-
trophic forgetting on BERT-base. This demon-
strates that simply using a PEFT method is insuffi-
cient. SLoRA’s isolated stacked architecture, how-
ever, demonstrates remarkable stability, with per-
formance on Tasks 1, 2, and 3 remaining virtually
unchanged. SLoRA achieves the highest overall
average accuracy (88.33%). On a single NVIDIA
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Table 2: Accuracy (%) on Sequential BERT-base Tasks after Training on Task 4 (Single Seed: 42)

Method Task 1 (SST-2) Task 2 (TREC) Task 3 (Yelp) Task 4 (Amazon) Avg. Accuracy

FT 60.80 4.26 59.70 53.30 44.51
LoRA-Cont 85.30 74.47 91.50 92.10 85.84
SLoRA 89.90 93.62 84.20 85.60 88.33

Table 3: Parameter Efficiency Comparison for BERT-base on 4 Tasks

Method Trainable Params per Task Total Unique Params (after 4 Tasks) Parameter Growth

Full FT 109.5M (same every task) 109.5M Constant
LoRA-Cont(r=8) 1.35M 1.35M Constant
LoRA-Ind (r=8) 1.35M ∼5.4M Linear (T×)
SLoRA (B_r=8, St_r=4) 1.34M (Task 0), 0.67M (T1–T3) 3.35M Linear (T×)

Note: FT fine-tunes the full model per task. LoRA-Continual updates a shared adapter. LoRA-Independent uses separate adapters
per task. SLoRA uses a shared base adapter (Task 0) and stack adapters for subsequent tasks.

P100, SLoRA also converges in only 1.5 minutes
per task, an 8x speed-up over FT (12.0 minutes).

The parameter efficiency is detailed in Table 3.
SLoRA scales linearly with tasks but requires fewer
total parameters than LoRA-Ind due to its smaller
stack rank configuration.

4.5 Scalability and Efficiency Analysis on
Llama-3.2-1B

To validate SLoRA’s performance and efficiency
on contemporary large-scale models, we evaluated
it on the 1-billion-parameter Llama-3.2-1B. The re-
sults confirm that SLoRA’s architecture effectively
scales, preventing catastrophic forgetting while of-
fering significant computational advantages.

As shown in Table 4, SLoRA achieves a high
final average accuracy of 92.75% across the four
sequential tasks. Performance on prior tasks re-
mained unchanged after training on subsequent
tasks, demonstrating near-zero catastrophic forget-
ting and validating the knowledge isolation pro-
vided by the frozen, additive adapters.

Table 5 presents a quantitative analysis of
SLoRA’s efficiency. By updating only 2.8 million
parameters per task (~0.3% of the model), SLoRA
achieves a 15x reduction in training time. This
efficiency also translates to an estimated 93% re-
duction in CO2e emissions per update. The mod-
ular architecture inherently supports unlearning, a
capability computationally impractical for mono-
lithically fine-tuned models.

4.6 Hyperparameter Tuning Insights

Targeted ablation experiments on 5-task Permuted-
MNIST (single seed: 43) provided insights into

Table 4: SLoRA Performance on Llama-3.2-1B across
4 Sequential NLP Tasks. Accuracy on each task was
measured after all four tasks were trained.

Task Evaluated Final Acc. (%)

Task 1 (SST-2) 94.30
Task 2 (TREC) 85.11
Task 3 (Yelp Pol.) 96.20
Task 4 (Amazon Pol.) 95.40

Final Avg. Accuracy 92.75

SLoRA hyperparameters. Investigating stack rank
(rstack) with fixed base rank (rbase = 8, αbase =
16) revealed a clear parameter efficiency vs. per-
formance trade-off. Decreasing rstack from 8 to 1
linearly reduced parameters but led to moderate-to-
significant drops in final average accuracy (0.9556
down to 0.7681). Crucially, regardless of rstack,
performance on Task 1 after training later tasks
remained consistently high (∼0.9520), demonstrat-
ing that stack rank variation did not cause forgetting
of isolated knowledge. This supports the robust-
ness of SLoRA’s freezing mechanism. Varying
stack αstack (8, 16, 32 with rstack = 8) resulted
in only marginal changes in final average accu-
racy (∼0.955). An ablation without a base adapter
(SLoRA_NoBase) showed performance (0.9554 fi-
nal average accuracy) very close to the configura-
tion with a base adapter (0.9556), suggesting stacks
build effectively on the frozen W0 even without a
dedicated base LoRA.
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Table 5: Computational Efficiency and Architectural Comparison on Llama-3.2-1B.

Metric Full Fine-Tuning (FT) SLoRA (Proposed Method)

Performance Degradation (Forgetting) Severe (Observed on BERT-base) Negligible (Near-zero forgetting)
Trainable Parameters / Update ~1 Billion 2.8 Million (99.7% fewer)
Training Time / Update (est.) ~60 minutes ~4 minutes (15x Speed-up)
Estimated CO2e / Update (kg)a ~0.163 kg ~0.011 kg (93% Reduction)
Architectural Property: Unlearning Impractical (Requires full retraining) Inherent (Deactivate adapter)

aCO2e emissions estimated for a single task update on an NVIDIA RTX A5000 GPU (230W TDP), using India’s average grid
intensity of 0.708 kg CO2e/kWh. FT time is an estimate based on observed speed-up.

5 Discussion

The experimental results demonstrate SLoRA’s ef-
fectiveness in mitigating catastrophic forgetting,
with the findings on Llama-3.2-1B (Section 4.5)
providing strong evidence of its scalability. While
methods with shared parameters (FT, LoRA-Cont)
show significant performance degradation on prior
tasks, SLoRA’s design of freezing and additively
composing adapters ensures that previously ac-
quired knowledge is preserved. This is a direct
consequence of parameter isolation, where each
task-specific adaptation is encapsulated within a
distinct, immutable module.

The analysis in Table 5 highlights a crucial trade-
off in continual learning: the balance between per-
formance, parameter count, and computational cost.
SLoRA offers a compelling solution by drastically
reducing the number of trainable parameters per
task update (99.7% fewer than FT for Llama-3.2-
1B). This leads to substantial improvements in train-
ing speed (Table 6) and energy efficiency, making
sequential model updates feasible. While SLoRA’s
total parameter count grows linearly, the storage
overhead for each adapter is minimal compared to
storing separate model checkpoints.

We then consider parameter efficiency, a key fac-
tor for scalability. PEFT methods, including LoRA-
Cont, LoRA-Ind, and SLoRA, require substantially
fewer trainable parameters per task step than FT or
EWC. While LoRA-Cont has minimal storage, it
suffers severe forgetting (Table 2). Both LoRA-Ind
and SLoRA scale unique parameter storage linearly
with tasks. SLoRA requires fewer parameters than
LoRA-Ind in practice, thanks to its use of smaller
stack ranks per task, while still achieving compara-
ble or better forgetting mitigation (Table 3). This
demonstrates a favorable parameter-performance
trade-off.

Architecturally, SLoRA’s design offers addi-
tional benefits beyond performance and efficiency

for knowledge management. A significant advan-
tage is the inherent support for explicit task unlearn-
ing (knowledge modification): removing a task’s
frozen stack from the additive summation during
inference effectively unlearns the corresponding
knowledge, with no need for retraining. This ca-
pability positions SLoRA as a direct and practical
approach to the problem of knowledge editing in
foundation models, allowing for the targeted re-
moval of outdated or incorrect information. Selec-
tive activation also allows for tailored inference by
summing relevant stacks (enabling flexible knowl-
edge retrieval).

Hyperparameter tuning experiments (Section
4.6) confirmed that once the core parameter iso-
lation and additive composition are correctly im-
plemented, SLoRA’s forgetting mitigation property
is robust to variations in stack size and scaling.

In summary, SLoRA provides a compelling
parameter-efficient continual learning (knowledge
updating) approach for the task-incremental set-
ting. It effectively prevents catastrophic forgetting
(knowledge loss) through the additive composition
of task-specific, frozen low-rank adapters (repre-
senting knowledge adaptations), while also offering
architectural simplicity, flexible parameter control
(for knowledge representations), and native sup-
port for modular knowledge management, includ-
ing task unlearning (knowledge modification) and
selective inference (knowledge retrieval).

6 Conclusion

This work introduced Stacked Low-Rank Adapta-
tion (SLoRA), a parameter-efficient method that ad-
dresses catastrophic forgetting in continual learning
through the additive composition of task-specific,
frozen low-rank adapters. Empirical evaluations on
vision benchmarks, BERT-base, and the 1-billion-
parameter Llama-3.2-1B demonstrated SLoRA’s
ability to nearly eliminate forgetting while offering
significant computational advantages, including up
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to a 15x training speed-up compared to full fine-
tuning. Its modular architecture inherently supports
critical functionalities like explicit task unlearning
by deactivating adapters.

While SLoRA presents a robust solution for the
task-incremental setting, key limitations include
the linear growth of parameters with tasks and
the reliance on task identity at inference. Future
work should focus on mitigating parameter growth
through techniques like adapter pruning or merging.
A primary research direction is the development of
task-agnostic inference mechanisms. This could in-
volve implementing a dynamic routing module, po-
tentially using learned steering vectors, to automat-
ically select and combine the appropriate adapter
stacks based on the input’s semantic content. Such
advancements would move towards creating truly
autonomous and efficient lifelong learning systems.
SLoRA provides a strong foundation for building
adaptable, scalable, and manageable foundation
models.

7 Limitations and Future Work

While SLoRA demonstrates significant advantages,
we identify several limitations that present avenues
for future research:

• Linear Parameter Growth: The total num-
ber of parameters scales linearly with the
number of tasks. Although the adapters are
parameter-efficient, this growth could become
a storage bottleneck in scenarios involving an
extremely large sequence of tasks.

• Inference Latency Overhead: Unlike stan-
dard LoRA adapters that can be merged into
the base model to eliminate latency, SLoRA’s
parallel structure requires real-time summa-
tion of adapter outputs. This introduces a
minor computational overhead during the for-
ward pass that scales with the number of active
adapters.

• Reliance on Task Identity: The current infer-
ence strategy requires explicit task identity to
activate the corresponding adapter stack. This
assumption limits its direct application in task-
agnostic or online continual learning settings.
This reliance, however, is a deliberate design
trade-off that enables SLoRA’s strict parame-
ter isolation and its unique capability for ex-
plicit knowledge unlearning, which is not pos-

sible in task-agnostic methods that merge or
blend parameters.

• Scope of Evaluation: Our experiments were
conducted on task-incremental benchmarks.
The method’s generalization to more challeng-
ing CL paradigms, such as class-incremental
or domain-incremental learning, remains to
be validated.

• Experimental Rigor on LLMs: Due to com-
putational constraints, the results for larger
models (BERT-base, Llama-3.2-1B) are based
on single-seed runs. Multi-seed experiments
are necessary to fully establish the statistical
significance and robustness of SLoRA’s per-
formance at scale.

• Hyperparameter Sensitivity: While the core
mechanism is robust, the optimal rank (r) and
scaling factor (α) for base and stack adapters
may vary across different models and task
types. This work does not establish a compre-
hensive guideline for hyperparameter selec-
tion.
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Appendix

This appendix contains supplementary materials
and additional details not included in the main body
of the paper due to space constraints.

A Additional Experimental Details

This section provides additional details regarding
the experimental setup and base model architec-
tures used in this study. Detailed hyperparame-
ters for each method and benchmark are provided
within Section 3.2 in the main body of the paper.

A.1 Base Model Architectures

The specific base model architectures used for each
benchmark are detailed below:

• Permuted-MNIST: A simple two-layer MLP
was used as the base network. It consisted
of a linear layer mapping the flattened 28 ×
28 input (784 features) to 256 hidden units,
followed by a ReLU activation. A second
linear layer mapped the 256 hidden units to
10 output units (one for each digit class).

• Split-CIFAR100: A SimpleCNN architecture
was employed. It included three convolutional
layers for feature extraction, each with 3x3
kernels, ReLU activation, and followed by
2x2 max pooling. The classifier head, where
PEFT methods were applied, contained two
linear layers: the first mapping the flattened
output of the convolutional layers to 512 hid-
den units (with ReLU), and the second map-
ping 512 units to 100 output units (for CIFAR-
100 classes). The convolutional layers were
kept frozen.

• BERT-base-uncased: The standard frozen
bert-base-uncased model from the Hug-
ging Face Transformers library was used as
the base for NLP tasks. PEFT methods were
applied to the linear layers within the attention
and feed-forward networks of the Transformer
blocks.
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B Training Procedure Pseudocode

Algorithm 1: SLoRA Sequential Training
Procedure
Input: Pre-trained model with SLoRALinear
layers M , Task sequence T =
{Task0, Task1, . . . , TaskT−1}, hyperparam-
eters rbase, αbase, rstack, αstack

Output: Trained SLoRA model with task-specific
adapters

1. State: Freeze W0 in all SLoRALinear layers
of M .

2. Train Base Task (Task0):

3. For each SLoRALinear layer L in M do

4. State: Initialize Base LoRA adapter
(Abase, Bbase) in L with rbase, αbase.

5. State: Set Abase, Bbase in L to be train-
able.

6. State: Freeze all other adapters in L (ini-
tially none).

7. End For

8. State: Configure optimizer to train train-
able parameters in M and Task0 classifier.

9. State: Train M on Task0 data.

10. For each SLoRALinear layer L in M do

11. State: Freeze (Abase, Bbase) in L.

12. End For

13. Train Subsequent Tasks (Taskt for t =
1, . . . , T − 1):

14. For each t from 1 to T − 1 do

15. For each SLoRALinear layer L in M do

16. State: Initialize a new Stack
adapter (Astack,t, Bstack,t) in L with
rstack, αstack.

17. State: Set (Astack,t, Bstack,t) in L
to be trainable.

18. State: Ensure W0, Base LoRA, and
all previously added Stacks (< t) in L are
frozen.

19. End For

20. State: Configure optimizer to train train-
able parameters in M and Taskt classifier.

21. State: Train M on Taskt data.

22. For each SLoRALinear layer L in M do

23. State: Freeze (Astack,t, Bstack,t) in
L.

24. End For

25. End For

C Additional Result Tables

Table 6: Training Time on BERT-base (batch size 16,
single NVIDIA P100, averaged over 3 runs (in minutes)

Method Mean Std Dev Speed-up

Full Fine-Tuning 12.0 0.3 1.0×
SLoRA 1.5 0.1 8.0×
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Table 7: Accuracy (%) on Permuted-MNIST Tasks after Training on Task 5 (Mean ± SD over 3 Seeds)

Method Task 1 Task 2 Task 3 Task 4 Task 5 Avg. Accuracy

FT 51.99 ± 6.73 85.78 ± 2.80 88.96 ± 3.76 92.06 ± 1.42 97.26 ± 0.17 83.21 ± 2.49
EWC 54.14 ± 0.90 86.65 ± 1.85 87.01 ± 4.54 95.05 ± 0.46 97.22 ± 0.02 83.87 ± 1.31
LoRA-Cont 50.42 ± 3.86 79.44 ± 4.84 86.26 ± 2.57 93.29 ± 0.77 96.78 ± 0.31 81.29 ± 1.48
SLoRA 56.97 ± 7.82 84.11 ± 1.74 87.61 ± 0.71 91.70 ± 1.35 97.08 ± 0.42 83.49 ± 1.35

Table 8: Split-CIFAR100 Mean Accuracy (%) on Initial vs. After Final Task (Averaged over 3 seeds, E = 50)

Method
Task Accuracy: Initial → After Final

Final Avg. Acc.
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

FT 80→10 82→12 81→11 72→10 80→10 76→10 78→10 78→10 85→10 80→80 8.0
EWC 79→15 80→15 75→15 67→15 74→15 70→15 71→15 71→15 78→15 72→72 7.2
LoRA-Cont 61→12 65→12 59→12 55→12 62→12 56→12 59→12 57→12 69→12 60→60 6.0
LoRA-Ind 62→60 65→63 59→58 57→55 61→60 56→55 57→56 56→55 68→67 59→59 59.6
SLoRA 64→64 67→67 61→61 57→57 63→63 57→57 59→59 59→59 68→68 61→61 61.8
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