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Abstract

Accurate classification in high-stakes domains
requires not only correct predictions but trans-
parent, traceable reasoning. We instantiate
this need in clinical genomics and present
VariantBench, a reproducible benchmark and
scoring harness that evaluates both the final
American College of Medical Genetics and Ge-
nomics/Association for Molecular Pathology
(ACMG/AMP) labels and criterion-level rea-
soning fidelity for missense single-nucleotide
variants (SNVs). Each case pairs a variant
with deterministic, machine-readable evidence
aligned to five commonly used criteria (PM2,
PP3, PS1, BS1, BA1), enabling consistent eval-
uation of large language models (LLMs). Un-
like prior work that reports only final labels,
our framework scores the correctness and faith-
fulness of per-criterion justifications against
numeric evidence. On a balanced 100-variant
freeze, Gemini 2.5 Flash and GPT-4o outper-
form Claude 3 Opus on label accuracy and
criterion detection, and both improve materi-
ally when the decisive PS1 cue is provided
explicitly. Error analyses show models mas-
ter population-frequency cues yet underuse
high-impact rules unless evidence is unambigu-
ous. VariantBench delivers a substrate to track
such improvements and compare prompting,
calibration, and aggregation strategies in ge-
nomics and other rule-governed, safety-critical
settings.

1 Introduction

Accurate classification in high-stakes domains
requires not only correct predictions but also
transparent, traceable reasoning. Errors in fields
such as healthcare and finance can lead to se-
rious consequences, from patient harm to ero-
sion of public trust. In the study of clinical ge-
nomics, the American College of Medical Genetics
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and Genomics and the Association for Molecular
Pathology (ACMG/AMP) create guidelines that
require experts to review structured evidence and
determine the pathogenicity of missense single-
nucleotide variants (SNVs), criterion by criterion
(Richards et al., 2015). Here, a missense SNV is a
one-base substitution that changes a codon, which
then replaces one amino acid in the encoded pro-
tein (Cheng et al., 2023). According to the ACMG
guidelines, there are two types of criteria: those
used to classify pathogenic or likely pathogenic
variants, and those used to classify benign or likely
benign variants (Richards et al., 2015). The five
commonly used criteria we address are pathogenic,
weighted as strong (PS1), moderate (PM2), sup-
porting (PP3), and benign, weighted as stand-alone
(BA1) or strong (BS1). While LLMs have shown
they can predict the final pathogenicity label, they
rarely provide traceable, criterion-level reasoning.

Recent work highlights both progress and limita-
tions. Proteome-wide pathogenicity resources such
as AlphaMissense provide valuable priors but do
not map outputs to ACMG criteria (Cheng et al.,
2023). LLM benchmarks targeting variant inter-
pretation have emphasized final labels without as-
sessing reasoning quality (e.g., Li et al., 2024). Au-
toPM3 explored LLM evaluation for the PM3 seg-
regation rule, but focuses on a single criterion (Li
et al. 2025). Beyond genomics, few benchmarks in
high-stakes domains combine expert-labeled crite-
ria, curated machine-readable evidence, and repro-
ducible scoring frameworks.

We introduce VariantBench, a benchmark and eval-
uation harness designed to measure both deci-
sion accuracy and criterion-level reasoning fidelity.
While our testbed focuses on genomic variant in-
terpretation, the framework applies to any domain
where decisions must be justified against structured,
expert-defined rules. Each case pairs a randomly
sampled missense variant from the Genome Ag-
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gregation Database (gnomAD; via dbNSFP 5.2a,
GRCh38) with automatically derived evidence
aligned to five commonly used ACMG/AMP cri-
teria (PM2, PP3, PS1, BS1, BA1). (Liu et al.,
2020). At a high level, PM2 captures rarity or
absence from population databases, PP3 support-
ing evidence from deleterious in-silico predictions,
PS1 strong evidence when the amino-acid change
matches a known pathogenic variant, and BS1/BA1
benign evidence when population allele frequen-
cies are higher than expected for a rare mono-
genic disorder (with BA1 functioning as a stand-
alone benign rule). We require models to out-
put both a classification decision and a structured
criterion-level justification in JSON format con-
taining a 5-tier classification label (Pathogenic,
Likely Pathogenic, VUS, Likely Benign, Benign),
boolean flags for PM2/PP3/PS1/BS1/BA1, and a
brief rationale. We evaluate LLMs against deter-
ministic rule-based ground truth, using exact-match
accuracy, micro and macro F1 for criterion detec-
tion, and a faithfulness metric verifying correct evi-
dence citation, across two settings: Track A, where
no PS1 evidence is provided to test knowledge-
only behavior, and Track B, where a PS1 yes/no
hint is provided to test rule-application consis-
tency. Baselines include heuristic, logistic, and
ablated LLM variants. The source code is available
at https://github.com/VariantBench. Results show
that VariantBench not only diagnoses where and
why reasoning fails in genomic medicine, but also
offers a reproducible framework adaptable to other
high-stakes, rule-governed decision-making tasks.

In this work, we introduce the following contribu-
tions:

• A replicable benchmark and scoring harness
for ACMG/AMP-aligned reasoning over mis-
sense SNVs.

• A measurement substrate for tracking im-
provements and comparing prompting, cal-
ibration, and aggregation strategies.

• Comparative analyses of models across two
tracks that support structured prompting and
explicit evidence supplementation.

2 Methodology

We designed VariantBench to evaluate whether
LLMs can reproduce ACMG/AMP reasoning when
given the same structured, numeric evidence used

by clinical curators. Rather than retrieving textual
snippets, which proved too sparse and unreliable,
we adopted a deterministic evidence generation
pipeline that programmatically derives the inputs
for five ACMG criteria (PM2, PP3, PS1, BS1, and
BA1), directly from curated databases and fixed
thresholds.

2.1 Variant Sampling and Filtering
We drew candidate variants from dbNSFP 5.2a
(GRCh38) as a proxy for gnomAD coverage, query-
ing single-nucleotide substitutions with one-base
REF/ALT and available gnomAD allele frequency
(AF) values. Each variant includes a reference
(REF) and alternate (ALT) allele, denoting the
original and substituted nucleotides at a specific
genomic position, respectively. We specifically
chose dbNSFP 5.2a over earlier versions due to
its comprehensive integration of gnomAD v3.1.2
data, which includes 75,000 genomes and pro-
vides more robust population frequency estimates
across diverse ancestries. We then enforced a
strict missense filter at the HGVS protein level
using a regex form (e.g., p.Gly137Arg), excluding
stopgain, frameshift, indel, and splice annotations.
The regex pattern specifically matches p[̇A-Z][a-
z]2+. [A-Z][a-z]2 to ensure consistent HGVS for-
matting and prevent edge cases like synonymous
variants (p.=) or complex multi-amino acid changes
from entering the dataset. HGVS formatting pro-
vides a standardized way to describe sequence
changes at the DNA, RNA, or protein level, en-
suring that genetic variants are reported unambigu-
ously across databases and studies. We manually
logged and excluded any entries that failed this
pattern to prevent parser drift. As a result, we pro-
duced a broad, gene-agnostic pool spanning a wide
AF range and diverse in-silico scores.

2.2 Deterministic Evidence Computation
For each variant, we compute five rule flags with
fixed logic implemented in helpers.py:

PM2 (Moderate evidence of pathogenicity):
True if AFpopmax < 10−4 or AFpopmax is
missing, modeling absent/ultra-rare. We
treat missing AF as satisfying PM2 following
ACMG guidelines that consider absence from
population databases as supporting evidence
(Richards et al., 2015) though we flag these
cases separately for sensitivity analysis.

BS1 (Strong evidence of benignity): True if
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10−4 ≤ AFpopmax < 0.05. This threshold
aligns with the 2015 ACMG guidelines’ defi-
nition of "greater than expected for disorder"
while avoiding overlap with the BA1 threshold.

BA1 (Stand-alone evidence of benignity): True
if AFpopmax ≥ 0.05. This 5% threshold
represents the standard ACMG cutoff for "too
common to cause disease" and automatically
results in a Benign classification regardless of
other evidence.

PP3 (Supporting evidence of pathogenicity):
PP3 is triggered by concordant in silico
evidence that a missense substitution is
likely to be functionally damaging. We set
PP3 to True if at least 3 of 7 in silico tools
predict the variant to be damaging/deleterious
(SIFT, PolyPhen2_HDIV, MutationTaster,
MutationAssessor, PROVEAN, MetaSVM,
MetaLR) or if REVEL> 0.5. Missing
values do not contribute to the count. The
REVEL override (REVEL> 0.5) follows
recent ACMG/AMP recommendations that
recognize REVEL as a higher-performing
ensemble meta-predictor for missense variants.
Individual tools are mapped to binary calls
using canonical thresholds: SIFT < 0.05,
PolyPhen2_HDIV > 0.909, MutationTaster
∈ {D, A}, MutationAssessor > 1.9, PROVEAN
< −2.5, MetaSVM > 0, and MetaLR > 0.5.

PS1 (Strong evidence of pathogenicity):
True if any canonical protein change from
VEP/snpEff (annotation tools that predict how
genetic variants affect genes and proteins, such
as whether a change results in a missense or
stop-gain mutation) exactly matches an amino-
acid change in ClinVar, a publicly accessible
database maintained by the U.S. National
Center for Biotechnology Information (NCBI)
that archives and aggregates the clinical signif-
icance of human genetic variants, and that is
annotated “Pathogenic”, “Likely_pathogenic”,
or “Pathogenic/Likely_pathogenic”. We map
three-letter amino acid codes to one-letter
codes and keep only missense (no stop-
gains/frameshifts). Our PS1 lookup table is
built from ClinVar’s March 2025 release, filter-
ing for variants with ≥ 2-star review status to
ensure clinical validity. We normalize protein
changes by stripping transcript identifiers and
resolving alternative amino acid nomenclature

(e.g., selenocysteine) to prevent false negatives.

2.3 Gold Benchmark Freeze

From a large random sample of 100 variants meet-
ing our filtering criteria, we produced a label
per variant with a deterministic combine() func-
tion. The combine() function implements standard
ACMG combining rules (Richards et al., 2015).

• BA1 alone → Benign

• BS1 without contradicting evidence → Likely
Benign

• PM2 + PP3 + PS1 → Likely Pathogenic

• Strong pathogenic evidence without benign
evidence → Pathogenic

• Conflicting or insufficient evidence → Variant
of Uncertain Significance (VUS).

We then froze a 100-example benchmark by strat-
ified sampling 20 variants per label (Pathogenic,
Likely Pathogenic, VUS, Likely Benign, Benign),
yielding balanced coverage across tiers. This bal-
anced design prevents models from exploiting class
imbalance and ensures equal weighting of perfor-
mance across all clinical decision points. In clinical
genetics, these five categories support differential
actions: Pathogenic and Likely Pathogenic vari-
ants can prompt surveillance, cascade testing of
relatives, or changes in treatment, whereas Likely
Benign and Benign variants are generally not used
to alter care. Variants of Uncertain Significance
(VUS) are typically non-actionable but can gen-
erate follow-up work and patient anxiety. Bench-
marks that probe how LLMs reason about these la-
bels therefore speak directly to the safety and audit
ability of AI-assisted genomic interpretation, even
when used in a research-only context. Although
100 variants is modest by modern benchmarking
standards, this size is sufficient to distinguish the
models we study and to support detailed error anal-
ysis. At temperature 0, headline accuracies in Fig-
ure 1 range from ≈ 0.21 (Claude) to ≈ 0.47–0.52
(Gemini), and Matthews correlation coefficients
(MCC) from ≈ 0.02 to ≈ 0.40–0.42. Under a
simple binomial approximation with n = 100, the
standard error of an accuracy estimate is at most

√
p(1− p)/n ≤

√
0.25/100 ≈ 0.05,

yielding 95% confidence intervals of roughly
±0.10. The observed accuracy gaps of ≈
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0.15–0.30 and MCC gaps of ≈ 0.18–0.40 be-
tween Gemini, GPT–4o, and Claude therefore
exceed this sampling margin, indicating that
VariantBench–100 is large enough to meaning-
fully separate model behaviours, even though
it is not sufficient for precise estimates of
clinical-grade performance. We then saved two
files under results/FrozenBenchmark/: the full
gold table (variantbench_100_gold.csv, includ-
ing flags and label) and the public input ta-
ble (variantbench_100_inputs.csv) that hides
gold flags but retains fields needed to build
prompts. Both files include cryptographic check-
sums (SHA-256) to ensure reproducibility and de-
tect any data corruption.

2.4 Prompt Construction

We developed two evaluation tracks to isolate the
contribution of external knowledge versus struc-
tured reasoning:

2.4.1 Track A (No PS1 cue)
The model receives HGVS, AFpopmax, and
a compact in-silico summary (CADD, SIFT,
PolyPhen2_HDIV, MetaLR, FATHMM-XF, Al-
phaMissense when present). In-silico scores are
presented as raw values rather than pre-interpreted
categories to test whether models can apply an ap-
propriate threshold. The prompt explicitly instructs
the model to evaluate only PM2, PP3, PS1, BS1,
and BA1, and to return a single JSON object with
lowercase booleans and a one-line rationale. The
JSON schema is strictly enforced:

{
"pm2": true/false,
"pp3": true/false,
"ps1": true/false,
"bs1": true/false,
"ba1": true/false,
"label": "Pathogenic"|"Likely_pathogenic"
|"VUS"|"Likely_benign"|"Benign",
"rationales": { ... }

}

No PS1 evidence is provided; the model must rely
on its pretrained knowledge to decide PS1.

2.4.2 Track B (PS1 evidence provided)
Similar to Track A, but we add a single line
PS1 evidence (ClinVar {clinvar_release}):
{ps1_yes_no} # "yes" or "no", where yes/no
is computed deterministically by our PS1 helper.

This ablation test evaluates whether models can
integrate provided evidence or rely on potentially
outdated training data. The ClinVar release date
is explicitly stated to signal data currency. The
prompt fixes PS1 semantics (“set PS1=true iff the
evidence line is ‘yes’ ”). This track isolates whether
the model applies PS1 correctly when the evidence
is explicit.

We write prompts per track to results/prompts/,
and one JSONL with a variant ID per variant and a
human-readable preview. We then fed the prompts
to the following models in zero-shot: GPT-4o,
Claude 3 Opus, and Gemini 2.5 Flash.

Additional prompt engineering considerations:

• We prepend a brief ACMG primer (50 words)
explaining that variants should be classified
based on population frequency and computa-
tional predictions, without defining specific
thresholds, to activate relevant knowledge
without biasing toward particular cutoffs.

• All numeric values are formatted consistently
(scientific notation for AF, two decimal places
for scores) to prevent parsing ambiguities.

• We include a “chain-of-thought” instruc-
tion asking models to “briefly explain your
reasoning before providing the JSON” to im-
prove accuracy through intermediate reason-
ing steps.

• Temperature is set to 0 for all primary exper-
iments to ensure deterministic outputs, with
a temperature=0.7 ablation to assess robust-
ness.

Quality control measures:

• Each prompt–response pair is validated for
JSON parseability before scoring.

• We implement retry logic (maximum three
attempts) for API failures or malformed out-
puts.

• All model outputs are archived with times-
tamps and model version identifiers for repro-
ducibility.

• We conduct spot checks on 10% of responses
to verify that rationales reference the correct
evidence types (e.g., PM2 rationales mention
allele frequency).
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3 Results and Discussion

Figure 1 compares Gemini, GPT-4o, and Claude
across five headline metrics at temperature 0. Gem-
ini emerged as the strongest model for final ACMG
label prediction, reaching ∼ 0.50–0.52 accuracy
and ∼ 0.40–0.42 MCC. Roughly a 40% improve-
ment over GPT-4o and more than double Claude,
whose MCC hovered near zero. This indicates that
Gemini not only classifies more variants correctly
but also achieves a better balance across true/false
positives and negatives.

At the criterion level, micro-F1 scores were uni-
formly higher than overall accuracy, showing that
all models were more consistent in detecting in-
dividual ACMG rules than in combining them
into final labels. Gemini and GPT-4o achieved
strong micro-F1 (0.78–0.88), while Claude lagged
at ∼ 0.65. Macro-F1 further highlighted model dif-
ferences: Gemini remained stable across tracks
(∼ 0.61–0.78), GPT-4o improved substantially
once PS1 evidence was supplied (0.41 → 0.61),
and Claude plateaued, suggesting limited adaptabil-
ity.

Faithfulness exposed the sharpest divide. Gem-
ini and GPT-4o exceeded 95%, meaning their
explanations consistently cited the numeric cues
aligned with invoked criteria. Claude, by con-
trast, plateaued at ∼ 42%, reflecting a tendency
to provide generic or hallucinated rationales rather
than evidence-grounded reasoning. This gap under-
scores that even when Claude flagged the criteria
correctly, it often failed to justify them in a clini-
cally auditable way.

As illustrated in Figure 2, population frequency
rules are handled well by Gemini and GPT-4o and
less reliably by Claude. For PM2, Gemini and GPT-
4o are stable around 0.92–0.93 F1 in both tracks,
whereas Claude trails at ∼ 0.77. For PP3, GPT-4o
leads (0.93–0.95) over Gemini (0.87–0.89), with
Claude at ∼ 0.56. Decisive rules reveal the most
apparent separation. Without PS1 evidence (Track
A), all models are ∼ 0 on PS1; with a single explicit
PS1 cue (Track B), Gemini and GPT-4o jump to
≈ 1.00 while Claude remains low (∼ 0.08). BA1
is near-ceiling for Gemini and GPT-4o (0.97–0.98)
but negligible for Claude (∼ 0.02). BS1 remains
challenging across models. Gemini and GPT-4o
reach only 0.28–0.31, and Claude is ∼ 0.02. This
reflects the rule’s narrow frequency threshold and
the scarcity of BS1-positive examples. Overall,

Gemini and GPT-4o reliably apply frequency ev-
idence and, when provided explicit cues, execute
decisive ACMG rules. Claude’s competence ap-
pears confined mainly to simpler, frequency-based
criteria.

3.1 Confusion Matrix Analysis

Overview: Across models, most mistakes collapse
to VUS when evidence is incomplete or conflicting.
Providing an explicit PS1 cue (Track B) reduces
this collapse for GPT-4o and Gemini but not for
Claude.

GPT-4o: Figure 3 shows GPT-4o is accurate on
Benign and VUS (≈80–90% correct across tracks).
On Track B, the model undercalls pathogenic-
ity: ≈80% of true Pathogenic shift to Likely
Pathogenic, and ≈72.5% of true Likely Pathogenic
shift to VUS. This mirrors its per-flag pattern
(strong PM2/PP3, weaker PS1/BS1), yielding con-
servative decisions when high-impact evidence is
absent or ambiguous.

Gemini: Additionally, figure 3 shows Gemini is
very strong on Benign and VUS (≥95% correct
across tracks). With the PS1 cue (Track B), Gemini
recovers more Pathogenic cases (≈40% accurate,
roughly 2× GPT-4o). Its weakness is the inter-
mediate tiers: Likely Pathogenic accuracy ≈25%,
and Likely Benign ≈12.5% (vs. GPT-4o ≈60%
for LB), reflecting difficulty with mid-frequency
benign signals (BS1) relative to GPT-4o.

Claude: Marked VUS bias across tracks. In
Track B, ≈70% of Likely Benign, ≈95% of Likely
Pathogenic, and ≈87.5% of Pathogenic are pre-
dicted as VUS, explaining low label accuracy and
MCC despite mid-range flag F1. This indicates
limited integration of high-impact rules and weak
use of explicit PS1 cues.

Effect of Temperature: Figure 4 illustrates ag-
gregate temperature sweeps.

• Accuracy & MCC: Gemini benefits most
from higher temperature in both tracks (accu-
racy + ∼ 0.06 in Track A, + ∼ 0.13 in Track
B; MCC + ∼ 0.06 and + ∼ 0.16). GPT-4o is
relatively temperature-stable. Claude changes
little.

• Macro-F1: In Track A, GPT-4o and Gemini
see slight increases up to τ = 0.3 (Gemini:
0.605 → 0.625, GPT-4o peaks near τ = 0.3).
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Figure 1: Headline metrics by model on Track A (left) and Track B (right) at temperature 0. Bars show mean scores
and error bars denote variability across runs.

Figure 2: Per-criterion performance by model on Track A (left) and Track B (right) at temperature 0. Bars show
mean scores, and error bars denote variability across runs.

OpenAI’s macro-F1 in Track B is already high
(∼ 0.84–0.85) and flat.

• Interpretation: Mild stochasticity helps
Gemini explore alternatives that improve fi-
nal labels without hurting criterion detection.
GPT-4o is already near its optimum at low
temperature.

4 Conclusion

We introduced VariantBench, a reproducible bench-
mark and scoring harness for ACMG/AMP-aligned
reasoning over missense SNVs. In contrast
to prior work that scores only the final label,
VariantBench evaluates criterion-level correctness
(PM2/PP3/PS1/BS1/BA1) and faithfulness to nu-

meric cues using a deterministic pipeline de-
rived from public databases. On VariantBench-
100, Gemini 2.5 Flash and GPT-4o outperform
Claude on both final labels and rule detection.
Across models, population-frequency evidence
(PM2/PP3) is learned reliably, while high-impact
rules (PS1/BA1/BS1) are brittle unless the signal
is made explicit in the prompt. These findings
suggest that structured prompting + explicit evi-
dence injection can convert pretrained knowledge
into auditable, rule-consistent reasoning, and that
VariantBench provides the measurement substrate
for tracking such gains and comparing prompting,
calibration, and aggregation strategies.

Limitations:
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Figure 3: Confusion matrices by model on Track B
(temperature 0). Top: Claude. Middle: Gemini. Bottom:
GPT-4o. Percentages are averaged across runs.

• Rule scope. VariantBench-100 evaluates rea-
soning over only five ACMG/AMP criteria
(PM2, PP3, PS1, BS1, BA1). Full clinical
curation uses additional rules and more com-
plex combinations, so our results should be
interpreted as evidence about relative model
behaviors under a constrained subset, not as
comprehensive estimates of real-world diag-
nostic performance.

Figure 4: Effect of temperature on label accuracy across
models. Top: Track A shows modest accuracy gains
for Gemini and GPT-4o up to τ = 0.3. Bottom: Track
B highlights Gemini’s stronger improvement at higher
temperatures. Claude remains flat in both tracks. Error
bands show run variability.

• Dataset size and balance. VariantBench-100
is small and label-balanced by design (20 vari-
ants per tier) to enable clear comparisons and
exhaustive error analysis. This controlled set-
ting prevents exploitation of class imbalance
but does not reflect the skewed distributions
and edge cases encountered in practice.

• Faithfulness metric. Our “cue-citation” score
is a surface-level proxy: it checks whether ra-
tionales explicitly mention the numeric evi-
dence that should support each criterion. This
can undercount valid paraphrases that omit
explicit values and overcount boilerplate text
that repeats numbers without truly using them
in the decision. We therefore view cue-
citation as a conservative, first order approxi-
mation to reasoning faithfulness.

• Prompt/decoding sensitivity. All results are
conditional on a particular prompt family,
JSON schema, and a single snapshot of three
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closed-weight models. Different prompts, de-
coding parameters, or model versions may
change the absolute scores and some qualita-
tive patterns. VariantBench is best viewed as
a reusable harness for comparing models and
prompting strategies, rather than as a fixed
leaderboard.

• Not a clinical device. Outputs are non-
diagnostic and intended solely for benchmark-
ing research.

Future work will extend to full ACMG/AMP cov-
erage, scale data with stratified sampling, replace
string matching with structured evidence auditing
(e.g., numeric attribution and counterfactuals), and
assess uncertainty calibration.
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