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Abstract adapt to emerging patterns such as evolving traffic

As neural networks are increasingly deployed
in dynamic environments, they face the chal-
lenge of catastrophic forgetting, the tendency to
overwrite previously learned knowledge when
adapting to new tasks, resulting in severe per-
formance degradation on earlier tasks. We
propose Selective Forgetting-Aware Optimiza-
tion (SFAO), a dynamic method that regulates
gradient directions via cosine similarity and
per-layer gating, enabling controlled forgetting
while balancing plasticity and stability. SFAO
selectively projects, accepts, or discards up-
dates using a tunable mechanism with efficient
Monte Carlo approximation. Experiments on
standard continual learning benchmarks show
that SFAO achieves competitive accuracy with
markedly lower memory cost, a 90% reduction,
and improved forgetting on MNIST datasets,
making it suitable for resource-constrained sce-
narios.

1 Introduction

Deep neural networks exhibit remarkable profi-
ciency under static environments but degrade sig-
nificantly in non-stationary learning environments,
where the input-output distribution evolves over
time (Parisi et al., 2019). In Continual Learn-
ing (CL), where models must learn a sequence of
tasks without revisiting previous data, this degrada-
tion manifests as catastrophic forgetting (Goodfel-
low et al., 2013). The root cause lies in gradient-
induced interference, whereby updates for new
tasks disrupt previously consolidated knowledge,
causing subspace collapse in the parameter space
and destabilizing learned representations (Lopez-
Paz and Ranzato, 2022).

This challenge is particularly acute in safety crit-
ical domains such as autonomous driving, medical
diagnostics, and cybersecurity, where models must
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scenarios, novel disease classes, or new malware
signatures without compromising prior expertise
(Hamedi et al., 2025). Failure to maintain stabil-
ity in such contexts leads to diminished reliability,
costly retraining, and large computational overhead
(Armstrong and Clifton, 2022; Lesort, 2020). Con-
sequently, mitigating forgetting while preserving
adaptability remains a foundational objective in CL
research.

We introduce SFAQO, an approach that selectively
regulates gradient updates. On each layer, SFAO
either accepts, projects, or discards a step based
on the cosine alignment with previously stored di-
rections. This provides a lightweight and tunable
mechanism, which can be used for controlling up-
dates without requiring a large memory buffers or
fixed regularization.

1.1 Contributions

1. A simple per-layer gating rule that accepts,
projects, or discards updates based on cosine
similarity, offering a controllable way to man-
age gradient updates.

2. A gradient filtering mechanism that discards
conflicting or uninformative updates, enhanc-
ing knowledge retention and improving gen-
eralization across sequential tasks.

3. A conceptually simple optimizer that achieves
strong memory-forgetting trade-offs without
relying on state-of-the-art accuracy.

2 Preliminaries

2.1 Continual Learning

In continual learning (CL), a model is trained on a
sequence of T tasks
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where each task D, = {(z gt),yz )}t is sam-
pled from a distribution P;(x,y). Unlike classi-
cal i.i.d. training, the distributions {P;} are non-
stationary and past data Dy, ..., D,_1 is typically
inaccessible when training on D;.

The model parameters 6 are updated using
stochastic gradient-based optimization techniques

gt = Veﬁt(9)7

where L is the loss for task ¢. A central challenge
is catastrophic forgetting: learning new tasks de-
grades performance on earlier tasks. Formally, the
forgetting on task ¢ after all T tasks is
F; = maxa;; — a;,
t<T

where a; ; denotes accuracy on task ¢ after training
task ¢. To better quantify the ability for a model
to remain robust to new tasks, we use average for-
getting, defined as F = -2 >°T_ ' F;. Additional
measures include Average Accuracy (mean accu-
racy across all tasks at the end of training), Back-
ward Transfer (BWT), and the Plasticity—Stability
Measure (PSM), which together capture the trade-
off between learning new knowledge and retaining
old knowledge.

2.2 Gradient Interference: A Geometric and
First-Order View

Let {D;}!_1 denote previously learned tasks with
losses {L£;} and let £; be the current task. Write
9i(0)=VoL;(0) and g, (0) =V L(0). For a small
step 0 = 6 — nu (learning rate > 0 and update
direction u), a first-order Taylor expansion gives
the instantaneous change on a past task ¢:

AL £ Li(6F) - Li(6) = —nglu + O().

(D
Interference on task i occurs when g, u < 0 (loss
increases); synergy occurs when giT u > 0 (loss de-
creases). Define the interference risk of an update
u against a set G C R? of stored directions by

R(u;G) = max (—gTu)+

geg
2
Minimizing risk, R, encourages g'u > 0 for all
g € G in the small-step regime, which by (1) elim-
inates first-order forgetting on the represented di-
rections.
Let S = span(G) and Ps be the orthogonal
projector onto S. Consider the feasibility cone

= {ue?: g'u>0 Vgeg} 3)

(x)+ := max{z,0}.

An interference-safe step can be posed as the
inequality-constrained Euclidean projection

g'u >0 Vgeg.

“)
Problem (4) projects g; onto the polyhedral cone C
and its solution need not be orthogonal to S.

| 2
min 5||u — s.t.
min [l — gell

A stricter surrogate is the equality-constrained
projection

g'u =0 VYgeg,
(5

which enforces u € S+ and whose solution is
obtained by solving the Lagrangian (Appendix C):

: 1 2
min gllu—gllz st

uw* = (I — Ps)g:. (6)

Proposition 2.1 (First-order safety for represented
tasks). If u = (I — Ps) g4, then g"u = 0 for all
g € S, and thus for any past task i whose gradient
gi € S we have AL; = O(n?). Hence orthogonal
projection removes first-order forgetting on tasks
whose gradients are represented in S.

Proof. For g € S we have Psg = g,s0 g' (I —
Ps)g: = (Psg)"g: —g ' g; = 0. Pluginto (1). [

2.3 Orthogonal Gradient Descent (OGD)

Orthogonal Gradient Descent (OGD) (Farajtabar
et al., 2019) is a geometry-based continual learning
method which addresses gradient interference by
constraining updates to directions orthogonal to
past gradients. Let S = span{gi,...,gn} be the
subspace of stored gradients. OGD projects a new
gradient g; onto the orthogonal complement of S:

9 9i
g = Projs. (gt Z L ‘12 i

ng

This guarantees that the update does not interfere
with previously learned directions, thereby pre-
serving earlier task performance. OGD’s geomet-
ric clarity makes it an appealing baseline, but it
is computationally costly: storing all or a large
subset of past gradients requires O(/Nd) memory
(for d-dimensional gradients), and each update in-
volves O(Nd) dot products. Subsequent works
have sought to approximate this projection using
low-rank subspaces or memory buffers to improve
scalability.
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3 Selective Forgetting-Aware Optimizer

3.1 Similarity-Gated Update Rule (SFAO)

Let 6, € R? denote the parameters at step ¢ and
gt = VgL(6;) the mini-batch gradient. We main-
tain a buffer of past gradients with span & =
span{gi, ..., gn} and orthogonal projector Ps.

Let Q €%*" be an orthonormal basis for S (e.g.,
incremental Gram—Schmidt or compact SVD), so
Ps=QQ".

Given a Monte Carlo subset C C {1,..., N} of
size k < N, define the sampled maximum cosine
alignment

T
St = maxﬁ. @)
icC | gell llgsll
Because C C {1,...,N}, s; is a deterministic

lower bound on the true maximum alignment over
the buffer.

Choose thresholds Aproj < Aaccept in [—1,1] and,
if one wishes to accept only synergistic updates, set
Aaccept = 0. Then the SFAO gated direction uy is

gt; St > Aaceept (accept)
ut = (L = Ps)gi,  Aproj < St < Aaccept (Project)
0, st < Aproj (discard)
(8)
’9t+1 :et_nut‘ )
Recovering special cases (corrected).
* SGD: empty buffer or Ayecept = —1 = up =

gt-

* Always-project (OGD behavior): set Ap; =
—1, Aaccept = 1 so every step falls in the
project region, yielding uy = (I — Ps)g;.

* Hard reject: A, = 1 discards all updates
(ug = 0).

With momentum / weight decay. With momen-
tum m; = Bmy—1 + (1 — B)u, and weight decay
)\?

Ht-i-l = (1-7])\) Ht — NMmy. (10)

3.2 Monte Carlo Approximation

Computing cos # against all stored gradients is pro-
hibitively expensive when the buffer size B is large.
To mitigate this, we maintain a buffer {g;}2 | of
past gradients and randomly sample £ < B direc-
tions at each update:

-
. gt 9i;
cos = max J

| 9SS
=Lk gl - Nlgs, || 77

This approximation reduces the dot-product com-
plexity from O(Bd) to O(kd) per step, offering
a substantial computational savings. Importantly,
the sampled maximum is a conservative estimate:
because only k candidates are considered, cosf
tends to underestimate the true maximum align-
ment. While downward-biased in expectation, this
bias is benign and even advantageous in practice,
as it favors projection or rejection over direct ac-
ceptance. Empirically, this conservative tendency
aligns with the observed stability gains of our
method, providing both efficiency and robustness
at no additional cost.

3.3 Suppressing Gradient Interference with
Selective Projection

Building on Section 2.2, recall that interference
occurs when giT u < 0 for a past gradient g;. GEM
(Lopez-Paz and Ranzato, 2022) prevents such in-
terference by solving a quadratic program with
inequality constraints g'u > 0 for stored direc-
tions (Eq. 4), projecting g; onto the correspond-
ing feasible cone. By contrast, OGD (Farajtabar
et al., 2019) and GPM (Saha et al., 2021) adopt
the stricter equality-constrained view, removing all
components in the stored subspace S = span(B)
via the orthogonal update u = (I — Ps)g; (Eq. 6),
which minimizes first-order forgetting for tasks
whose gradients lie in S.

SFAO extends these ideas by introducing a
similarity-gated rule that selects among accept,
project, and discard operations. To analyze its guar-
antees, define the sampled interference risk

R(u;C) = max(—g"
(u;C) rggg( g u)y,

for a subset C C B of stored directions.

Project region. Ifu = (I—Ps)g;, theng"u =0
for all g € B, hence R(u;C) = 0. This recovers
the first-order safety guarantees of OGD/GPM for
tasks represented in S.

Accept region. If 5; > Ayecepr > 0, then even the
worst sampled cosine similarity is nonnegative. For
the sampled g* attaining $; we have (¢*) " g; > 0,
SO ﬁ(gt;C) = 0. (The restriction Agccept > 0 is
essential; otherwise negative-alignment directions
could still be accepted.)

Discard region.
trivially safe.

If u = 0, the update is null and
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Conservativeness under sampling. Since §; =
maxgec cos(grg) < 5 = maxges cos(gr, g).
sub-sampling provides a deterministic lower bound
on the true maximum alignment. Therefore, rel-
ative to full-buffer decisions, SFAO with finite k
can only increase the likelihood of projection or
discarding (never reduce it), making the method
conservative in suppressing interference.

Discard region. u = 0 is trivially safe.

Since §; < sy, sub-sampling is conservative: rel-
ative to decisions made with the full buffer, it can
only increase the likelihood of projecting or dis-
carding (never reduce it), which further suppresses
interference at fixed thresholds.

4 Experiments and Results

We evaluate on standard CL benchmarks for com-
parability with prior work: Split MNIST and Per-
muted MNIST (LeCun and Cortes, 2005; Goodfel-
low et al., 2013), Split CIFAR-10/100 (Krizhevsky
et al., 2009), and Tiny ImageNet.

Baselines. (1) OGD (Farajtabar et al., 2019):
A gradient projection method that enforces or-
thogonality to previously learned parameter sub-
spaces. It is our primary baseline given its geo-
metric alignment with SFAQO’s projection-based
approach. (2) EWC (Kirkpatrick et al., 2017):
A seminal regularization-based method that con-
strains parameter updates according to their esti-
mated importance to prior tasks via the Fisher In-
formation Matrix. This provides a representative
benchmark for weight-consolidation approaches.
(3) SI (Zenke et al., 2017): An efficient path-
regularization method that computes parameter im-
portance online and penalizes changes to parame-
ters deemed critical for previous tasks. (4) SGD:
Vanilla stochastic gradient descent, which lacks any
mechanism to mitigate catastrophic forgetting, is
included as a naive baseline to illustrate the magni-
tude of improvement achieved by SFAO.

4.1 Method Stability and Architectural
Requirements

Observation. During initial experiments, we dis-
covered that regularization-based methods EWC
and SI exhibited significant instability when paired
with lightweight architectures, often diverging or
producing invalid losses on the Simple CNN back-
bone. This instability required switching to more
complex architectures to achieve stable training.

Fix. We address this by conducting experiments
on both architectural settings. Initially, we eval-
uate geometry-aware methods (OGD and SFAO)
on Simple CNN and regularization methods (EWC
and SI) on Wide ResNet-28x10 (WRN28x10) due
to stability constraints. Subsequently, when compu-
tational resources became available, we conducted
additional experiments evaluating all methods on
WRN28x10 to enable direct comparisons.

Implication. While architectural adjustments
can resolve stability issues, this approach highlights
a fundamental limitation: methods that require spe-
cific architectural choices to function properly lack
the generalizability needed for real-world deploy-
ment. In practice, practitioners cannot always guar-
antee access to large or specially designed models,
making architecture-agnostic stability crucial for
continual learning methods.

New Model Results. We present results for
CIFAR datasets under both experimental set-
tings. The first set of tables shows results with
Simple CNN for geometry-aware methods and
WRN28x10 for regularization methods. The sec-
ond set of tables shows all methods evaluated on
WRN28x10, enabling direct head-to-head compar-
isons. SFAO demonstrates consistent performance
across both architectural settings without requiring
backbone-specific adjustments, positioning it as a
more generalizable solution that maintains stability
regardless of model capacity constraints.

Setup. For MNIST datasets, all baselines use a
Simple MLP consisting of a flattened input layer, a
single hidden layer with 784 units and ReL.U acti-
vation, followed by a linear classifier to C classes.

For CIFAR experiments, we present results un-
der two architectural settings. In the first setting,
geometry-aware methods (OGD, SFAO, SGD) use
a Simple CNN consisting of two convolutional
blocks with 3x3 kernels (32 and 64 channels re-
spectively), each followed by ReL.U activation and
2%2 max pooling, then a 128-unit fully connected
layer and a linear classifier. Regularization meth-
ods (EWC, SI) use WRN28x10 with standard for-
mulation including 28 layers, widening factor 10,
batch normalization, and residual connections. In
the second setting, all methods are evaluated on
WRN28x10 to enable direct head-to-head compar-
isons.

All reported results include standard devia-
tions computed over 5 runs with different random
seeds, ensuring statistical reliability while remain-
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ing within our compute budget.

Architectures. For MNIST datasets, all base-
lines use a Simple MLP: flattened input — a single
hidden layer (784 units, ReLU) — linear classi-
fier to C' classes. For Group (A) CIFAR experi-
ments (OGD, SFAO, SGD) we use a Simple CNN
consisting of two convolutional blocks with 3 x 3
kernels (32 and 64 channels), each followed by
ReLU and 2 x 2 max pooling, then a 128-unit
fully connected layer and a linear classifier. For
Group (B) CIFAR experiments (EWC, SI) we use
a WRN28x10 (standard formulation with 28 lay-
ers, widening factor 10, batch normalization, and
residual connections), which provides the capacity
and stability required by these regularization-based
methods.

Hyperparameters. Across all datasets, we use
an SGD optimizer with a momentum of 0.9, a learn-
ing rate of 1073, batch size of 32, and 2 epochs per
task to control compute and isolate forgetting be-
havior. For EWC and SI, we follow Avalanche’s
implementation! and select regularization strength
A by a small grid search on early tasks. For SFAO,
we sweep cosine thresholds Aproj and Aaecepr in
the range 0.80-0.95 (discard threshold fixed at
—1 x 107*, max storage capped at 200), and dis-
play the best result.

Compute Efficiency. All experiments were run
on a single NVIDIA A40 GPU (9 vCPUs, 48GB
host memory). SFAO introduces minimal over-
head—training time increased by less than 6-8%
compared to vanilla SGD.

4.2 Split MNIST Benchmark

Accuracy + Std. Deviation (%)
Task 1 Task 2 Task 3 Task 4
SGD  67.4+0.5 759+0.8 47.4+1.0 97.0+0.2
EWC 128+£04 11.5+09 31.840.7 12.0+04
SI 93.940.3 92.6+£0.5 99.3+0.1 99.8+0.4
OGD 99.9+0.0 68.0+1.2 54.6+1.0 74.7+0.8
SFAO 93.6+£0.4 79.3+0.9 47.2+1.1 95.6+0.3

Task 5
91.0+0.3
99.8+0.1
99.240.1
42.7+1.5
86.8+0.5

Table 1: Split MNIST: The accuracy of the model after
sequential training on five tasks. The best continual
results are highlighted in bold.

As shown in Table 1, ST attains the best overall
performance with minimal forgetting. SFAO is
not as strong as SI or OGD on this benchmark;

'We build on the open-source Avalanche framework
(Carta et al., 2023), available at https://github.com/

ContinualAI/continual-learning-baselines/tree/
main.

however, it substantially improves over EWC and
SGD in terms of retention while maintaining high
per-task accuracy. These results position SFAO as
a memory-efficient, geometry-aware optimizer that
compares favorably to regularization baselines on
MNIST-scale problems.

4.3 Permuted MNIST Benchmark

Accuracy + Std. Deviation (%)

Task 1 Task 2 Task 3
SGD  75.7£0.6 81.7£04 83.54+0.3
EWC 73.0£0.5 75.6£0.7 77.44+0.6
SI 92.84+0.2 95.3+0.1 94.9+0.1
OGD 79.3£04 79.840.3 81.3+04
SFAO 76.0£0.6 79.3£0.5 82.840.7

Table 2: Permuted MNIST: The accuracy of the model
after sequential training on three permutations (p1, pa,
p3). The best continual results are highlighted in bold.

As shown in Table 2, SI achieves the highest ac-
curacy across permutations. However, SFAO pro-
duces competitive results and outperforms EWC.
SFAOQ also narrows the average accuracy gap with
OGD at higher cosine thresholds (see Appendix
A4)

4.4 Split CIFAR-100 Benchmark (Without
WRN)

We extended Split CIFAR-100 to 10 tasks follow-
ing the standard protocol. Table 3 reports per-task
accuracies for Group A methods on the Simple
CNN; Group B methods are shown for context us-
ing a WRN28x10. While SFAO underperforms
OGD in final accuracy with the Simple CNN back-
bone, it is notably more consistent across tasks
and outperforms OGD on most tasks until the last.
This highlights a trade-off: OGD excels at preserv-
ing late-task performance, whereas SFAO provides
steadier retention throughout training.

4.5 Split CIFAR-100 Benchmark (With WRN)

We extended Split CIFAR-100 to 10 tasks follow-
ing the standard protocol. Table 4 reports per-task
accuracies for all methods using the WRN-28x10
backbone, enabling direct comparison across ap-
proaches. SFAOQ is able to demonstrate more con-
sistent retention across earlier tasks and competi-
tive results on mid-sequence tasks. This contrast
highlights a trade-off: OGD preserves strong per-
formance on later tasks, whereas SFAO provides
steadier performance throughout training. This
indicates SFAO achieves a more balanced perfor-
mance across the sequence, which may be prefer-
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Accuracy + Std. Deviation (%)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
SGD  10.1+0.3 10.1£0.3 8.0+0.2 9.6+0.2 10.44+0.2 10.1+£0.3 10.9+0.3 9.0+0.2 11.44+0.3 12.34+0.3
EWC 19.4+0.5 182404 14.5+0.3 24.7+0.5 21.6+0.4 18.7+0.3 20.9+04 15.9+03 22.0+04 13.5+0.3
SI 12.2+0.8 14.04+0.7 19.1+09 14.44+0.6 169+0.7 32.3+1.6 28.4+1.3 31.5+2.0 37.842.1 43.6+3.5
OGD 8.54+0.2 3.640.1 8.0+0.2 64+02 45+02 84+03 21.3+£0.5 13.6+04 15.90+1.3 66.0+2.4
SFAO 8.94+0.3 8.34+0.3 9.94+0.2 11.24+0.2 12.54+0.2 11.2+0.5 26.7+0.8 16.8+2.3 21.4+1.3 23.6+3.8

Table 3: Split CIFAR-100: The accuracy of the model after sequential training on all ten tasks. The best continual

results are highlighted in bold.

Accuracy + Std. Deviation (%)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
SGD 8.6+0.5 3.94+0.7 9.0£02 7.0+04 102+03 7.2+0.5 18.34+0.3 8.7+£04 15240.6 46.8+0.2
EWC 194+0.5 18.2404 145403 24.740.5 21.6+04 18.7+0.3 20.94+04 159+03 22.0+04 13.5£0.3
SI 12.24+0.8 14.04+0.7 19.1£0.9 14.44+0.6 169+0.7 32.3+1.6 284+1.3 31.5£2.0 37.8+2.1 43.6+£3.5
OGD 10.8+0.2 2.6+03 7.24+0.2 7.5+05 7.6+£04 5.6+0.2 21.64+0.5 14.3+£0.3 10.8+0.5 71.4+1.1
SFAO 10.1+£0.7 4.0+0.5 94+03 7.6+04 5.04+04 74406 21.0+0.8 17.4+1.8 19.0+1.7 58.1+4.3

Table 4: Split CIFAR-100 with WRN: The accuracy of the model after sequential training on all ten tasks. The best

continual results are highlighted in bold.

able in applications where uniform retention is im-
portant.

4.6 Split CIFAR-10 Benchmark (Without
WRN)

Table 5 reports per-task accuracies for Group A
methods (OGD, SFAO, SGD) evaluated on the Sim-
ple CNN; EWC and SI are shown for context using
a WRN28x 10 and should be treated as qualitative
context.” Under the lightweight Simple CNN back-
bone (head-to-head comparison), OGD attains the
highest average accuracy overall in our run, while
SFAOQO is competitive on average. This pattern il-
lustrates the stability—plasticity trade-off: OGD
can strongly preserve earlier task performance in
certain settings, whereas SFAO provides more bal-
anced per-task behavior and reduced projection
frequency (see Appendix A.3). We therefore report
Group A as direct comparisons and treat Group B
as qualitative context only.

4.7 Split CIFAR-10 Benchmark (With WRN)

Table 6 reports per-task accuracies for all base-
lines using the WRN-28x10 backbone, enabling
direct comparison across methods. SFAO shows
strong and balanced performance across the se-
quence, achieving the best results on mid-sequence
tasks (Task 3 and Task 4) and remaining competi-
tive on the first and last tasks. While SI reaches the
highest accuracy on the final task, its earlier perfor-

2EWC and SI were evaluated on Wide ResNet-28x 10 due
to instability / divergence observed on the Simple CNN; see
the Setup paragraph.

mance lags behind SFAO. These results highlight
that SFAO achieves a favorable balance between
stability and plasticity on Split CIFAR-10, outper-
forming OGD in several tasks while maintaining
consistency throughout training.

4.8 Split TinyImageNet Benchmark (With
WRN)

Table 7 shows that SFAO is competitive on early
tasks of Split TinylmageNet, whereas SI excels on
the final three tasks and EWC remains strong in the
first half. Given the benchmark’s greater complex-
ity (fine-grained categories, higher intra-class vari-
ation, and stronger distribution shifts), these trends
may reflect differing robustness profiles across dif-
ficulty regimes rather than a single global rank-
ing. A plausible explanation is that SFAO’s ac-
cept/project mechanism favors rapid adaptation
early in the stream, while regularization-based ap-
proaches (SI/EWC) offer greater stability later; a
definitive causal analysis is left to future work.

5 Future Directions

5.1 Task Ordering Effects

Continual learning performance often depends on
task sequence, with some orders amplifying for-
getting and others resembling curricula (Bell and
Lawrence, 2022; Kemker et al., 2018). Since SFAO
regulates updates through thresholds, future work
could explore dynamic robustness via checkpoints
and backtracking: if a new task induces sharp
forgetting, training can revert and continue with
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Simple CNN WRN-28x10
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5
SGD  49.5+2.3 50.04+1.8 50.0+2.1 50.0+1.5 50.0+2.0 SGD  77.3£23 604+1.8 52.5+2.1 51.6+1.5 86.3+2.0
EWC 20.6+1.2 17.5+0.9 19.24+1.0 24.5+1.8 23.6+1.1 EWC 20.6£1.2 17.5+09 19.2+1.0 24.5+1.8 23.6+1.1
SI 70.2+£2.7 51.842.5 44.1+2.0 66.3+2.8 96.1+1.5 SI 70.2+2.7 51.842.5 44.1+2.0 66.3+£2.8 96.1+1.5
OGD 79.3+3.1 58.0+2.7 51.6+2.5 58.0+3.0 93.0+1.2 OGD 80.3+3.1 63.7+2.7 53.0+£2.5 66.0+3.0 94.7+1.2
SFAO 76.5+29 624432 52.6+24 57.6£3.0 77.0+2.1 SFAO 78.7£29 569432 55.4+24 69.9+3.0 90.9+2.1

Table 5: Split CIFAR-10 benchmark with Simple CNN  Table 6: Split CIFAR-10 benchmark with WRN-28x10

backbone. backbone.
Accuracy £ Std. Deviation (%)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
SGD 174414 19.0+£0.7 16.3+09 16.9+0.5 19.8+1.0 17.3+0.5 14.6£1.4 18.8+04 17.3+0.7 183+1.2
EWC 23.840.8 25.04+0.4 21.3+1.1 18.24+0.7 25.7+£0.5 23.2+1.3 19.64+0.9 229+14 18.5+1.3 229424
SI 6.4+0.75 74+14 29+13 9.64+2.6 11.1+4.0 182+3.8 19.24£3.2 265429 32.0+5.5 46.4+6.1
OGD 7.5+12 95+19 10.8+14 162+13 14.5+24 204+28 20.74+2.1 32.2+3.0 314422 455420
SFAO 24.44+0.5 25.8+0.8 25.3+1.3 24.5+0.9 29.0+1.6 27.5+1.5 251+1.0 27.8+1.5 269+1.1 26.3£1.5

Table 7: Split TinyImageNet: The accuracy of the model after sequential training on all ten tasks.

stricter thresholds, effectively “learning more cau-
tiously.” Threshold statistics also provide a proxy
for task difficulty, enabling automated adaptation
and the design of optimal curricula. Thus, SFAO
could both mitigate order sensitivity and serve as a
principled tool for quantifying and improving task
sequencing across continual learning methods.

5.2 Per-layer Threshold Training

Beyond fixed thresholds, a promising direction
is learning thresholds dynamically. Thresholds
)\f,roj and )\ﬁccept can be treated as learnable param-
eters and optimized via backpropagation with dif-
ferentiable gating (e.g., sigmoid soft thresholds) or
via reinforcement learning (Ghasemi and Ebrahimi,
2024) using long-term metrics like forgetting and

compute cost.

5.3 Dynamically Update and Schedule
Thresholds

Thresholds can be updated with learning rates or
schedules, becoming stricter near convergence to
reduce interference and improve stability. Strate-
gies include linear warm-up with exponential
growth (Kalra and Barkeshli, 2024) or piecewise
updates (Cohen-Addad and Kanade, 2016). Thresh-
olds can also adapt to performance metrics such
as forgetting rate or plasticity—stability scores for
dynamic sensitivity control.

6 Related Work
6.1 Geometry-Aware Methods

The geometry-aware perspective in continual learn-
ing began as an alternative to memory replay and

regularization. Instead of storing data or penal-
izing parameter shifts, methods like OGD pro-
posed projecting gradients onto subspaces orthog-
onal to prior tasks, ensuring updates do not inter-
fere with previous knowledge (Farajtabar et al.,
2019). This concept was further refined by Gra-
dient Projection Memory (GPM), which used Sin-
gular Value Decomposition (SVD) to build com-
pact gradient subspaces and selectively project fu-
ture updates (Cha et al., 2020). These methods
often rely on operations such as orthogonalization
or SVD. Although effective, such approaches in-
troduce structural overhead that SFAO addresses
through lightweight probabilistic approximations
of gradient alignment.

6.2 Regularization-Based Methods

Regularization-based methods such as EWC and
SI were among the first to gain traction to address
catastrophic forgetting (Kirkpatrick et al., 2017;
Zenke et al., 2017). They constrain updates to
important parameters using gradient tracking met-
rics by imposing static penalties (e.g., quadratic
loss terms) based on parameter sensitivity. Some
recent variants, such as RTRA, combine regulariza-
tion with adaptive gradient strategies to improve
stability and training efficiency (Zhao et al., 2023).
These methods model forgetting as a function of pa-
rameter importance, introducing fixed or adaptive
constraints during optimization. Our work differs
in that SFAO modulates updates dynamically based
on local alignment with previously learned gradient
directions.
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6.3 Theoretical Perspectives on Forgetting

A growing body of work aims to dissect why catas-
trophic forgetting occurs in neural networks. Early
empirical studies suggest that standard gradient de-
scent optimizers completely overwrite earlier task
knowledge (Goodfellow et al., 2013). Later papers
like (Nguyen et al., 2019) and (Wu et al., 2024)
show that forgetting also correlates with gradient
interference, task similarity, and network capacity.
Our method is grounded in this insight, as SFAO
addresses the most cited cause of forgetting, gra-
dient interference by filtering out the conflicting
directions during learning. Its cosine similarity test-
ing and projection filtering mechanism are rooted
in the theoretical observation that overlapping gra-
dients lead to interference.

7 Conclusion

We introduce SFAO, a tunable, similarity-gated ex-
tension to OGD that balances forgetting and adapt-
ability using cosine similarity. It employs a practi-
cal gating mechanism with interpretable parameters
to regulate stability, ensuring consistent memory
retention under a fixed compute budget. This de-
sign also provides a promising path toward adaptive
or scheduled thresholds, offering flexible control
strategies in continual learning. SFAO integrates
seamlessly with SGD, without requiring additional
losses, memory buffers, or architectural overhead.

8 Limitations

A key limitation was the instability of
regularization-based methods like EWC and
SI, requiring us to switch to a WRN28x10
backbone for stable training. This highlights
the need for methods robust across diverse
architectures and model capacities. While SFAO
shows architecture-agnostic stability, the field
needs systematic approaches ensuring method
robustness without architectural workarounds.
Future work should develop continual learning
techniques maintaining consistent performance
across varying model sizes, enabling deployment
in resource-constrained scenarios.

9 Impact Statement

This work aims to advance the field of machine
learning through methodological contributions. We
do not identify specific societal or ethical risks
arising from this study beyond those typical of
general machine learning research.

10 Reproducibility Statement

All experimental code, hyperparameters, and
model configurations are provided to ensure re-
producibility, and can be found publicly on GitHub
at https://github.com/anixa-s/sfao.
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A Additional Experiments
A.1 Forgetting on Split MNIST

Forgetting Curve per Baseline on Split MNIST
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Figure 1: Forgetting curve per baseline on Split MNIST. Forgetting is averaged across previously seen tasks after
each new task. There are a total of four tasks.

A.2 SFAO and OGD Memory Usage Comparison

The memory usage was calculated using in the form of megabytes (MB):

|S| x num_params x 4
10242

Memory (MB) =

where |S]| is the number of stored gradients, num_params is the total number of model parameters, and 4
is the number of bytes per float32.

Dataset OGD (MB) SFAO (MB)
Split MNIST 1441.82 153.71
Permuted MNIST (3) 4367.28 155.28
Permuted MNIST (5) 7278.00 155.28

Table 8: Memory usage (MB) comparison between OGD and SFAO across Split MNIST and Permuted MNIST. For
Permuted MNIST, experiments were conducted with p;—ps permutations (3) and p;—ps permutations (5)

As seen in Table 8, SFAO substantially reduces memory usage on Split MNIST and Permuted MNIST,
remaining essentially constant across increasing permutations. This efficiency stems from SFAQO’s buffer
management strategy: the cosine similarity threshold prevents redundant gradients from entering the buffer,
while the discard threshold removes uninformative vectors, keeping |S| bounded regardless of the number
of tasks. On Split CIFAR-100, SFAO uses slightly more memory than OGD due to higher-dimensional
and more diverse gradients, which fewer pass the filtering thresholds. This modest increase reflects a
trade-off that prioritizes stability and mitigates catastrophic forgetting in complex datasets, demonstrating
that SFAO balances efficiency and reliability across different benchmarks.
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Dataset OGD SFAO

Split MNIST 5625 200
Permuted MNIST | 5625 200
Split CIFAR-100 | 300* 200

Table 9: Projection frequency per batch for OGD and SFAO across benchmarks. *For Split CIFAR-100, OGD uses
a capped gradient memory (max_mem_dirs = 1000) and harvest policy (dirs_per_task = 120, harvest_batches
= 30), unlike MNIST where projections scale with the full stored gradient set.

A.3 Average Projection Frequency

As seen in Table 9 We observe that OGD incurs significantly higher projection counts, especially on
MNIST benchmarks where projections scale with the full memory of past gradients. In contrast, SFAO
maintains a fixed low projection frequency across all tasks, offering a more computationally efficient
alternative. While OGD’s capped memory reduces this burden on Split CIFAR-100, SFAO still provides
stable performance with substantially fewer projections.

A.4 Different Cosine Similarity Thresholds vs OGD Accuracy

Dataset OGD SFAO (0.95) SFAO (0.90) SFAO (0.85) SFAO (0.80)
Permuted MNIST (3) | 0.8014 0.7815 0.7753 0.7938 0.7815
Permuted MNIST (5) | 0.7933 0.7633 0.7612 0.7799 0.7887
Split CIFAR-10 0.6800 0.6525 0.6487 0.6152 0.6219
Split CIFAR-100 0.1562 0.1368 0.1500 0.1436 0.1505

Table 10: Average accuracy comparison of OGD and SFAO across different cosine similarity thresholds on multiple
benchmarks. For Permuted MNIST, experiments were conducted with p;—ps (3 permutations) and p;—ps (5
permutations).

As seen in Table 10, SFAO demonstrates competitive performance across most datasets, particularly
for Permuted MINIST, where thresholds of 0.85 and 0.80 remain close to OGD despite the increased
complexity from additional permutations. While OGD generally outperforms SFAO on CIFAR-based
benchmarks, the gap is minimal for Split CIFAR-10 and narrows further at lower thresholds (0.80). These
results highlight that adaptive cosine thresholds help maintain stability without significantly compromising
accuracy, even under more challenging task permutations.

A.5 Plasticity-Stability Measure

The Plasticity-Stability Measure (PSM) is a scalar metric that quantifies the trade-off between a model’s
ability to acquire new knowledge (plasticity) and its ability to retain previously learned knowledge
(stability). Formally, it is defined as:

PSM — Aﬁnal + Aavg7
2

where Afpy is the final accuracy on the last task and Ay, is the average accuracy across all tasks. Higher
values indicate a better balance, while lower values suggest excessive forgetting or limited adaptability.

As seen in Table 11, SFAO consistently achieves mid-range PSM values across all benchmarks,
remaining close to the balance point between 0 and 1. This reflects its design choice of prioritizing
stability while still maintaining sufficient plasticity to adapt to new tasks. However, OGD’s behavior
varies: on MNIST-scale datasets it favors plasticity, while on high-dimensional datasets like CIFAR it
skews heavily toward stability at the cost of adaptability. Overall, SFAO’s selective gating yields a steadier
stability—plasticity trade-off, making it more reliable across diverse benchmarks.

310



Dataset ‘ OGD ‘SFAO (0.95) SFAO (0.9) SFAO (0.85) SFAO (0.8)

Split MNIST 0.4995 0.4352 0.4310 0.4344 0.4350
Permuted MNIST (3) | 0.4999 0.4783 0.4786 0.4897 0.4791
Permuted MNIST (5) | 0.4958 0.4683 0.4592 0.4742 0.4769
CIFAR-100 0.2511 0.4691 0.4636 0.4768 0.4671
CIFAR-10 0.3574 0.4593 0.4454 0.4277 0.4320

Table 11: Plasticity-Stability Comparison of OGD and SFAO across different cosine similarity thresholds on
multiple benchmarks. For Permuted MNIST, experiments were conducted with p;—p3 (3 permutations) and p;—ps
(5 permutations).

B Algorithms

B.1 SFAO (Similarity-Gated Update with Monte Carlo Sampling)

Algorithm 1 SFAO: Single-layer similarity-gated update (per step)

Require: Current gradient g; € R?; buffer B = {gi f’;l; thresholds Aproj < Aaccept; Monte Carlo sample
size k < B; buffer policy parameters (Bmax, Tadd; Tdrop)
Ensure: Update direction u; and updated buffer B
1: C < SAMPLESUBSET(B, k) > uniform without replacement
2: § < MCMAXCos(¢:,C)

T
> Conservative estimate: § = maXgec %

3: if 5 > Agceept then g > accept
4: Ut < gt

5: else if A\pro; < 5 < Aaceept then > project
6: ug < (I — Ps) gt > S = span(B)
7: else > reject
8: u; 0

9: end if

B.2 Geometry of the SFAO Update
B.3 Per-Layer SFAO: Mathematical Formulation and Algorithm

Mathematical formulation. Forlayer¢ € {1,...,L},let gy) be the layer-wise gradient and B(Y) ¢ R
its buffer. With Monte Carlo subset C(Y) ¢ B of size ky, define

0 (9", g)

0 —
s\ = max .
{4
9<c® gt |19l

Given thresholds —1 < )‘;(fij < )\gﬁ)cept < 1, set the layer update

g, 5O > Adept
U (9,:(@) = (I - PS(Z)) g,gé), )‘r(flj < s < )\gﬁlept with S© = span(B(g)).
0, s < A

proj

Concatenate (or assemble) per-layer updates to obtain u; = (U (1)(gt(1)), Ut (gISL))) and update
parameters 6 < 6 — nu; per SGD.
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Figure 2: Geometry of the SFAO update. Green (Ujccepr): When the current gradient is sufficiently similar to the
buffer B, the update is accepted as is. Blue (Upnject): Otherwise the gradient is orthogonally projected off the
subspace spanned by the buffered past gradients {g;} to mitigate interference.

C Additional Results and Proofs

C.1 Minimizing Gradient Interference Risk

Recall Eq. 5 for minimizing the interference risk of an update u against a set G C¢ of stored directions.
Here, we solve the constrained optimization problem

min 1llu— gl st g'u =0 VYgea,
ued

We proceed by solving the Lagrangian under the formal constraint G'"u = 0:

1
L(u,A) = 5 llu—gill3 + AT (G ) (11)
Next, we evaluate the Karush—Kuhn—Tucker (KKT) conditions:
Stationarity:
1
V£ A =, (-l 46T ) =0 (12)
= u* =g — G\ (14)
Primal Feasibility:
Glu=0 (15)
G" (g, — G)\) =0 per Stationarity (16)
Glgs—GTGA=0 17)
G'gr =G G\ (18)
— X =(G'e)faTg (19)

Since our problem only involves linear equality constraints, the multipliers A are unconstrained and all
equalities are always active, so the dual feasibility and complementary slackness conditions are vacuous
and need not be checked. Also, note that 1 denotes the Moore-Penrose Pseudoinverse.
Substituting \*:
=g - GGTG)G g (20)
— ' =I-GG'A'GNg (21)
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Letting Ps = G(GTG)'GT, we recover Eq. 6:
u* = (I — Ps)gt,

which shows that the optimal update is the projection of the current gradient step g; onto the orthogonal
complement of the span of past gradients.

SVD expression. Let the thin SVD of G' € R%*F be
G=U%V,,

where 7 = rank(G), U, € R¥" and V,. € R¥*" have orthonormal columns, and ¥, € R™*" is diagonal
with positive entries. Then

G'a=v22v = (GG =vx 2V,

and hence
Ps=GGTQ)GT = U,V (V,E2VH(VEU) = UU,]

Therefore, the optimal update can be written purely in terms of the left singular vectors of G:

ut = (I-UU,") g
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