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Abstract

While Large Language Models (LLMs) are
known for their In-Context Learning (ICL) ca-
pabilities, there is no consensus on the under-
lying mechanisms. A key point of debate is
whether ICL allows models to adapt to un-
seen tasks without parameter updates—that is,
whether they can extrapolate. In this study,
we address this question by constructing an
arithmetic dataset based on the bivariate lin-
ear function z = ax + by to train a model
and quantitatively evaluate its interpolation
and extrapolation abilities through ICL. Our
results show that while extrapolation was not
achieved within our experimental design, tasks
that were partially learned could be solved. We
also found that the model acquires internal rep-
resentations that can distinguish unseen tasks,
and that greater task diversity in the training
dataset improves ICL capabilities.

1 Introduction

Large Language Models (LLMs) are known to
be capable of In-Context Learning (ICL) (Brown
et al., 2020; Dong et al., 2024). ICL is a method
that improves inference performance by present-
ing examples of a task within a prompt, without
updating any parameters. This approach allows
for efficient and flexible applications, as it does
not require the preparation of training data or ad-
ditional computational resources (Mosbach et al.,
2023; Yin et al., 2024).

Regarding the mechanism of ICL, three main
hypotheses have been proposed, as shown in Fig-
ure 1. One hypothesis is Task Selection, which
posits that the model recognizes the characteris-
tics of a task from in-context examples and then
selects and applies a pre-trained task (Xie et al.,
2022; Wies et al., 2023). Another is Task Compo-
sition, which suggests that the model can combine
multiple pre-trained tasks to perform inference (Li

The ICL Mechanism:
Three Hypotheses

Demonstration Output

Hypothesis 1 : Task Selection

-

Hypothesis 2 : Task Composition

-

Hypothesis 3 : Meta Learning
ﬁ

Pretrained Task

Figure 1: A conceptual diagram of the three main
hypotheses for the In-Context Learning (ICL) mecha-
nism. Hypothesis (1) Task Selection: The model se-
lects and utilizes a single pre-trained task (e.g., blue
squares) that matches the demonstration. Hypothesis
(2) Task Composition: The model combines multiple
pre-trained tasks to address the new task presented in
the demonstration. Hypothesis (3) Meta Learning:
The model learns and utilizes an unseen task (e.g., a
green triangle), which does not exist in the pre-training
data, on the fly from the context.

et al.,, 2024). Furthermore, there is the Meta-
learning hypothesis, which proposes that ICL en-
ables the model to learn how to learn, adapt-
ing to unseen tasks based on in-context examples
(Von Oswald et al., 2023; Akyurek et al., 2023).
However, these hypotheses are not always consis-
tent with subsequent experimental results (Kossen
et al., 2024; Li et al., 2024), and a unified under-
standing of the ICL mechanism has not yet been
achieved.

A key point of contention is whether ICL can
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be used to adapt to unseen tasks, as this could
provide compelling evidence or counterexamples
for these hypotheses (Garg et al., 2024; He et al.,
2024). For instance, if a model can answer a task
that it has not been pre-trained on simply by be-
ing shown examples in a prompt, it would imply
that the model learned the task from the context
alone without parameter updates. This would be
evidence supporting the meta-learning hypothesis
over the task selection and task composition hy-
potheses. However, when training on large-scale
language data, it is not practical to clearly define
the boundary between learned tasks (interpolation)
and completely new tasks (extrapolation), making
it difficult to rigorously evaluate the extrapolation
capabilities of ICL.

Therefore, this research aims to provide impor-
tant insights into the ICL mechanism by analyz-
ing its extrapolation capabilities using arithmetic
tasks. The advantage of arithmetic tasks is that,
unlike language data, they allow for a clear sep-
aration between the domains of interpolation and
extrapolation by controlling the number of digits
and the range of variables.

In our experiments, we construct a total of 15
different datasets and analyze the extrapolation
ability of ICL by evaluating the test data accu-
racy and internal representation vectors of mod-
els trained on each. The results revealed the fol-
lowing findings: (i) ICL can solve new tasks by
combining previously learned tasks. (ii) Although
the model cannot solve completely unseen tasks,
it encodes internal representations that can iden-
tify them. (iii) The greater the diversity of tasks in
the training dataset, the higher the ICL capability.
The findings from this study are expected to make
a significant contribution to the understanding of
ICL mechanisms, for which a consensus has yet
to be established.

2 Related Work

2.1 In-Context Learning

In-Context Learning (ICL) is one of the ground-
breaking capabilities of Large Language Mod-
els (LLMs), enabling them to perform inference
based on a few examples (Demonstrations) pro-
vided within a prompt, without any parameter up-
dates. This ability, widely publicized by Brown et
al. (2020) (Brown et al., 2020), allows a model
to grasp the rules of a task on the fly from the
examples in the prompt and adapt to new queries

(Brown et al., 2020; Dong et al., 2024).

The emergence of ICL brought about a ma-
jor paradigm shift in adapting models to specific
tasks. Previously, the mainstream approach for
adapting a model to a new task was Fine-Tuning
(FT), which involved preparing high-quality anno-
tated data to retrain all or part of the model’s pa-
rameters (Devlin et al., 2019; Howard and Ruder,
2018). While this process had the advantage of re-
quiring less computational cost and data compared
to pre-training (Houlsby et al., 2019; Ben Zaken
et al., 2022; Hu et al., 2022), it still necessitated
parameter updates to adapt to new tasks.

In contrast, ICL uses natural language prompts
as its interface and requires no additional training
data or weight updates, enabling extremely low-
cost and rapid task adaptation (Mosbach et al.,
2023; Yin et al., 2024). Furthermore, whereas FT
produces a task-specific model, ICL maintains a
single, general-purpose model and demonstrates
high versatility by flexibly handling a wide variety
of tasks simply by rewriting the prompt (Brown
et al., 2020; Wei et al., 2022; Ferber et al., 2024).
Due to this efficiency and flexibility, ICL is con-
sidered a "new paradigm in natural language pro-
cessing" and is recognized as a key characteristic
of LLMs (Dong et al., 2024; Wies et al., 2023; Gu
and Dao, 2024).

2.2 Hypotheses on the Mechanism of
In-Context Learning

There is not yet a consensus on the mechanism
by which ICL functions, and multiple hypothe-
ses have been proposed. As mentioned in the in-
troduction of this paper, these hypotheses can be
broadly categorized into the following three.

The first is the "Task Selection" hypothesis,
which posits that the model recognizes the char-
acteristics of a task from in-context examples and
then selects and applies an appropriate task from a
set of tasks acquired during pre-training (Xie et al.,
2022; Wies et al., 2023). This hypothesis formu-
lates ICL as Bayesian inference, where the model
infers a task conditioned on the input demonstra-
tions.

The second is the "Task Composition" hypoth-
esis, which suggests that the model performs in-
ference by combining multiple learned tasks and
knowledge (Li et al., 2024). This hypothesis ex-
plains that ICL can handle tasks that do not di-
rectly exist in the training data but can be derived
by combining learned tasks.
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The third is the "Meta-learning" hypothesis,
which views ICL as a process of learning the
solution to the task itself (Von Oswald et al.,
2023; Akyurek et al., 2023). This perspective
claims that a dynamic similar to gradient de-
scent is driven internally during ICL, allowing the
model to adapt to unknown tasks from contex-
tual information. Therefore, it makes a fundamen-
tally different claim from the "Task Selection" and
"Task Composition" hypotheses in that it posits
the model can handle tasks it has not pre-trained
on, without parameter updates, based on contex-
tual information.

In this study, based on these hypotheses, we
design three corresponding types of experiments.
Through quantitative analysis of their results, we
aim to provide new insights into the mechanism of
ICL.

3 Experimental Design

3.1 Dataset Construction

3.1.1 Data Representation Format

The dataset used in this study was constructed
based on the bivariate linear function z = ax + by
to quantitatively evaluate the model’s extrapola-
tion capability in ICL (see Figure 2). The variables
x and y are integers ranging from one to four dig-
its, and the coefficients a and b are integers where
a,b € {0,1,...,9}. The model is given a prompt
consisting of k£ computational examples (Demon-
strations) and one question (Query). A k-shot
prompt is input as a concatenated sequence of k
demonstrations, D = {(z;,¥;, 2)}%_;, and a final
query, ¢ = (Tgt1,Yr+1). The coefficients (a,b)
are common to all examples within a prompt, and
x,y are randomly generated. The model is re-
quired to infer the common coefficients (a, b) from
the given k examples and predict the correspond-
ing zx1 for the query.

Example of a 2-shot case witha =2, =1

Demonstration 1: (132, 5532, 5796)

Demonstration 2: (355, 22, 732)

Query: (4412, 3356)
Target Output: 12180

As shown above, the coefficients a,b are not
explicitly stated in the prompt. Therefore, the
value of z cannot be uniquely determined from the
query’s x, y values alone. The model must use ICL
to identify the common coefficients (a, b) from the
k demonstrations to infer z. This design ensures

Build a dataset from z = azx + by

Z,Y : lto4digitinteger
a,b : Anyof{o,1,...,9

Three types of learning data
Whether a,b = 5 isincluded

X5 (shot:{0,1,2,4,8})

TrainData 1
a=140,1,...,9} Test data is common
b={0.1,....9}

y TestData *°
TrainData2 *° ——————> _
{0,1,..,4,6,..,9} @a=5
a = y Ly ey ® 0500y =
b—{0.1...,9} b={0,1,...,9}
a X5 &

TrainData 3 Analysis based on
a= {0 1....4.6... 9} Accuracy rate and
b— {0: 1: B :4: 6: - :9} internal representation

Figure 2: Dataset construction and evaluation flow
for analyzing the extrapolation capability of ICL. The
dataset is constructed based on z = ax + by. The train-
ing data is classified into three types based on whether
they include coefficients a,b = 5. Since the test data
involves tasks where a = 5, interpolation and extrap-
olation are defined by the range of a,b in the training
data. Training datasets 1-3 are further subdivided by
the number of shots into five types, for a total of 15
training datasets.

that a model properly trained on this dataset is per-
forming ICL during inference.

Furthermore, all digits in the dataset are con-
verted into unique symbols. This allows us to
block the influence of the model’s pre-existing
arithmetic knowledge and purely analyze its rea-
soning ability through ICL'.

Symbolic Representation of the Dataset

Demonstration 1: (%?{,«?{,<@%$>)

Demonstration 2: (?«,{{,@?{)

Query: (!%{,?7<>)
Target Output: %{%;"

Hereafter, we define a pair of coefficients (a, b)
as a single "task.” Since the coefficients a and b
can each take 10 different values, the task space
T in this study consists of 100 tasks, defined as
follows:

T ={(a,b)|a,be{0,1,...,9}} (1)

3.1.2 Dataset Composition
The training data consists of a total of 200,000 ex-
amples (train:validation = 8:2), and the test data

See Appendix A.1 for the digit-to-symbol conversion
mapping.
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Table 1: Ranges of coefficients a, b in each dataset

Dataset Range of a Range of b
Training Datal a € {0,..,5,..,9} b€ {0,..,5,..,9}
Training Data2 «a € {0,..,4,6,..,9} b€ {0,..,5,..,9}

Training Data 3 a € {0, ..,4,6,..,9} b€ {0,..,4,6,..,9}
Test Data a=5 be{o0,..,5,..,9}

consists of 1,000 examples.

In this study, to separately evaluate the interpo-
lation and extrapolation capabilities of ICL, we es-
tablish three experimental settings based on the re-
lationship between the set of tasks in the training
data, 7;,qin, and the set of tasks in the test data,
Tiest. Specifically, we define the datasets based on
whether the coefficient ‘5°¢ is included, as shown
in Table 1.

The set of tasks used in the test data, T;es, 1S
fixed to tasks with the coefficient a = 5.

Tiest = {(a,b) € T | a =5} 2)

In contrast, the three types of training datasets
each have the following task sets.

Setting 1: Interpolation The task set used in
training data 1, T;rqin1, 1S identical to the entire
task space T .

ﬁrainl =T (3)

In this setting, the condition T¢est C Tirain1 holds,
meaning all tasks evaluated in the test set have
been seen during training. Therefore, this set-
ting evaluates the model’s pure interpolation abil-
ity—whether it can correctly select and execute a
learned task from the context.

Setting 2: Partial Interpolation The task set
used in training data 2, 7;rqin2, consists only of
tasks where the coefficient a¢ does not include ‘5°.

Tirain2 = {(a, b) eT | a # 5} “4)

In this case, since the coefficient a in the test data
is fixed to ‘5, Tiest N Tirainz = (), meaning the
training data contains no tasks that perfectly match
the test tasks. However, the task set 7;-qin2 does
include the coefficient ‘5°¢ for b. Therefore, this
setting tests whether the model can solve tasks
with coefficient a = 5 by leveraging its knowl-
edge of tasks with coefficient b = 5 from training
data 2.

Setting 3: Extrapolation The task set used in
training data 3, Tyrqing, consists only of tasks
where neither coefficient a nor b includes ‘5°.

Tirains = {(a,0) € T |a #5Nb#5}  (5)

This is the most rigorous setting. The model is
not trained on tasks with @ = 5, nor even on
tasks with b = 5. This means the model will ob-
serve the token for ‘5° for the first time in the test
set’s Demonstrations. This setting questions the
model’s true extrapolation ability—whether it can
infer rules for a completely unseen domain from
the context alone.

In addition to these three settings, each training
dataset is further subdivided into five variations
based on the number of examples in the prompt
(number of shots): 0, 1, 2, 4, and 8-shot. This re-
sults in a total of 15 distinct training datasets for
training and evaluation.

Note that in this study, we clearly distinguish
between extrapolation and generalization. Extrap-
olation refers to the ability to handle unseen tasks
(a,b) ¢ Tirain, whereas generalization refers to
the ability to correctly infer z from unseen inputs
(,y) within the scope of learned tasks (a,b) €
ﬁrain-

3.2 Model and Evaluation

For this research, we fine-tuned a pre-trained
ByTS5 base model (Xue et al., 2022). The Encoder-
Decoder architecture adopted by ByT5 base has a
clear separation between the roles of encoding the
input sequence and decoding the output sequence.
This makes it well-suited for analyzing the final
hidden state of the encoder to understand how the
model extracts task regularities from the context D
and constructs internal representations. Further-
more, ByT5 tokenizes input symbol strings on a
character-by-character basis, ensuring that multi-
digit numbers are tokenized uniquely without be-
ing split. This guarantees a strict distinction be-
tween interpolation and extrapolation, regardless
of the tokenizer.

The model is evaluated using the checkpoint
that achieved the minimum loss on the validation
dataset for each training setting. The primary eval-
uation metric is the accuracy on the test dataset.
To visualize the acquisition process of the ICL ca-
pability during training, we recorded the accuracy
trends for 1,000 samples each from the validation
and test datasets every 1,000 steps during train-

ing?.

For experimental details such as training hyperparame-
ters, see Appendix A.2

280



3.3 Probing Analysis

In this study, we anticipate that the model may
sometimes be unable to solve unseen tasks. How-
ever, even in such cases, it is possible that the
model internally captures the properties of the un-
seen task. To test this hypothesis, we conduct
a probing experiment to verify whether the task
(a,b) from the input prompt can be identified at
the internal representation level. Probing is an
analysis method that involves extracting a model’s
internal states (such as the activation vectors of
hidden layers) and using a simple, external classi-
fier (a probe) to test whether specific information
(in this case, the task identifier) can be predicted
from these vectors.

First, we create a new dataset for probing with
100,000 examples (train:validation = 9:1). The
data format is the same as defined in Section 3.1.
Each sample is assigned a unique integer label [
based on the task (a, b) it belongs to, according to
Equation 6.

[=10a+b (1€{0,1,...,99}) (6)
This allows us to treat the 100 different tasks as a
100-class classification problem.

Next, using the encoder E of the fine-tuned
ByT5 model, we extract an internal represen-
tation vector from each input prompt P
(D, q). Specifically, we use the hidden state vector
heos € R'™36 corresponding to the EOS (End-of-
Sequence) token of the final encoder layer, which
is considered to aggregate the contextual informa-
tion of the entire prompt.

hros = E(P) @)
Then, we train a linear classifier (a multi-class
logistic regression model) fy,,ope to predict the
task label [ from this internal representation vec-
tor hgos.

®)

Z: fprobe(hEOS)

The classification accuracy in this probing task
serves as an indicator of how well the model can
internally distinguish the task (a,b). High accu-
racy would provide strong evidence that the task-
identifying information is encoded in a linearly
separable manner within the model’s internal rep-
resentations, suggesting that the model identifies
tasks through ICL.

281

3.4 The Effect of Data Diversity on ICL

The three types of training datasets defined
in Table 1 differ not only in their interpola-
tion/extrapolation conditions but also in the total
number of tasks, depending on whether they in-
clude a,b = 5. Specifically, the sizes of each
training dataset’s task set are as follows:

e Training Data 1: |Trqin1| = 100
* Training Data 2: |Tirqin2| = 90
* Training Data 3: |Tirqin3| = 81

This difference in the number of tasks could af-
fect the acquisition of ICL capabilities and poten-
tially confound the main analysis results. There-
fore, we conduct an auxiliary experiment to in-
dependently evaluate the impact of task diversity
within the training data on ICL performance.

3.4.1 Auxiliary Experiment Design

To evaluate the effect of task diversity, we created
four new datasets with varying numbers of tasks
by adjusting the range of coefficients a, b, based
on Training Data 2. The task set for each dataset
is defined as follows:

* Training Data 2-1: 30 tasks
Tirain2—1 = {(a7b) ’ a € {0,..,4},() €
{0,..,5}}

* Training Data 2-2: 42 tasks
Tirainz—2 = {(CL, b) | a € {0,..,4,6},b S
{0,..,5,6}}

* Training Data 2-3: 56 tasks
Inrain2—3 = {(a, b) | a¢c {07-'747677}7b S
{0,..,5,6,7}}

* Training Data 2-4: 90 tasks

ﬁrain?—ll {(avb) ‘
{0,..,4,6,..,9},b € {0,..,5,..,9}}

a

Note that Training Data 2-4 is identical to Train-
ing Data 2 (Tirqin2) from the main experiment.
We train models on these datasets under the exact
same settings as the main experiment and calcu-
late the accuracy on the same test data (see Table
1) to compare and analyze the effect of task diver-
sity on ICL capability. The number of demonstra-
tions provided to the model is standardized to four
(4-shot) for this verification.
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Figure 3: Transition of accuracy on validation data (top) and test data (bottom) for models trained on each dataset.
Of particular note is the test data accuracy for TrainData 2 (bottom center), which only partially covers the test
data task because it contains b = 5 but not @ = 5. Nevertheless, the model achieved approximately 0.5 accuracy in
the 2-shot setting and around 0.8 accuracy in both the 4-shot and 8-shot settings. In contrast, the test data accuracy

for TrainData 3, which excludes a, b = 5 entirely, was nearly zero across all shot settings (bottom right).

4 Experimental Results

4.1 Accuracy Results

Figure 3 shows the accuracy trends for the valida-
tion data (top row) and test data (bottom row) for
models trained on each dataset. It is important to
note that, as explained in Section 3.1.2, the scope
of the task sets for each of the validation datasets
(three types) and the test dataset (one type) was
intentionally manipulated (see Figure 2). There-
fore, by confirming that the validation accuracy
is nearly 1, we can ensure that training has com-
pleted successfully. This allows us to attribute the
success or failure on the test data specifically to
the model’s in-context interpolation and extrapo-
lation capabilities. Additionally, Table 2 shows
the test data accuracy at the checkpoint with the
lowest validation loss, which serves as the primary
indicator for task success or failure.

Validation Data Results A common trend in the
validation accuracy plots (Figure 3, top row) is
that while the accuracy for O-shot and 1-shot mod-
els struggles to improve, the accuracy for 2-shot
and 4-shot models approaches 1. For the 8-shot
case, accuracy approached 1 for models trained on
Training Data 1 and 2 (left and center columns),
but it did not improve for the model trained on
Training Data 3 (right column).? These results in-
dicate that training was completed correctly for all
datasets only in the 2- and 4-shot cases. Therefore,

3The reason for this is discussed in Section 5.2 from the
perspective of dataset diversity.

Table 2: Test accuracy for each models

Dataset 0-shot 1-shot 2-shot 4-shot 8-shot

TrainDatal 0.002 0.116 0.936 0.979 0.971
TrainData2 0.000 0.015 0.473 0.825 0.805
TrainData3 0.000 0.000 0.000 0.066 0.008

the analysis of ICL’s interpolation and extrapola-
tion capabilities will be based on the results of the
2- and 4-shot models.

Test Data Results - Training Data 1 The graph
in the lower-left panel of Figure 3 shows that for
the 2-, 4-, and 8-shot cases, the test accuracy con-
verges to 1 during training. In contrast, the ac-
curacy remained at 0.002 for the 0O-shot case and
0.116 for the 1-shot case (see Table 2).

Test Data Results - Training Data2 The graph
in the lower-middle panel of Figure 3 shows that
the accuracy converges to around 0.5 for the 2-shot
case and around 0.8 for the 4- and 8-shot cases. In
contrast, the accuracy for the 0- and 1-shot cases
remained near zero (see Table 2).

Test Data Results - Training Data 3 As shown
in Table 2, the accuracy was 0 for almost all shot
counts. This indicates that, within our experimen-
tal setup, the model could not solve completely un-
seen tasks.
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Table 3: Probing accuracy of each models

Dataset 0-shot 1-shot 2-shot 4-shot 8-shot

TrainDatal 0.010 0.493 0.963 0.996 0.998
TrainData2 0.009 0.754 0.951 0.993 0.997
TrainData3 0.012 0.798 0.929 0.993 0.976

4.2 Probing Experiment Results

Table 3 shows the average accuracy for each
model in the probing experiment, which classi-
fies the task (a,b) from the internal representation
of the input sequence. For the 2-, 4-, and 8-shot
settings, the models trained on any of the training
datasets achieved an accuracy of over 0.9, indicat-
ing that the classifier could properly linearly sepa-
rate the tasks based on the internal representations
of the input sequence. Notably, even for the model
trained on Training Data 3, which had an accu-
racy of almost O in Table 2, the probing experi-
ment recorded a high accuracy. On the other hand,
the accuracy for the 0O-shot case was nearly zero,
and while the 1-shot case showed some variation
depending on the training data, it did not reach a
sufficient level of accuracy. The detailed results of
the probing experiment for each model are visual-
ized as confusion matrices in Appendix A.3.

4.3 Results of the Analysis of Dataset
Diversity’s Impact

Figure 4 shows the accuracy trends for the valida-
tion data (top) and test data (bottom) for models
trained on the four types of datasets described in
Section 3.4.1. The number of demonstrations was
standardized to 4-shot. The accuracy on the val-
idation data (top row) can be seen converging to
1 for all training datasets, indicating that training
was completed successfully. On the other hand,
the accuracy on the test data (bottom row) is ob-
served to converge to higher levels as the diversity
of the training data increases. Table 4 shows the
test data accuracy at the checkpoint with the low-
est validation data loss, and this table also demon-
strates that increasing task diversity leads to sig-
nificant changes in accuracy. Notably, for Training
Data 2-1, although the validation accuracy con-
verged to 1, the test accuracy remained at only
0.003, indicating that when the task diversity in
the training data is low, the ICL capability cannot
be properly generalized.
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Figure 4: Accuracy trends on the validation data (top
row) and test data (bottom row) for each training
dataset.

Table 4: Test data accuracy for each training dataset

Dataset Accuracy
Training Data 2-1  0.003
Training Data 2-2  0.158
Training Data 2-3  0.569
Training Data 2-4  0.825

5 Discussion

5.1 Extrapolation Capability of ICL from the
Perspective of Accuracy and Probing
Results

First, Figure 3 shows that for the 0- and 1-shot
cases, the validation accuracy did not converge to
1 for any training dataset, and the test accuracy
was also nearly 0. This is likely because the task
was created from a bivariate function, which re-
quires at least two demonstrations to identify the
specific task (a, b).

Next, regarding Training Data 1, the models
achieved approximately 100% accuracy on both
the validation and test data for the 2-, 4-, and 8-
shot cases (see Table 2). Since Training Data 1
includes the task scope of the test data (interpola-
tion), this result suggests that the model can recog-
nize the presented task via ICL and appropriately
select and apply a task from its learned repertoire.

Subsequently, for Training Data 2, despite not
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being trained on tasks with a = 5—i.e., tasks iden-
tical to the test data—the model achieved accu-
racies of 0.473 for 2-shot, 0.825 for 4-shot, and
0.805 for 8-shot on the test data (see Table 2).
This suggests that ICL not only selects learned
tasks but can also solve partially unseen tasks by
composing them. Specifically, it is thought that
the model solved the test tasks by combining the
knowledge gained from learning tasks with b = 5
included in Training Data 2—i.e., tasks of the form
(a,b) = (k,5) (where k € {0,..,4,6,..,9})—
with the demonstrations for the test tasks (a, b) =
(5,k) (where k € {0,1,..,9}).

Finally, the test accuracy for the model trained
on Training Data 3 was nearly O for all shot counts,
providing no evidence that ICL enables extrapola-
tion within the scope of this experiment. However,
the results of the probing experiment (see Table
3) show that in the 2-shot and higher settings, the
model trained on Training Data 3, similar to the
models trained on other data, could linearly sepa-
rate tasks from the input sequence. This suggests
that in ICL, the model encodes internal representa-
tions from the input sequence in a way that enables
it to separate each task, thereby distinguishing un-
seen tasks from learned ones. Therefore, while
ICL allows the model to acquire internal represen-
tations that can identify completely new tasks, a
failure to map these representations to the correct
output—that is, a failure in the decoder’s dynam-
ics—is likely the cause of the extrapolation failure,
warranting further investigation.

5.2 The Effect of Dataset Diversity on ICL
Capability

As seen in Figure 4 and Table 4, while the val-
idation accuracy (top row) converges to 1 for all
training datasets, the test accuracy improves in line
with the task diversity of the dataset. These results
suggest that the diversity of tasks in the training
data is crucial for acquiring ICL capability. This
is likely because high task diversity enables the
model to learn a general-purpose solution appli-
cable to all tasks, rather than learning a specific
solution for each individual task.

Based on this consideration, we can speculate
on why only the 8-shot model for Training Data
3 failed to reach an accuracy of 1 on the valida-
tion data (top-right graph in Figure 3), unlike the
models for Training Data 1 and 2. Specifically,
since Training Data 3 has fewer total tasks com-
pared to Training Data 1 and 2 (see Section 3.4), it

is conceivable that a general-purpose ICL capabil-
ity was not sufficiently acquired. It is important to
note that this argument applies only to the 8-shot
case, as the validation accuracies for the 2- and 4-
shot models did converge to 1. Since it has been
shown that ICL performance improves with more
demonstrations (Brown et al., 2020; Dong et al.,
2024), a significant challenge for further verifying
extrapolation capability is to test with 8 or more
shots. Therefore, to discuss the extrapolation ca-
pability of ICL in settings with 8 or more shots, it
is necessary to use datasets with even greater task
diversity, such as by expanding the range of coef-
ficients a, b or creating data from a trivariate linear
function.

6 Conclusion

In this study, we analyzed the extrapolation capa-
bility of LLMs through ICL using an arithmetic
task based on a bivariate linear function. Based on
the three main hypotheses of the ICL. mechanism,
we designed an experiment that enables the analy-
sis of ICL’s extrapolation capabilities—a difficult
feat with natural language—by manipulating the
range of the task (a,b) in our dataset design. Our
analysis, based on test data accuracy, probing of
internal representations, and auxiliary experiments
considering task diversity, yielded the following
insights: (i) Through ICL, partially learned tasks
can be solved by composing learned tasks. (ii)
The model acquires internal representations that
can distinguish unseen tasks. (iii) The greater the
task diversity in the training dataset, the higher the
ICL capability.

For future work, we believe that by examin-
ing the decoder’s dynamics during extrapolation
in detail, we can provide more useful experimen-
tal insights into why the model fails to produce
the correct answer despite being able to identify
the extrapolation task. Furthermore, analysis us-
ing datasets with even greater task diversity will be
necessary, for instance, by expanding the range of
tasks a, b or designing tasks with trivariate linear
functions. Through these efforts, this research is
expected to make a significant contribution to the
understanding of the ICL mechanism, for which a
consensus has yet to be established.
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Limitations

While this study provides valuable insights into
the extrapolation capabilities of in-context learn-
ing (ICL) through controlled arithmetic tasks, sev-
eral limitations remain.

First, the experimental setting focuses ex-
clusively on arithmetic tasks, which allow for
clear definitions of interpolation and extrapola-
tion. However, this abstraction may not directly
reflect the nature of linguistic tasks in real-world
language modeling. Therefore, the results ob-
tained here may not generalize to natural language
data, where task boundaries and generalization be-
havior are less well-defined.

Second, we used ByT5, an encoder-decoder ar-
chitecture, as the base model for analysis. Al-
though this design choice enables precise control
over input tokenization and allows us to analyze
the encoder’s final hidden state to investigate how
the model learns task regularities from demonstra-
tions, it limits the direct applicability of our find-
ings to contemporary decoder-only large language
models (LLMs), such as GPT-4, which are more
widely used in practical scenarios.

To bridge these gaps, future work should ex-
plore whether similar patterns of extrapolation and
task identification emerge in decoder-only models
and under linguistically grounded tasks.

Ethical Considerations

This foundational study uses a synthetic arithmetic
dataset, which contains no personally identifiable
information or societal biases. Due to the abstract
nature of the research and the artificial data, we do
not foresee any direct societal risks or potential for
misuse of our findings.
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A Appendix

A.1 Digit-to-symbol conversion mapping

The digits in the dataset are mapped to symbols
according to Table 5. Each of these symbols is
treated as a single token by the ByT5 tokenizer,
which ensures that the distinction between the
interpolation and extrapolation domains is pre-
served.

Table 5: Digit-to-symbol conversion mapping.

Digit Symbol
0 R
1 %
2 {
3 ?
4 !
5 <
6 >
7 @
8 ;
9

A.2 Training Settings
A.2.1 ByTS5 Hyperparameter Settings

* Model size : 580 million parameters

* Optimizer: AdamW (Loshchilov and Hutter,
2019)

* Learning rate: 0.0001
* Batch size: 64
* Epochs: 100

A.2.2 Probing Experiment Settings

¢ (Classifier:
(scikit-learn)

Multiclass logistic regression

e multi_class: multinomial’
* Regularization: {5 (with C' = 1.0)

e max_iter: 1000

A.3 Probing Results

Figure 5 presents each model * s probing results
as 100 X 100 confusion matrices for all shot set-
tings. The vertical axis denotes the true task labels
(a,b) (100 classes), and the horizontal axis shows
the predicted labels (a,b) assigned by the multi-
class logistic regression based on the model ’ s in-
ternal representations. Color intensity reflects the
frequency of each prediction. As shown in Fig-
ure 5, regardless of the type of training data, the
2-, 4-, and 8-shot matrices exhibit strong concen-
tration along the diagonal, indicating—as also re-
ported in Table 3—that models accurately identify
tasks from inputs under these conditions. In con-
trast, the 0-shot matrix shows no discernible pat-
tern, and the 1-shot matrix displays partial mis-
classifications.
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Figure 5: Visualizing each model’ s probing results as confusion matrices. On each confusion matrix, the vertical
axis represents the true labels (a, b) € {0, ...,9}2 (100 classes), and the horizontal axis shows the predicted labels
obtained via probing (100 classes). For readability, only a subset of labels—such as (0,0), (0,1), -+, (9,8), (9,9)
—is displayed on each axis. Cell intensity reflects the frequency of predictions. In the 2-, 4-, and 8-shot settings,
entries are strongly concentrated along the diagonal, indicating high identification accuracy, whereas in the 0-shot
setting, the matrix shows no discernible pattern. In the 1-shot setting, some misclassifications are observed.
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