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Abstract

Semantic role labeling (SRL) is a fundamen-
tal task in natural language processing that is
crucial for achieving deep semantic understand-
ing. Despite the success of large language
models (LLMs) in several downstream NLP
tasks, key tasks such as SRL remain a chal-
lenge for LLMs. Hence, in this study, we at-
tempt to instantiate the efficacy of LLMs for
the task of SRL via Question answering. To-
ward that goal, we investigate the effectiveness
of five different LLMs (LLlama, Mistral, Qwen,
OpenChat, Gemini) using zero-shot and few-
shot prompting. Our findings indicate that few-
shot prompting enhances the performance of all
models. Although Gemini outperformed oth-
ers by a margin of 11%, Qwen and Llama are
not too far behind. Additionally, we conduct
a comprehensive error analysis to shed light
on the cases where LLMs fail. This study of-
fers valuable insights into the performance of
LLMs for structured prediction and the effec-
tiveness of simple prompting techniques in the
Question-Answering framework for SRL.

1 Introduction

Semantic Role Labeling (SRL) involves deter-
mining “who did what to whom, when, where,
and how" to effectively extract the predicate-
argument structure of a sentence (Gildea and Juraf-
sky, 2002).While early SRL systems relied heav-
ily on syntactic parsers and task-specific models
trained on datasets such as ‘PropBank’ (Palmer
et al., 2005) or ‘FrameNet’ (Baker et al., 1998),
the domain of Natural Language Processing (NLP)
itself has witnessed remarkable advancements in
recent years, primarily driven by the sophisticated
neural architectures.

The advent of Large Language Models (LLMs)
has revolutionized NLP, pushing the boundaries of
possibilities in the field of language understand-
ing and generation (Brown et al., 2020). Models

such as GPT (Brown et al., 2020), Llama (Weer-
awardhena et al., 2025), and Gemini (Pichai et al.,
2024), trained on massive corpora of textual data,
have shown unprecedented capabilities that could
be accessed using various prompting techniques.
However, understanding the inherent capabilities
of LLMs for complex structured prediction tasks
without extensive fine-tuning has become vital for
more efficient, scalable, and generalizable NLP
systems.

SRL has long been studied through supervised
methods using syntactic and dependency features
(Palmer et al., 2005; Baker et al., 1998; Roth and
Lapata, 2016). The QA-SRL framework (He et al.,
2015; FitzGerald et al., 2018) reformulates SRL as
a question-answering (QA) task, lowering annota-
tion costs and aligning more closely with natural
language understanding. Meanwhile, transformer-
based LLMs such as BERT (Devlin et al., 2019),
GPT (Radford et al., 2018), and T5 (Raffel et al.,
2020) shift NLP from fine-tuning approaches to
in-context learning (Brown et al., 2020; Min et al.,
2022). Despite progress in both areas, systematic
evaluations of pre-trained LLMs on QA-SRL have
not been done, to the best of our knowledge.

Addressing this gap, this work evaluates five
widely used LLMs — Llama (Weerawardhena
et al., 2025), OpenChat (Wang et al., 2023), Mis-
tral (Jiang et al., 2023), Qwen (Yang et al., 2025),
and Gemini (Pichai et al., 2024)—on the QA-SRL
benchmark.

The contributions of this paper are twofold.

* A comprehensive empirical evaluation of
Llama 3.1 8B, Openchat 3.5, Qwen3-8B,
Mistral-7B, and Gemini 2.0 Flash on QA-SRL
2.0 dataset (FitzGerald et al., 2018), assessing
their performance in zero-shot and three-shot
prompting settings without any model refine-
ment or pretraining.

* A qualitative error analysis, identifying com-
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You will be given a sentence and a question.
Your task is to:

1. Identify all correct answer(s) from the sentence based on the question.
2. Respond **only in the following format**: ["<answer 1>", “<answer 2>", ...]
3. Do **not** include any explanation, reasoning, additional text, or metadata.
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Figure 1: End-to-end pipeline for evaluating a large language model (LLM) on semantic role labeling (SRL) using
the QA-SRL dataset. The process includes prompt creation, model inference with zero-shot or few-shot prompting,
and quantitative evaluation of the generated semantic roles based on Precision, Recall, and F1-score metrics.

mon failure modes and describing the chal-
lenges faced by LLMs when performing struc-
tured SRL through in-context learning (Min
et al., 2022)

The code for reproducing our experi-
ments is available at: https://github.com/
ritwikraghavi14/Benchmarking-LLMs-QA-SRL.

2 Task Formulation

We formulate our study around the Question
Answering-based Semantic Role Labeling (QA-
SRL) framework introduced by He et al. (2015)
and later extended by FitzGerald et al. (2018).In-
stead of requiring annotators to assign argument
labels such as ARGO or ARG1, QA-SRL generates
natural language questions for each predicate in
a sentence. Answers to these questions are con-
tiguous spans extracted directly from the sentence,
making the task intuitive and cost-effective.

In QA-SRL, each predicate anchors a set of ques-
tions targeting possible semantic roles such as
agent, theme/object, or purpose. Sentences may
contain multiple predicates, each generating dis-
tinct question—answer pairs.

To illustrate, consider the following example:
Sentence: As we test our ideas, we may come up
with more questions.

Predicate 1: come

Question: who might come up something?
Answer: we

Question: what might someone come up?
Answer: with more questions

Here, the predicate come highlights the agent
(we) and the object (with more questions). This
demonstrates how a single sentence can support

multiple semantic frames, each contributing to a
richer representation of meaning.

In this study we use the publicly available QA-
SRL 2.0 dataset (FitzGerald et al., 2018), which is
a large-scale corpus consisting of over 64,000 sen-
tences and over 250,000 question-answer pairs that
model the verbal predicate-argument structure of
a sentence. This size provides large-scale annota-
tions of sentence-predicate-question-answer triples
that instantiate this problem.

To better understand the performance of the
LLMs, it is important to note that the QA-SRL task
shows high consistency among human annotators.
On the densely annotated subset, the agreement
on answer spans reached an 83.1% exact match
rate, showing strong human consensus on the ex-
pected output format of contiguous spans. The best-
performing fine-tuned QA-SRL model reported by
FitzGerald et al. (2018) achieved a 77.6% span-
level accuracy. These figures represent the upper
bound of human agreement and the benchmark
performance of specialized systems, providing the
necessary context for evaluating our zero-shot and
few-shot LLM results.

3 Methodology

We investigate the efficacy of large language mod-
els (LLMs) for the task of SRL using the QA-SRL
dataset (FitzGerald et al., 2018), in both zero-shot
and three-shot settings. We create a structured
prompt that explicitly instructs the model to extract
all valid responses. It contains the task instructions,
the sentence, the predicate, and the required out-
put format. Figure 2 demonstrates the zero-shot
and three-shot prompt structures we use for this
study. While zero-shot prompting uses the struc-
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tured prompt without any examples for in-context
learning, three example question-answer pairs are
added to this prompt for three-shot settings. These
illustrative examples are selected to be representa-
tive of common semantic roles (agent, patient, tem-
poral modifier) and reflect the natural question style
in QA-SRL. These are selected from the dataset
partition different from the sentences under evalua-
tion. Figure 1 demonstrates the entire pipeline that
we follow in this work.

3.1 Models

Five LLMs are used for this comparative study,
representing both open-source and proprietary ad-
vancements in this field:

Llama 3.1 8B (Weerawardhena et al., 2025): An
accessible open-source LLM from Meta with 8 bil-
lion parameters.

Mistral-7B (Jiang et al., 2023): A competitive
open-source LLM from Mistral Al featuring 7 bil-
lion parameters.

Qwen3-8B (Yang et al., 2025): A high-
performance open-source LLM from Alibaba with
8 billion parameters.

OpenChat-3.5 (Wang et al., 2023): An instruction-
tuned open-source LLLM built upon Mistral archi-
tecture.

Gemini 2.0 Flash (Pichai et al., 2024): A propri-
etary model from Google optimized for language
understanding and generation tasks.

3.2 Prompting and Evaluation Framework

We evaluate all models within a unified prompting
and evaluation framework to ensure reproducibility.
Two prompting configurations are used:

In the zero-shot prompting, models are pro-
vided only with structured task instructions, which
contain the guidelines, the input sentence, and the
question (see Figure 2). No examples are provided.

In the three-shot prompting, the same instruc-
tions are augmented with three illustrative in-
put—output examples (see Figure 2). To avoid data
leakage, the few-shot examples were drawn from
dataset partitions distinct from the sentences un-
der evaluation. Thus, the three illustrative ques-
tion—answer pairs used in the few-shot prompts
were not identical across all evaluations, as each
evaluation batch used examples sampled from a
separate partition. This ensures fairness while pre-
venting overlap between the illustrative examples
and the test instances.

You are an intelligent system. You will be
given a sentence and a question.
Your task is to:

1. Identify all correct answer{s) from the
sentence based on the question.

2. Respond only in the following format:
["answer 1", “"answer 2", ...]

3. Do not include any explanation,
reasoning, additional text, or
metadata.

Example 1:

Sentence: In 2882, The Global Fund
to Fight AIDS, Tuberculosis
and Malaria was drawn up to
improve the resources
available.

Question: what was improved?

['the resources available',
Tuberculesis and Malaria']

Example 2:
Sentence: Soil type also influences
the type of vegetation that
can grow in the region.
Question: what influences something
7

['Soil type'l

Example 3:

Sentence: He decided, on his twenty
-second birthday, to revise
the story into a novel he
called Stephen Hero.

Question: who decided to do
something?

['He']

Wow, process the following:
Sentence: {sentence}
Question: {q}

Figure 2: The prompt structure used in our experiments.
The highlighted section appears only in the three-shot
setting, while its absence corresponds to the zero-shot.

Outputs are post-processed to standardize spans
(e.g., stripping whitespace, resolving duplicates),
and are evaluated using standard metrics (Span-
level precision, recall, and F1 score) (Carreras and
Marquez, 2005; Surdeanu et al., 2008). A predic-
tion is considered correct only if the answer span
exactly matches the gold annotation; partial over-
laps do not receive credit. In cases where multi-
ple answers are possible for a single question, the
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model must provide all of them to be considered
entirely correct. Our setup tests the models’ abil-
ity to identify all valid argument spans for a given
sentence-predicate-question triple.

4 Experimental Setup

We evaluate the five LLMs under both zero-shot
and three-shot setups, as described in Section 3.2.
Here, we outline how these setups are applied in
our experiments. The dataset is partitioned into
ten parts to facilitate controlled comparison. For
three-shot prompting, examples are always drawn
from partitions other than the one under evaluation,
ensuring that no overlap occurs between illustrative
examples and test instances.

Zero-shot setup Models are evaluated using the
zero-shot prompt described in Section 3.2, which
provides only structured task instructions.
Three-shot setup Models are evaluated using
the three-shot prompt described in Section 3.2,
augmented with three examples drawn from
non-overlapping dataset partitions.

S Results and Analysis

This section presents the quantitative and qualita-
tive results of our experiments, providing a detailed
analysis of the performance of each model and the
effects of various prompting strategies.

5.1 Quantitative Analysis

The performance of each model on the Semantic
Role Labeling (SRL) task, under both zero-shot
and three-shot prompting setups, is summarized in
Table 1a, and Table 1b.

Model-Specific Performance The quantitative re-
sults consistently demonstrate the significant domi-
nance of Gemini 2.0 Flash in all tasks and prompt-
ing strategies. For instance, on the three-shot set-
ting (Table 1b), Gemini 2.0 Flash achieves an F1-
score of 0.5702, which is 11% more than Llama’s
0.4556 and 8% more than Qwen’s 0.4826. Qwen
outperforms Llama by a small margin in both
prompting setups, while OpenChat is the weakest
model in both cases, followed by Mistral.

Impact of Few-Shot Prompting The inclusion of
examples in the 3-shot prompting strategy gener-
ally yields a positive impact on performance. All
five models exhibit F1-score improvements from 0-
shot to 3-shot on this task, with the most significant
gain shown by Gemini-2.0-Flash, which increases
its F1-score from 0.5022 to 0.5702, a growth of

about 7%. Mistral shows a growth of about 6%,
OpenChat about 5%, and Llama shows the least
growth among all models — a mere half percent.

Model Precision Recall F1-Score
Llama 3.1 8B 0.5753 0.3683 0.4491
Qwen3-8B 0.5606 0.3892 0.4594
Mistral-7B 0.5532 0.2611 0.3547
Openchat-3.5 0.5809 0.2491 0.3486
Gemini 2.0 Flash 0.6854 0.3963 0.5022

(a) Performance of Zero-shot Prompting

Model Precision Recall F1-Score
Llama 3.1 8B 0.5525 0.3877 0.4556
Qwen3-8B 0.5409 0.4357 0.4826
Mistral-7B 0.476 0.3635 0.4122
Openchat-3.5 0.59 0.298 0.3959
Gemini 2.0 Flash 0.6928 0.4844 0.5702

(b) Performance of Three-shot Prompting

Table 1: Performance of both the prompting techniques
on QA-SRL dataset for Semantic Role Labeling

5.2 Qualitative Analysis

A closer examination of model output reveals re-
curring error patterns. Most common errors are:
Imprecise Spans: Models frequently struggle to
identify the exact span, often including extraneous
words or omitting critical components. An example
of this error type is:

Sentence: Cody makes an observation that raises
a question.

Question: what was raised?

Gold Answer: ‘a question’

LLM Generated Answer: ‘question’
Inaccurate Extraction In some cases, extracted
phrases are semantically related but do not consti-
tute the correct answer, indicating a subtle misinter-
pretation of the prompt. An example of this error
type is:

Sentence: Off-road vehicles disturb the land-
scape, and the area eventually develops bare spots
where no plants can grow.

Question: what develops something?

Gold Answer: ‘the area’, ‘area’

LLM Generated Answer: ‘bare spots’
Formatting Deviation: Despite explicit instruc-
tions, models occasionally deviate from the re-
quired format, sometimes including extraneous ex-
planations. An example of this error type is:

Sentence: In the example, the farmer chooses
two fields and then changes only one thing between
them.

Question: When does someone choose some-
thing?
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Gold Answer: ‘In the example’

LLM Generated Answer: ‘</think>’

To quantify these observations, we manually in-
spected 100 randomly sampled erroneous predic-
tions (excluding all correct ones) across the five
models. Each instance was assigned to one of three
categories: Imprecise Span, Inaccurate Extraction,
or Formatting Deviation. The distribution of these
errors is shown in Table 2.

Error Type Percentage
Imprecise Span 449
Inaccurate Extraction 40%
Formatting Deviation 16%

Table 2: Frequency distribution of qualitative error types
based on manual inspection of 100 erroneous predic-
tions

These qualitative observations show that while
LLMs demonstrate potential for QA-SRL evalua-
tion through prompting, their performance heav-
ily depends on the task format and the quality of
in-context examples. Although they gain from in-
context examples, the question-answer structure
seems intuitive enough to show good performance
for zero-shot prompts as well.

5.3 Baseline Comparison

To contextualize our results, we compare them with
earlier fine-tuned SRL systems on the same dataset.
The original QA-SRL parser by FitzGerald et al.
(2018) achieved a span-level accuracy of 77.6%
and a question-level accuracy of 82.6% on QA-
SRL 2.0.

In contrast, our best few-shot LLM result (Gem-
ini 2.0 Flash: 0.57 F1) remains below these super-
vised baselines, showing that current LLMs, when
used purely via prompting, cannot yet match the
performance of task-specific SRL models. How-
ever, our evaluation provides a useful zero-shot and
few-shot benchmark for understanding how much
semantic structure LLMs can recover without any
fine-tuning, which is particularly relevant for low-
resource or cross-lingual SRL scenarios.

6 Conclusion

In this study, we evaluate LLMs on Semantic
Role Labeling (SRL), focusing on QA-SRL, which
frames the task as natural language question-
answering. LLMs show strong performance on QA-
SRL in zero-shot setting, and few-shot prompting

further enhances results, demonstrating the power
of in-context learning. The findings highlight QA-
SRL’s suitability for LLMs and set a solid baseline
for future research and prompt engineering. Im-
mediate future work would be to apply fine-tuning
with small amounts of annotated data, which could
provide a better understanding of model adaptabil-
ity for SRL tasks. Additionally, exploring advanced
prompting strategies and integrating human-in-the-
loop correction could further improve performance
and reliability.

7 Limitations

This study establishes a benchmark for evaluating
Large Language Models (LLMs) on Semantic Role
Labeling (SRL), but it has several limitations. The
evaluation is restricted to the English language,
leaving the performance of LLMs on other lan-
guages unexplored. It also focuses solely on zero-
shot and few-shot prompting without investigating
fine-tuning, which may limit insights into the mod-
els’ full potential. Furthermore, the study considers
only a limited set of five widely-used LLMs and
a small range of few-shot settings, which may not
capture the full variability in model behavior.
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