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Abstract

Large language models are powerful but costly.
We ask whether meta-learning can make the
pretraining of small language models not only
faster but also more interpretable. We integrate
first–order MAML with subset-masked LM pre-
training, producing four LLama-style decoder-
only models (11M–570M params), and eval-
uate on multilingual Universal NER. Com-
pared with vanilla training, our hybrid setup
(i) reaches the same loss up to 1.6× sooner, (ii)
yields modest but consistent average gains on
Universal NER at medium/large scales under
equal compute (+2–3 percentage points), and
(iii) and (iii) reveals phase-like learning dynam-
ics: models first diversify their representations,
then compress them in a pattern that aligns
with improved episodic accuracy. These ob-
servations are correlational, not causal, and we
do not claim generality beyond NER or across
seeds. We also document a trade-off: perplex-
ity on Paloma (a diverse language modeling
benchmark spanning 18 domains; Magnusson
et al. (2024)) is worse at most scales. Code,
checkpoints and analysis logs are released.
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1 Introduction

Small language models (SLMs) are attractive for
privacy and energy reasons, but trail large models
partly because they converge slowly and plateau
early (Godey et al., 2024; Biderman et al., 2023;
Diehl Martinez et al., 2024). As opposed to the
common method of brute-force scaling, we ex-
plore a different axis: learning rules. First-order
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) promises a learn-to-learn initialization,
yet has rarely been applied to decoder models, and
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its effect on learning dynamics are poorly under-
stood.

We address this by adding meta-learning in
model pretraining,1 interleaving ordinary next-
token loss (keeps fluency) with 32-way subset-
mask (Bansal et al., 2020; Li and Zhang, 2021)
episodes (forces rapid binding). Only a tiny MLP
head is adapted in the inner loop, so we can track
backbone weights without gradient noise. Our con-
tributions are:

1. Four open SLMs (11M → 570M) trained with
this hybrid MAML rule.

2. A public trainer that logs per-checkpoint
singular-value spectra, head entropies and
query accuracy.

3. A candid evaluation on Universal NER: mod-
est gains at medium/large scales (+2–3 pp),
alongside a perplexity trade-off.

4. Observational evidence of a diver-
sify–then–compress phase transition
in effective rank.

Reporting and scope. All pretraining and fine-
tuning results are from a single shared seed per con-
dition due to compute limits; we therefore report
averages across datasets where applicable, avoid
statistical claims, and treat learning-dynamics find-
ings as exploratory. We limit generalization claims
to NER and to our training regime.

2 Related Work

Meta-learning for NLP. (MAML; Finn
et al., 2017) is an optimisation-based form
of meta-learning that learns an initialisation from
which a few gradient steps solve new tasks. It
has been particularly successful in computer

1Using a lightweight modification of PICO-TRAIN
(Diehl Martinez, 2025), a language model pretraining suite.
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vision classification and reinforcement learning
settings (Nichol et al., 2018). Within NLP,
MAML has been adapted to a wide spectrum
of supervised problems—including text classi-
fication, natural language inference, question
answering, summarisation and named entity
recognition—where a pre-trained encoder such
as BERT is further fine-tuned on small datasets
(Rajeswaran et al., 2019; Raghu et al., 2021;
Hou et al., 2022). These studies operate (i)
on encoder-only, masked-language models and
(ii) at parameter counts close to the original
110M-parameter BERT. They leave open whether
optimisation-based meta-learning helps decoder
LMs and whether its benefits persist at larger
parameter scales.

Meta-learning for pretraining. Initial NLP at-
tempts applied MAML only at fine-tuning scale
(Raghu et al., 2021; Hou et al., 2022). More re-
cent work embeds bilevel objectives directly in
pre-training (Miranda et al., 2023; Ke et al., 2021).
While promising, these efforts evaluate only a sin-
gle model size, focus on one downstream task, or
release neither code nor weights, limiting repro-
ducibility and obscuring scale trends. We embed
meta-learning directly into the pretraining loop,
evaluate on various unseen domains in an unseen
task, and provide open weights (11M-570M) and
layer-wise spectra, filling that gap.

Subset-Mask LMs (SMLMT). SMLMT con-
structs pseudo-tasks using a subset of vocabulary
words (Bansal et al., 2020). Given an unlabeled text
corpus, one selects a set of N words and builds an
N -way classification task. For each chosen word,
sentences containing it are collected and the word is
masked out. The task is then to predict the masked
word from the N candidates. Li and Zhang (2021)
interleaves it with ProtoNet tasks; we interleave
with vanilla LM updates and scale to 570M params.

Interpretable training dynamics. Various
works discuss the training of language models in
phase transitions (Olsson et al., 2022; Hoogland
et al., 2024), describing broad changes in indica-
tors as the model gains rapidly in capabilities over
a short period of time. We study such phase transi-
tions in the context of meta-learning in pretraining.

Effective-rank probes (entropy of singular val-
ues) highlight learning behavior in deep nets
(Diehl Martinez et al., 2024). Lower-rank struc-
ture and rank compression are well documented
in the literature (Huh et al., 2021; Galanti et al.,
2022; Jaderberg et al., 2014), and we focus on the

timing and co-evolution of the measurements of
effective-rank probes with episodic generalization
under the hybrid objective (§5).

3 Method

We pretrain four decoder models at 11M, 65M,
181M and 570M parameters with a hybrid objec-
tive (Li and Zhang, 2021) that alternates conven-
tional next-token prediction and first-order MAML
episodes (Finn et al., 2017). The episodes are gen-
erated with Subset-Masked Language Modelling
Tasks (SMLMT) (Bansal et al., 2020). This section
details the backbone, the meta-learning episode, the
optimisation schedule, and the downstream evalua-
tion harness.

3.1 Baselines

The starting point is the open Pico decoder
(Diehl Martinez, 2025), a LLAMA-style (Touvron
et al., 2023) stack implemented in plain PyTorch.
To maintain apples-to-apples comparability with
the original models (and as such isolate the effect
of introducing MAML to pretraining), we main-
tain the design choices and hyperparameter choices
of the original Pico decoder models. A sequence
of L = 12 decoder blocks receives 2048 input
tokens. Each block performs RMSNorm (Zhang
and Sennrich, 2019), grouped-query self-attention
(Ainslie et al., 2023) with rotary position embed-
dings (Su et al., 2024), and a SwiGLU feed-forward
network (Shazeer, 2020) that expands to 4d before
projecting back to the model width d. Width is
the only scale-dependent hyper-parameter: d ∈
{96, 384, 768, 1536} for the tiny, small, medium
and large variants. All models use 12 heads, 4
key–value heads and causal masking.

3.2 Task construction via SMLMT

SMLMT converts unlabelled text into few-shot
classification tasks. From the corpus we sample
a set of N content words, collect sentences that
contain each word and replace that word with a
single <mask>. The goal is to predict which of the
N candidates was masked. Each episode supplies
K support sentences and a disjoint query set. Ta-
ble 1 shows an episode with N = 4 city names and
K = 2 supports per class; the query asks the model
to complete a new sentence about cherry blossoms.
In practice we use N = 32 and K = 4 so the task
entropy matches the five-bit next-token uncertainty
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Set Input (masked) Label

Support (K=2 each) I visited __ last summer. Tokyo
The sushi festival in __ was unforgettable. Tokyo
The Big Ben is in __. London
I caught the tube at __ yesterday. London
The Seine runs through __. Paris
She admired the art at the Louvre in __. Paris
The Forbidden City is in __. Beijing
I sampled Peking duck in __. Beijing

Query I plan to travel to __ to see the cherry blossoms. Tokyo

Table 1: Example SMLMT episode with N=4 classes
and K=2 support sentences per class.

of English text.2

3.3 Optimiser, data, and monitoring

Training runs for 6000 outer updates on four A100
GPUs, with the original Pico-decoder models eval-
uated at the checkpoint after 6000 steps. Each GPU
streams micro batches of 256 sequences from the
30 percent English subset of Dolma (Soldaini et al.,
2024) that is already tokenised and chunked by
Pico (Diehl Martinez, 2025). The outer optimiser
is AdamW with peak learning rate 3× 10−4, 2500-
step warm-up and cosine decay. Micro batches
of 256 sequences are accumulated eight times giv-
ing an effective batch of 2048 (1024 for the 11M
model). Every 100 steps we evaluate Paloma per-
plexity (Magnusson et al., 2024) and log the singu-
lar values of three attention and three feed-forward
matrices to compute effective rank (Diehl Martinez
et al., 2024). Query and support accuracies are also
tracked.

3.4 Downstream protocol

Named entity recognition (NER), the downstream
task for this study, is a fundamental NLP task that
identifies and categorizes entities (e.g., persons,
organizations, locations) within unstructured text
(Chinchor and Robinson, 1997), and is used in
healthcare (Kundeti et al., 2016; Polignano et al.,
2021; Shafqat et al., 2022), law (Leitner et al.,
2019; Au et al., 2022; Naik et al., 2023), busi-
ness (Putthividhya and Hu, 2011; Alvarado et al.,
2015; Zhao et al., 2021), and knowledge graph sys-
tems (Al-Moslmi et al., 2020). Specifically, we
evaluate our models on Universal NER benchmark
(Mayhew et al., 2024). UNER v1 comprises three
categories of NER evaluation data, each built on
top of Universal Dependencies (UD) (Nivre et al.,

2Shannon’s estimate of printed-English entropy is about
1.3 bits per character (Shannon, 1951); since English BPE
tokens span on average about 4 characters (OpenAI, 2025),
this implies roughly ≈ 5.2 bits/token. We therefore use 5 bits
per token as a conservative rule of thumb.

4

5

6

7

8

T
ra

in
 L

o
ss

Training Loss

pico-maml-decoder-large

pico-maml-decoder-medium

pico-maml-decoder-small

pico-maml-decoder-tiny

1 2 3 4 5 6

Checkpoint step / 1000

0

20000

40000

60000

P
al

om
a
 P

er
p
le

x
it
y

Paloma Evaluation

pico-maml-decoder-large

pico-maml-decoder-medium

pico-maml-decoder-small

pico-maml-decoder-tiny

Figure 1: Training loss and Paloma perplexity across
pretraining steps for all MAML models. Two-panel plot
showing the evolution of (top) cross-entropy training
loss and (bottom) Paloma perplexity, each as a function
of global pretraining step.

Model Train Loss @6k Paloma Perplexity @6k

pico-decoder-tiny 5.31 786.85
pico-maml-decoder-tiny 4.44 422.42

pico-decoder-small 4.14 80.25
pico-maml-decoder-small 3.67 113.76

pico-decoder-medium 3.89 77.90
pico-maml-decoder-medium 3.49 78.63

pico-decoder-large 3.69 49.86
pico-maml-decoder-large 3.49 66.62

Table 2: For each model (rows) under vanilla vs. MAML
pretraining (columns), shows cross-entropy loss and
Paloma perplexity measured at exactly 6000 steps.

2016, 2020) tokenization and annotations: publicly
available in-language treebanks, parallel UD (PUD)
evaluation, and other eval-only sets (Appendix B).

After pretraining we load the checkpoint at step
6000 and attach a fresh linear classifier for Univer-
salNER. Two fine-tuning settings are used: head-
only and full. In the head-only setting the Trans-
former is frozen so fine-tuning mirrors the inner
loop, in the full setting all weights update. Fine-
tuning uses AdamW at 3 × 10−5 for at most ten
epochs with early stopping on development F1.

4 Model Pretraining

Training-perplexity tradeoff across scales. The
prerequisite for modifying a pretraining method
is ensuring the model still learns. All four Pico-
MAML variants reach their respective vanilla loss
1.3–1.6× sooner (faster optimization), but Paloma
perplexity is worse at most scales by 6000 steps
(Table 2).

Contrary to expectation, MAML’s inductive
bias may favor optimization over regularization.
MAML accelerates convergence but degrades out-
of-task fluency at most scales. However, this pat-
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Model Seen Test-Only (PUD) Test-Only (Other)
Head Full Head Full Head Full

tiny (%) -8.3 -3.0 +6.7 0.0 -37.5 +3.8
small (%) +2.2 0.0 -17.2 -0.6 +46.7 +7.0
medium (%) +1.9 +2.3 -4.6 +1.8 +14.8 +3.8
large (%) +6.2 +4.8 +7.2 +3.5 +2.1 +8.1

Table 3: Relative percentage improvement of micro-
F1 (higher = better) for head-only vs. full fine-tuning
across seen, test-only (PUD), and low-resource lan-
guage groups (other). Demonstrates MAML’s consis-
tent 2–3 pp lift at medium/large scales under full tuning.
Green cells indicate MAML improvements; red cells
show degradations.

tern is consistent with known multi-task interfer-
ence: the episodic discriminative objective im-
proves adaptation signals but can conflict with next-
token distributional modeling under fixed compute
and a single set of hyperparameters (Kendall et al.,
2017; Yu et al., 2020; Standley et al., 2020). Hence,
it is unclear if the perplexity gap is an objective-
mixing artifact or evidence that meta-learning in-
herently harms LM fluency.

5 Downstream NER Evaluation

Models are fine-tuned on each dataset in Univer-
sal NER (Mayhew et al., 2024; Nivre et al., 2016,
2020) with publicly available train and dev sets3

Results (averaged across each finetuning dataset)
are shown as micro-F1 scores in Table 3, orga-
nized by evaluation group: seen (language with
full train/test/dev splits), test-only (using Parallel
Universal Dependencies PUD), and test-only low-
resource languages (e.g., Cebuano, Tagalog). We
report delta F1 as percentage points (pp) unless
explicitly marked as percent change (%).

The most striking takeaway from this stage is
that, when averaged across all evaluation steps in
a category, absolute F1 remains low (≤ 0.35, i.e.,
≤ 35%) due to poor zero-shot transfer, especially
for logographic scripts. Overall, MAML improves
mean uplift is approximately +2–3 pp when aver-
aged over all in-language datasets at medium/large
scales, confirming a modest “learning-to-learn” ef-
fect under full adaptation.4

3Namely, ddt, ewt, set, bosque, snk, set,
talbanken, gsd, gsdsimp, all.

4While these results are much worse in comparison to
the baseline in the original Universal NER paper (Mayhew
et al., 2024), this is likely because XLM-Rlarge is a multilingual
model (Conneau et al., 2020) and the pretraining dataset for
Pico is entirely in English.

Model Danish English Croatian Portuguese Swedish

large (%) +8.1 +14.8 +10.7 +8.6 +18.0

Table 4: Percentage relative improvement of MAML
over vanilla for head-only tuning in the large model.

Model Danish English Croatian Portuguese Swedish

tiny (%) +3.4 +0.2 -1.6 -0.7 +6.1
small (%) -3.9 -4.7 -1.9 -2.6 +4.9
medium (%) +0.8 +4.8 +3.9 +1.2 +3.7
large (%) +3.6 +4.4 -0.5 +4.2 +2.8

Table 5: Percentage-wise relative improvement of
MAML over vanilla under full tuning for each language.

In-language NER gains suggest capacity-
dependent meta-learning. To better understand
how meta-initialization influences cross-lingual
transfer on seen languages, F1 scores are broken
down by dataset within the in-language group. The
results are separated by tuning regime to clarify
the extent to which meta-learned representations
help when only the classifier is updated (head-only)
versus when the entire model is fine-tuned.

In the head-only setting (Table 7), absolute F1
scores remain low across most datasets. Tiny mod-
els fail to generalize altogether. MAML shows the
strongest and most consistent gains at large scales
(Table 4)—most prominently on en_ewt, hr_set,
and sv_talbanken-suggesting that episodic pre-
training creates more adaptable feature spaces, par-
ticularly for common entity types and scripts. On
Chinese (zh_gsd, zh_gsdsimp), performance is
uniformly poor, confirming the baseline result in
(Mayhew et al., 2024) that transfer from phono-
graphic to logographic scripts is difficult.

In the full setting (Table 5), both vanilla
and MAML-pretrained models achieve higher F1
scores across the board. MAML confers consis-
tent +0.01-0.03 gains at medium and large scales,
especially for structurally complex languages like
Croatian. These relative gains grow as model capac-
ity increases, indicating that larger models benefit
more from MAML pretraining. Even in Chinese,
where scores are lowest, MAML nudges perfor-
mance upward. These gains confirm that meta-
pretraining does more than support shallow trans-
fer: it reshapes the optimization landscape of the
full model in a way that accelerates convergence
and improves generalization.

Taken together, these tables validate that MAML
pretraining injects a scalable and tunable learning-
to-learn signal. However, these average metrics
do not tell the full story. Some settings, entity
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Figure 2: MAML-Vanilla micro-F1 difference by entity
class and tuning regime, averaged across in-language
datasets. Grouped bar charts reporting ∆F1 = F1
MAML - F1 (Vanilla) for three named-entity classes-
PERSON (PER), LOCATION (LOC) and ORGANIZA-
TION (ORG)-for pico-MAML decoders of four sizes
(tiny, small, medium, large), averaged over nine in-
language NER datasets, over two fine-tuning regimes.

classes, and fine-tuning conditions benefit substan-
tially more than others.

Class-specific prototype bias in entity recogni-
tion. We characterize the specific way MAML
pretraining improves performance in NER by
breaking down F1 score by entity class in Figure 2.

Meta-pretraining yields a clear capacity thresh-
old in head-only adaptation. Under a frozen back-
bone, only the large model consistently converts its
learned initialization into PER (+0.034) and LOC
(+0.023) gains; medium and smaller variants lack
the representational bandwidth to rewire person
and place distinctions via a shallow classifier. By
contrast, even medium and small models see gains
in ORG (+0.016 F1) likely because organization
names often include distinctive tokens (e.g., “Inc.”,
“Corp.”, or “University”) that form rigid, token-
level co-occurrence patterns. These simple patterns
mirror the pseudo-classification episodes SMLMT
generates, so a shallow classifier can latch onto
them without requiring deep feature reconfigura-
tion.

Full fine-tuning broadens and amplifies these
effects. In the full setting, PER sees the largest
MAML-induced lift (up to +0.027 in the large
model). LOC improvements (+0.016 at large
scale) climb more gradually: place names often
span heterogeneous contexts and scripts (e.g. Za-
greb vs. Beijing), so meta-pretraining must be
supplemented by full gradient flow for location-
specific embeddings. ORG continues to enjoy
gains (+0.012 at large), reinforcing that organi-
zation recognition remains the simplest class to
bootstrap from episodic tasks.

Model Regime Overall Cebuano Tagalog (TRG) Tagalog (Ugnayan)

tiny head -100.0% -100.0% N/A N/A
small head +151.1% +209.6% +315.7% -15.7%
medium head +24.3% +16.7% -20.7% +534.3%
large head +9.0% +0.0% +57.3% -37.5%

tiny full -6.2% -4.7% -25.0% +109.5%
small full +7.3% -6.4% +28.8% +4.1%
medium full +0.0% -1.0% +1.4% -2.1%
large full -8.0% -14.5% -1.6% -0.8%

Table 6: Percentage change of MAML over vanilla zero-
shot NER transfer (from English) F1 on low-resource
languages (OTHER).

Significant zero-shot transfer gains in low-
resource languages. Now, we discuss how in-
ductive biases manifest in zero-shot cross-lingual
transfer to low-resource languages—namely, Taga-
log (tl) and Cebuano (ceb).

Tagalog and Cebuano are the two most widely
spoken native languages in the Philippines, with
tens of millions of first-language speakers each.
Both are typologically Austronesian and low-
resource, but differ significantly. Tagalog is a mor-
phologically rich, predicate-initial language with a
complex voice system that encodes syntactic roles
(agent, patient, locative, etc.) through verbal affixes
and aspect-marking (Kroeger, 1993; Schachter and
Otanes, 1983; Ramos, 2021). Word order is flexible
and often pragmatically driven, which weakens the
utility of positional cues for tasks like named en-
tity recognition. Cebuano is similarly Austronesian
but morphologically simpler than Tagalog, with
fewer voice alternations and less affixal variation
(Tanangkingsing, 2011). It also does not consis-
tently mark syntactic roles with overt case parti-
cles; entities must be inferred from context rather
than surface markers (Sityar, 2000). Additionally,
Cebuano exhibits a distinct orthographic tradition
and more conservative vocabulary (e.g., less Span-
ish borrowing) (Bunye and Yap, 1971), which fur-
ther distances it from the English-centric token dis-
tributions that dominate cross-lingual pretraining
datasets. These characteristics make them ideal
stress tests for testing the inductive bias of pretrain-
ing strategies like MAML.

In the head-only setting, MAML delivers its
greatest impact on small and medium models. For
example, the small head jumps from 0.088 to 0.221
overall—an absolute gain of 0.133 F1—and sees
particularly large lifts in Cebuano (+0.153) and
Tagalog-TRG (+0.262). The medium head also
benefits substantially, improving from 0.259 to
0.322. Even the large head picks up a modest
+0.030 F1. Only the tiny head collapses, reflecting
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its inability to form reliable prototypes during meta-
training. These patterns suggest that MAML’s
episodic learning instills useful, language-agnostic
representations in the classifier layers, enabling
mid-size heads to generalize token-level cues to
new languages without modifying the backbone.

Once we allow full fine-tuning, however, most of
MAML’s advantages disappear at higher capacities.
The small model retains a small +0.026 F1 edge,
but the medium shows no net change and the large
actually drops by 0.034. This reversal implies that
when every parameter is free to update, the strong
gradient signals of full fine-tuning quickly override
the meta-learned inductive biases, erasing or even
inverting MAML’s earlier head-only gains. The
tiny model again underperforms, consistent with
its tendency to overfit during meta-training when
unconstrained by a fixed backbone.

In the UNER benchmark, Tagalog and Cebuano
serve as canonical low-resource, typologically dis-
tinct evaluation settings. Overall NER performance
remains modest, but, as Table 6 shows, MAML
provides meaningful zero-shot boosts in the head-
only regime for small and medium models. These
gains suggest that even without training exposure
to these languages, the inductive biases from En-
glish episodic training transfer surprisingly well, at
least for token-level prototypes.

6 Learning Dynamics

Despite clear convergence gains, the pretraining
metrics alone leave several observations unex-
plained: the mid-training rebound and double-
descent in Paloma perplexity, the abrupt jumps in
support versus query accuracy, and the sudden col-
lapse in representation rank. To understand this
further, we now turn to a learning-dynamics analy-
sis: tracking episodic support/query performance,
classifier head statistics, and proportional effective
rank throughout pretraining.

Effective meta-learning has a capacity threshold.
To understand how MAML updates influence learn-
ing dynamics during pretraining, we track both sup-
port (training set in the inner loop) and query (held
out final step in the inner loop) accuracy across
training steps (Figure 3).

The small and medium models show clear signs
of effective meta-learning. Support accuracy grad-
ually increases and stabilizes around 6–7%, while
query accuracy climbs steadily above 40%. This
pattern indicates that the models are internalizing
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Figure 3: Average support and query accuracy across
pretraining steps for all models. Top: Average support-
set accuracy (%) measured at the end of each inner-loop
adaptation, as a function of the global pretraining step.
Bottom: Corresponding average query-set accuracy (%)
after adaptation.

a useful task prior, and show smooth convergence
with relatively little instability.

The tiny model displays a distinct failure mode.
While its support accuracy rises modestly, its query
accuracy remains stagnant, hovering just above
chance (10%). This suggests the model mem-
orizes support examples but fails to learn task-
generalizable features-a canonical symptom of un-
derparameterization in meta-learning (Finn et al.,
2017; Rajeswaran et al., 2019). In effect, it lacks
the representational bandwidth to encode a shared
inductive bias across tasks.

The large model shows a late-phase rise in
query accuracy after 4,500 steps, coinciding with
stabilization of head-weight variance. This sug-
gests a phase-like reorganization where the model
consolidates a useful episodic prior after a pro-
longed plateau. In the MAML setting, this may
correspond to the model first learning how to adapt,
before learning to generalize from adaptation.

Taken together, these patterns confirm that meta-
learning is most stable within a mid-capacity
regime. Models must be large enough to encode
reusable structure, but not so large that their learn-
ing becomes erratic. These insights help contextu-
alize downstream findings: the best generalization
often arises from models that strike a balance be-
tween representational power and stable task-level
adaptation.

Classifier head weight variance reveals adap-
tation behavior. To probe how episodic adap-
tation reshapes the backbone’s feature geometry,
we track the mean and standard deviation of the
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Figure 4: Evolution of classifier head weights during
meta-training. Top: Standard deviation of the task-
specific classifier head weights (in logits space). Bottom:
Mean of the classifier head weights.

episodically adapted classifier head across training
(Figure 4). Because the inner loop updates only
this shallow head on frozen backbone features, its
across-episode weight statistics act as a lightweight
linear-probe proxy for class separability: under
softmax on fixed features, class weight vectors
tend to align with differences between class means,
so greater dispersion (std) across head weights in-
dicates larger between-class margins induced by
the backbone, while transient spikes without sus-
tained query gains suggest support overfit rather
than stable generalization. We therefore relate in-
flections in mean/std to simultaneous changes in
support/query accuracy to contextualize adaptation
quality.

The top panel shows the standard deviation of
head weights. All models exhibit growth in weight
variance, indicating increasing expressivity in the
task-specific head. The small model diverges
most sharply, with its weight variance surpassing
all others after 2k steps. This suggests an over-
specialization effect: the model learns to adapt
aggressively to each task, potentially at the cost of
stability. In the lower panel, the mean of the head
weights remains near zero for most models, but the
tiny model is an outlier. It accumulates a strong
bias in one direction over training, indicating that
its head converges toward a fixed mapping that is
minimally updated across episodes. This aligns
with earlier diagnostics showing that its gradient
norms collapse early in training.

These dynamics reinforce the idea that episodic
MAML indeed induces a scale-sensitive tradeoff:
in higher-capacity models, episodic gradients drive
generalizable structure into the shared initializa-
tion; in lower-capacity models, this same pressure

Figure 5: Proportional effective rank of MAML and
vanilla models on available checkpoints until 6k steps.
Top: weights; bottom: gradients.

can cause drift or collapse.

Evidence of representation collapse and reorga-
nization. To understand how MAML alters in-
ternal representations, we track proportional effec-
tive rank (PER), a structure-sensitive metric during
training applied to both weights and gradients in
the attention layers (Figure 5).

Following Roy and Vetterli (2007) and
Diehl Martinez et al. (2024), effective rank mea-
sures the entropy of the singular value spectrum of
a matrix, while PER normalizes this by the total
dimensionality:

PER(W ) =
exp (−∑

i pi log pi)

d

where pi = σi∑
j σj

. PER captures the extent to
which the model’s representations or updates span a
full-dimensional space; a decline in PER indicates
compression or structural specialization.

Key Finding: Phase Transition in Large
Model

Across all MAML-pretrained models, PER
declines over training, but the large model
exhibits an abrupt, synchronized drop at
step ∼3000 in:
• Proportional effective rank (PER)
• Paloma perplexity (after initial rise)
• Query accuracy (sharp jump from plateau)

We interpret this behavior as a representa-
tional phase transition: the model initially fits
the objective using diffuse, high-dimensional rep-
resentations, which are later compressed into task-
specialized, low-rank structures. The descent in
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PER lags behind the initial perplexity gains, and
only after this drop does the second descent in
Paloma begin. There is no strong evidence of a
comparable phase transition in the vanilla models.
While the large and medium variants show mild
inflection points in loss and perplexity around step
3000, these are gradual and lack the coordinated
sharpness seen in the MAML-trained models.

This suggests that MAML’s bilevel updates and
episodic task pressure may help reorganize the op-
timization landscape to favor discrete qualitative
shifts in representation. As explored in Olsson et al.
(2022); Wang et al. (2024); Hoogland et al. (2024),
model training often proceeds in qualitatively dis-
tinct stages: from brute-force fitting, to intermedi-
ate rule memorization, to compressed algorithmic
abstraction. The drop in PER may signal such a
transition—from early diffuse representations to
compressed heads tuned to solve the repeated struc-
ture of SMLMT episodes. This representational
transition is also reflected in the model’s adaptation
performance. Around the same step where PER
and Paloma perplexity undergo a sharp drop (step
∼3000), both support and query accuracies rise
abruptly (see Figure 3). Prior to this point, query
accuracy remains relatively flat, indicating that the
model struggles to generalize from support to query
examples. But after the phase transition, the model
rapidly learns to extrapolate, with query accuracy
climbing from near random to over 0.5.

This synchrony across metrics provides com-
pelling evidence of a coordinated phase shift in
the model’s learning trajectory. When looking
into more granular checkpoints (Figure 6), there
is clearer evidence that the model transitions from
an early stage where it relies on diffuse represen-
tations to a later stage where it reorganizes both
its representations and update paths into a lower-
dimensional, more modular form capable of few-
shot generalization. That said, this phase behavior
appears scale-sensitive as it is absent in smaller
scales. This suggests that the capacity to reorga-
nize may be gated by scale, and that below a certain
threshold, the inductive pressure of MAML induces
collapse rather than modularization.

7 Conclusion

We interleaved first–order MAML episodes with
decoder pretraining and analyzed dynamics across
four SLM scales. Under equal compute, the hy-
brid objective accelerates optimization but trades
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Figure 6: Dynamics of pico-maml-decoder-large
over 6000 pretraining steps. Pink shaded region marks
the phase transition (steps 2600-3200) where PER col-
lapses, perplexity drops, and query accuracy jumps.

off perplexity at most scales; downstream, it
brings modest average NER gains (+2–3 pp) at
medium/large scales. Spectral logs expose a phase-
like diversify–then–compress pattern that coincides
with improving episodic query accuracy in the large
model. Given our NER-only, single-seed scope, we
present these as tools and observations rather than
broad performance claims.

However, while our evaluation focuses exclu-
sively on named entity recognition, the underlying
mechanism—episodic adaptation via SMLMT—is
task-agnostic. In principle, the same hybrid ob-
jective could be applied to other sequence label-
ing tasks (e.g., part-of-speech tagging, syntactic
chunking) or even structured prediction problems
that admit few-shot formulations. Whether the
phase transitions and rank-compression patterns
we observe generalize to non-linguistic domains
(e.g., code generation, mathematical reasoning) re-
mains an open question. Future work should ex-
plore whether MAML’s inductive bias is inherently
suited to token-level structure learning or whether
it confers broader benefits across modalities and
task families.
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Relatedly, other natural extensions suggest them-
selves. Future work should also include multi-seed
and hyperparameter sweeps (inner LR, episode
frequency), multilingual pretraining to test cross-
script transfer, varying which layers adapt in the
inner loop, and evaluation on non-NER tasks (e.g.,
classification, QA, reasoning), as the architectural
design space is rather large. In terms of exploratory
work, a natural next step is to learn whether the
same phase transition re-emerges when the corpus
is multilingual, which would clarify why cross-
script transfer remains the weak point of the present
models. Varying which backbone layers adapt,
how many steps they receive and how frequently
episodes are interleaved may unlock better com-
pute–capability trade-offs. Finally, the clear cor-
relation between the effective-rank collapse and
downstream utility hints that spectral diagnostics
might serve as a self-supervised early-stopping sig-
nal.

Limitations

All training runs stop at exactly six thousand outer
steps, a horizon that may be too short for the largest
model, so the observed perplexity gap between
MAML and vanilla training could shrink or even
reverse if optimisation were allowed to continue.
Our downstream evaluation focuses on a single task
family, sequence labelling, so it remains unclear
whether the same advantages would materialise on
reasoning or generation-quality benchmarks. Be-
cause the corpus is predominantly English, im-
provements in low-resource or logographic lan-
guages remain modest; a more diverse corpus may
alter both quantitative and qualitative conclusions.
Hyper-parameters such as the hybrid episode prob-
ability, the inner-loop learning rate and the 32-way
4-shot episode size were transferred unchanged
across scales; dedicated tuning might further mod-
ify the trade-off between convergence speed and
final perplexity. Models were trained on academic
budget, which limited training to 6000 outer steps.
Some interesting training dynamics only appear
after a very extended period of training, and future
work should study this long-term behavior. Finally,
each condition was run with a single random seed
owing to GPU constraints, so although the phase
transition appears robust, the exact magnitude of
the gains should be interpreted with caution.
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A Pseudocode

Below is the pseudocode for the MAML and vanilla
pretraining setup.

Algorithm 1 Distributed SMLMT Loop
Initialize model fθ , head hϕ, outer optimizer, and inner
SGD on hϕ

step← 0
for each sub-batch B from dataloader do

X ← AllGather(B inputs) ▷ across devices
r ← Broadcast(Uniform(0, 1))
if r < ρ then

(S,Q, yS , yQ)← MaskTokens(X)
ϕsnap ← ϕ ▷ save head params
for t = 1 to Tinner do

ℓS ← CE
(
hϕ(fθ(S)), , yS

)
ϕ← ϕ− α,∇ϕℓS

end for
ℓ← CE

(
hϕ(fθ(Q)), , yQ

)
ϕ← ϕsnap ▷ restore head

else
Xin ← X without last token; Y ← X without first

token
ℓ← CE

(
fθ(Xin), , Y

)
end if
Backward

(
ℓ, /, accum_steps

)
if (step + 1) mod accum_steps = 0 then

OptimizerStep(); SchedulerStep(); ZeroGrad()
AggregateMetrics(ℓ); Barrier()

end if
step← step +1

end for

Algorithm 2 Distributed AR Loop
Initialize configs, Fabric/strategy, tokenizer, model fθ , opti-
mizer
Prepare dataloader and distribute it
step← 0; ZeroGrad()
for each sub-batch B from dataloader do

X ← AllGather(B inputs) ▷ across devices
Xin ← X without last token; Y ← X without first

token
ℓ← CE

(
fθ(Xin), , Y

)

Backward
(
ℓ, /, accum_steps

)
if (step + 1) mod accum_steps = 0 then

OptimizerStep(); SchedulerStep(); ZeroGrad()
Barrier() ▷ optional

end if
step← step +1

end for

A.1 Multi-GPU processing

Pico already uses Lightning-Fabric data paral-
lelism but meta-learning introduces various de-
mands that make multi-GPU processing compli-
cated. A Bernoulli draw is done on one GPU and
broadcast so all ranks choose the same objective.
Support and query tensors are constructed on rank
0 then scattered, because per-rank random masks
would destroy gradient equivalence. Every GPU

performs the same ten head updates before any gra-
dient is communicated. A stray early all_reduce
would mix gradients from different inner steps, so
we place an explicit barrier between inner and
outer phases.

B Universal NER Datasets

To comprehensively evaluate the pretraining
method, each permutation of fine-tuning setup
({head-only, full}, fine-tuning dataset ({da_ddt,
. . . , zh_gsdsimp, all}) (where all consists of all
available training sets), model size ({tiny, small,
medium, large}), and pretraining setup ({vanilla,
MAML}) is evaluated, for a total of 160 evaluation
runs.

• Publicly Available In-language treebanks (9
langs): full train/dev/test splits, identical
to the official UD partitions.

– da_ddt, en_ewt, hr_set, pt_bosque,
sk_snk, sr_set, sv_talbanken,
zh_gsd, zh_gsdsimp

• Parallel UD (PUD) evaluation (6 langs):
single test.txt files, all sentence-aligned
across German, English, Portuguese, Russian,
Swedish and Chinese.

– de_pud, en_pud, pt_pud, ru_pud,
sv_pud, zh_pud

• Other eval-only sets (3 langs): small test
splits for low-resource languages.

– ceb_gja (Cebuano), tl_trg (Tagalog
TRG), tl_ugnayan (Tagalog Ugnayan)

C Supplementary Figures

C.1 Supplementary Tables

Table 7: Micro-F1 scores (rows: selected datasets,
columns: vanilla vs. MAML) under head-only tuning
for large models. Highlights which languages benefit
most from MAML without full adaptation.

Model da_ddt en_ewt hr_set pt_bosque sk_snk sr_set sv_talbanken zh_gsd zh_gsdsimp

vanilla_tiny 0.004 0.031 0.011 0.000 0.004 0.009 0.000 0.005 0.009
maml_tiny 0.000 0.057 0.000 0.014 0.014 0.002 0.000 0.000 0.005

vanilla_small 0.000 0.196 0.123 0.099 0.047 0.056 0.020 0.000 0.003
maml_small 0.004 0.156 0.162 0.104 0.063 0.044 0.000 0.003 0.005

vanilla_medium 0.141 0.252 0.311 0.240 0.153 0.325 0.065 0.010 0.020
maml_medium 0.087 0.288 0.329 0.243 0.136 0.362 0.108 0.005 0.010

vanilla_large 0.247 0.366 0.401 0.337 0.178 0.422 0.261 0.034 0.039
maml_large 0.267 0.420 0.444 0.366 0.191 0.455 0.308 0.023 0.040
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Table 8: Percentage relative improvement of MAML
over vanilla for head-only tuning in the large model.

Model da_ddt en_ewt hr_set pt_bosque sk_snk sr_set sv_talbanken zh_gsd zh_gsdsimp

Large (%) +8.1 +14.8 +10.7 +8.6 +7.3 +7.8 +18.0 -32.4 +2.6

Table 9: Percentage-wise relative improvement of
MAML over vanilla under full tuning for each language.

Model da_ddt en_ewt hr_set pt_bosque sk_snk sr_set sv_talbanken zh_gsd zh_gsdsimp

tiny (%) +3.4 +0.2 -1.6 -0.7 -2.4 +1.5 +6.1 -9.2 -2.7
small (%) -3.9 -4.7 -1.9 -2.6 +3.4 +0.9 +4.9 +1.6 +4.9
medium (%) +0.8 +4.8 +3.9 +1.2 +0.3 -0.3 +3.7 +5.0 +8.2
large (%) +3.6 +4.4 -0.5 +4.2 +5.7 +1.3 +2.8 +3.4 +5.0
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