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Abstract
We study automatic post-editing for patent
translation, where accuracy and traceability
are critical, and propose a two-step pipeline
that combines a multilingual encoder for token-
level error detection with an LLM for targeted
correction. As no word-level annotations ex-
ist for Japanese–English patents, we create
supervised data by injecting synthetic errors
into parallel patent sentences and fine-tune
mBERT, XLM-RoBERTa, and mDeBERTa as
detectors. In the second stage, GPT-4o is
prompted to revise translations either freely
or under a restricted policy that allows edits
only on detector-marked spans. For error de-
tection, evaluation on synthetic errors shows
that encoder-based detectors outperform LLMs
in both F1 and MCC. For error correction,
tests on synthetic, repetition, and omission
datasets demonstrate statistically significant
BLEU gains over LLM methods for synthetic
and repetition errors, while omission errors re-
main challenging. Overall, pairing compact
encoders with an LLM enables more accurate
and controllable post-editing for key patent er-
ror types, reducing unnecessary rewrites via
restricted edits. Future work will focus on
strengthening omission modeling to better de-
tect and correct missing content.

1 Introduction

Recent advances in large language models (LLMs)
have enabled powerful multi-step reasoning ap-
proaches, such as LLMRefine (Xu et al., 2024),
which iteratively refine translation outputs through
repeated analysis and correction. More ambi-
tious designs, like Google’s recent multi-stage
pipeline (Briakou et al., 2024), extend this
paradigm even further. However, not all compo-
nents of a machine translation pipeline need to rely
exclusively on LLMs. In particular, error detec-
tion can often be performed more accurately and
with far lower computational cost using pre-trained

transformer encoders (Obeidat et al., 2025). Lukito
et al. (2024) demonstrate that, in a classification
task detecting connective language—defined as lan-
guage that facilitates engagement, understanding,
and conversation—across social media platforms,
a BERT-based classifier significantly outperforms
GPT-3.5 Turbo in precision, recall, and F1-score.

In this paper, we present a two-stage translation
refinement method (Figure 1) that combines token-
level error detection with LLM-based correction.
In the first stage, we fine-tune a pre-trained multi-
lingual transformer encoder to identify token-level
errors. Because no error-annotated dataset exists
for Japanese–English patent translation, we con-
struct a synthetic training set by injecting artificial
errors into target-side sentences of parallel patent
data. This enables the encoder to learn how to de-
tect mistranslations at the token level. In the second
stage, an LLM (GPT-4o1) (OpenAI et al., 2024)
corrects the translations based on the detected error
tags.

We evaluate our method in the patent domain,
where translation accuracy has particularly high
stakes due to legal and technical requirements,
making post-editing especially important. For er-
ror detection, we evaluated the fine-tuned multi-
lingual transformer encoder on Japanese–English
and English–Japanese patent datasets. The model
achieved higher F1 and Matthews correlation co-
efficient (MCC) scores than an LLM-based ap-
proach, demonstrating its superior capability in
identifying mistranslations at the token level. For
translation correction, experiments on three dataset
types—artificially corrupted sentences, repetitive-
error sets, and omission scenarios—show that our
hybrid strategy, using a compact transformer en-
coder for detection followed by LLM-based tar-
geted correction, outperforms purely LLM-based

1All GPT-4o results are obtained using the
gpt-4o-2024-08-06 model version.
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Figure 1: Overview of the Proposed Method.The first stage performs mistranslation detection, and the second stage
conducts mistranslation correction.

approaches in BLEU (Papineni et al., 2002) scores.
However, omission errors remain difficult to de-
tect and correct, indicating that future work should
explore more effective integration of LLM reason-
ing with dedicated detection modules. We con-
clude that while multi-step LLM reasoning is pow-
erful, selectively integrating compact transformer
encoders can yield more accurate and efficient so-
lutions for machine translation error detection and
correction. In summary, our contributions are three-
fold:

• By fine-tuning encoder models, we achieved
higher accuracy than a state-of-the-art LLM
on the error detection task, despite LLMs
generally showing strong performance across
tasks.

• By creating synthetic error-injected patent sen-
tence data, we enabled supervised training of
an error detection model without the need for
manually annotated datasets.

• Our proposed encoder–LLM hybrid method
achieved statistically significant improve-
ments in translation quality compared to LLM-
only baselines.

2 Related Work

2.1 Word-Level Quality Estimation in
Translation

Word-level QE is commonly formulated as tagging
each MT token (and gap positions) with OK/BAD
labels, a setup consolidated through the WMT
shared tasks and their findings reports over multi-
ple years (Specia et al., 2018; Fonseca et al., 2019;
Zerva et al., 2022). This formulation has catalyzed
neural approaches and standardized evaluation at

the token/gap level without reference translations.
Among early neural architectures, the Predic-

tor–Estimator framework explicitly separates a
word predictor trained on large parallel data from a
QE estimator trained on annotated QE data, achiev-
ing top performance at WMT17 (Kim et al., 2017).
Its design influenced subsequent open-source toolk-
its such as OpenKiwi, which implements state-of-
the-art QE systems for word- and sentence-level
tasks in a unified PyTorch framework (Kepler et al.,
2019). Building on cross-lingual pretrained en-
coders, Ranasinghe et al. (2020) proposed Tran-
sQuest, which attained state-of-the-art results in
WMT20 and demonstrated strong cross-lingual
transfer.

Closer to our setting, Wei et al. (2022) pro-
pose a supervised word-level QE model based
on bert-base-multilingual-cased (mBERT):
given the concatenation of source and MT, a re-
gression head estimates the probability that each
MT token is tagged as BAD. We adopt this super-
vised, token-level formulation for the patent do-
main, where terminology and style diverge from
general-domain WMT data. Beyond a single lan-
guage pair, multilingual transformer encoders have
also shown promising cross-lingual generalization
for word-level QE (Ranasinghe et al., 2021).

In parallel, learned MT metrics have moved from
sentence-level scores toward span-level feedback.
Rei et al. (2022) introduce COMET, while Guer-
reiro et al. (2024) extend it to xCOMET, which
provides sentence-level evaluation and error-span
attribution with strong WMT performance. For
robustness analysis, Alves et al. (2022) propose
SMAUG, a synthetic error generator introducing
controlled perturbations (e.g., hallucinations, dele-
tions, mistranslations) to stress-test metrics. Unlike
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xCOMET, which uses synthetic errors primarily for
metric robustness, we leverage synthetic errors as
supervision to train a token-level detector that sub-
sequently guides LLM-based correction.

2.2 LLM-based Quality Evaluation
Large language models (LLMs) have recently been
adopted as reference-free, span-level evaluators for
machine translation (MT). Kocmi and Federmann
(2023) introduce GEMBA-MQM, a GPT-4–based
evaluation method that uses a fixed 3-shot prompt
to identify error spans and types following the
MQM framework (Lommel et al., 2013), without
requiring reference translations; their results show
strong correlations with human MQM judgments
at system and segment levels in WMT23 settings.

At the same time, recent meta-evaluations high-
light limitations of LLM-based evaluators. LLM-
based metrics show limited robustness; this raises
concerns about bias and stability. Broader analyses
caution that LLM judges can be sensitive to prompt
choices and sometimes conflate evaluation crite-
ria, affecting reliability (Bavaresco et al., 2025).
These findings motivate using LLM-based evalua-
tion with care and, when possible, complementing
it with interpretable span-level feedback or learned
metrics.

In our study we employ LLMs primarily as de-
tectors/correctors rather than as final evaluators:
we use GEMBA-MQM–style prompting as one of
the error detectors and then perform post-editing
with an LLM, while reporting standard automatic
metrics (e.g., BLEU) for quantitative evaluation.
This design choice balances the interpretability and
flexibility of LLMs with established, reproducible
evaluation protocols.

2.3 Post-Editing in Machine Translation
Deguchi et al. (2024) propose a Detector–Corrector
framework that decomposes Automatic Post-
Editing (APE) into two interpretable stages: an
XLM-RoBERTa detector performing three binary
tagging tasks—MT-tag, MT-gap, and SRC-tag—to
localize error spans, followed by a corrector which
edits only the detected spans. Their edit-based
pipeline improves TER and enhances explainabil-
ity by tying edits to explicit detector rationales.
Our work adopts the same two-stage intuition but
replaces the detector with multilingual transformer
encoders fine-tuned on patent-domain supervision
and couples them with an LLM corrector instructed
to modify only detector-marked spans.

In parallel, LLM-based post-editing has emerged.
Ki and Carpuat (2024) guide an LLM with exter-
nal MQM-style feedback—at varying granularities
from generic scores to fine-grained span/type an-
notations—and show consistent improvements in
TER, BLEU, and COMET on Zh–En, En–De, and
En–Ru, with fine-grained feedback yielding the
strongest gains. Orthogonally, Xu et al. (2024) in-
troduce LLMRefine, which iteratively pinpoints
defects with a learned feedback model and refines
hypotheses, improving translation quality.

3 Mistranslation Detection

3.1 Mistranslation Detection Using Encoders

In this study, we utilize mBERT2, XLM-
RoBERTa3, mDeBERTa4 (He et al., 2023), which
are pre-trained multilingual transformer encoders,
to perform token-level quality estimation in ma-
chine translation. Specifically, we leverage the
pre-trained knowledge of encoder models to de-
tect translation errors and assign appropriate error
labels to each token.

For training encoder models, we follow the data
augmentation method proposed by Deguchi et al.
(2024) and generate synthetic error data by sam-
pling 10,000 sentences from the NTCIR-7 (Fujii
et al., 2008) (1,798,571 sentence pairs) and NTCIR-
8 (Fujii et al., 2010) (3,186,284 sentence pairs)
patent parallel corpora. We sample 10,000 sen-
tence pairs and generate synthetic errors for both
translation directions. The same 10,000 pairs are
split into 8,000 for training, 1,000 for development,
and 1,000 for testing, before applying the following
operations:

• Deletion: Delete tokens with a probability of
5%

• Insertion: Insert tokens with a probability of
10%

• Replacement: Replace tokens with a probabil-
ity of 30%

The probabilities of these operations are deter-
mined in accordance with Deguchi et al. (2024).
For insertion and replacement, we adopt a mask-
filling approach using mBERT. We insert [MASK]

2https://huggingface.co/google-bert/
bert-base-multilingual-cased

3https://huggingface.co/FacebookAI/
xlm-roberta-base

4https://huggingface.co/microsoft/
mdeberta-v3-base
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tokens at the target positions and let mBERT gener-
ate candidate substitutions using the fill-mask pre-
diction head. From the top-k predictions returned
by the model (we set k = 5), we intentionally
choose the token with the lowest predicted proba-
bility so as to maximize the divergence from the
original token. This token is then inserted or substi-
tuted to produce an artificial error. After generating
the corrupted sentence, we annotate the manipu-
lated tokens with the BAD tag and all other tokens
with the OK tag to construct supervised training
dataset.

Using this method, we generate 8,000
annotated sentences for training encoder
models. Training uses the Hugging Face
Trainer5 with num_train_epochs = 10 and
per_device_train_batch_size = 2. Unless
otherwise specified, we keep the Hugging Face
defaults for optimizer and scheduler (AdamW,
learning rate = 5 × 10−5, β1 = 0.9, β2 = 0.999,
linear scheduler).

To assess the effectiveness of the constructed
training data, we conducted additional experiments
with mBERT under different dataset conditions.
Details are provided in Appendix A.

3.2 Mistranslation Detection Using LLM

We adopt GEMBA-MQM, a GPT-based evaluation
method proposed by Kocmi and Federmann (2023),
for mistranslation detection using large language
models (LLMs). Based on the GEMBA-MQM
framework, we perform error detection under the
following two settings:

• 0-shot: Error detection is performed without
any prior examples.

• 3-shot: Error detection is performed using
three language-independent examples, follow-
ing exactly the same examples provided by
Kocmi and Federmann (2023).

Among these (Kocmi and Federmann, 2023),
the 3-shot setting has been reported to achieve the
highest error detection accuracy using GPT-4.

The mistranslation detection using encoder mod-
els and LLM serves as a preprocessing step for the
subsequent translation correction. By utilizing the
detection results, we aim to enhance the accuracy
of the translation correction process.

5https://huggingface.co/docs/transformers/
main_classes/trainer

4 Mistranslation Correction Using LLM

By providing both the source sentence and its trans-
lation as input, the LLM analyzes translation errors
and generates appropriate corrections. Specifically,
the LLM closely analyzes the detected erroneous
parts, explains the nature of the errors and their lo-
cations, and generates corrected translations based
on this analysis. By explicitly stating the reason-
ing behind each correction, the LLM enhances the
transparency of the correction process and makes
the translation refinement more interpretable.

Furthermore, in this study, we propose a method
that utilizes the mistranslation detection results ob-
tained from the encoder described in the previous
section as input for translation correction using an
LLM. In this experiment, we tested two types of
prompts: one instructing the LLM to perform trans-
lation correction with reference to the first-stage
error detection results, and another instructing it to
correct only the segments identified as erroneous
in the first stage, leaving all other parts unchanged.
By incorporating the detection outputs from either
the LLM or encoder model, we aim to further im-
prove the accuracy of translation correction.

The prompt for the proposed method is provided
in Appendix B.

5 Evaluation

5.1 Dataset

In this study, we focus on mistranslations, repe-
titions, and omissions. These error types are not
only frequently observed in patent translations but
also critically impact semantic fidelity, which is of
utmost importance in the context of patent docu-
ments. we evaluate our proposed method using the
following three types of datasets:

• Mistranslation patent dataset (Synthetic)

• Repetition error patent claim dataset (Non-
Synthetic)

• Omission error patent claim dataset (Non-
Synthetic)

The synthetic error patent data is generated by in-
troducing artificial errors into Japanese-English par-
allel patent sentences from NTCIR-7 and NTCIR-8
using the method described in Section 3.1. We
evaluate the detection and correction capabilities of
our method using 200 sentences from the synthetic
error patent dataset.
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Model Label Precision Recall F1

GPT-4o (0-shot)
OK 0.843 0.077 0.142
BAD 0.389 0.976 0.556
TOTAL F1: 0.298, MCC: 0.111

GPT-4o (3-shot)
OK 0.755 0.268 0.395
BAD 0.409 0.853 0.553
TOTAL F1: 0.454, MCC: 0.141

mBERT
OK 0.855 0.883 0.869
BAD 0.785 0.740 0.762
TOTAL F1: 0.830∗, MCC: 0.631∗

XLM-RoBERTa
OK 0.924 0.924 0.924
BAD 0.868 0.868 0.868
TOTAL F1: 0.903∗, MCC: 0.792∗

mDeBERTa
OK 0.935 0.944 0.940
BAD 0.901 0.887 0.894
TOTAL F1: 0.923∗, MCC: 0.834∗

(a) Japanese-English Translation

Model Label Precision Recall F1

GPT-4o (0-shot)
OK 0.804 0.287 0.423
BAD 0.415 0.879 0.563
TOTAL F1: 0.474, MCC: 0.190

GPT-4o (3-shot)
OK 0.709 0.503 0.588
BAD 0.419 0.634 0.504
TOTAL F1: 0.558, MCC: 0.132

mBERT
OK 0.870 0.880 0.875
BAD 0.784 0.769 0.776
TOTAL F1: 0.839∗, MCC: 0.655∗

XLM-RoBERTa
OK 0.918 0.935 0.926
BAD 0.881 0.852 0.866
TOTAL F1: 0.904∗, MCC: 0.792∗

mDeBERTa
OK 0.936 0.946 0.941
BAD 0.903 0.885 0.894
TOTAL F1: 0.924∗, MCC: 0.835∗

(b) English-Japanese Translation

Table 1: Mistranslation Detection Evaluation on Synthetic Errors. ∗ indicates a statistically significant difference
from the GPT-4o(3-shot) (p < 0.05).

In addition, to assess correction accuracy for
repetition and omission errors, we extract sen-
tences from Japanese–English translations of patent
claims generated by a Transformer (Vaswani et al.,
2023) based on the following criteria:

• Repetition error sentences: Translated sen-
tences that are more than twice as long as the
reference translation

• Omission error sentences: Translated sen-
tences that are less than half the length of the
reference translation

We then evaluate the correction performance us-
ing patent claims extracted from patent documents
published in 2021. To ensure the quality of the par-
allel data, we compute sentence similarity between
the source and reference translations using LaBSE
embeddings (Feng et al., 2022), and extract only
those pairs with similarity scores between 0.8 and
0.98. As a result, we use 200 repetition error sen-
tences and omission error sentences for evaluation.

Further details of the datasets, including the num-
ber of sentences, tokens, and other statistics, are
provided in Appendix C.

5.2 Evaluation Procedure

5.2.1 Mistranslation Detection

Each token in the translated sentence is labeled
with a BAD tag at erroneous positions, allowing for
token-level evaluation. Both encoder models and
the LLM perform tagging in the same manner as
illustrated on the left side of Figure 1. For Japanese

tokenization, we employed MeCab6 together with
the UniDic dictionary7.

We evaluate translation error detection using the
following models:

1. LLM(GPT-4o) - 0-shot

2. LLM(GPT-4o) - 3-shot

3. mBERT

4. XLM-RoBERTa

5. mDeBERTa

All experiments involving GPT-4o—both in detec-
tion and correction—use greedy decoding (temper-
ature = 0.0), with all other parameters kept at their
provider defaults.

We report F1 score and Matthews Correlation
Coefficient (MCC) as our evaluation metrics.

5.2.2 Mistranslation Correction
For the evaluation of error correction, we use three
types of data: patent sentences with artificially in-
troduced errors, patent claim sentences of repeti-
tion errors and patent claim sentences of omission
errors. Error correction is performed using an LLM,
where the input consists of the source sentence, the
translated sentence, and the error detection results
from encoder model or LLM.

The combinations of models used in the evalua-
tion are as follows:

1. No Correction: The raw MT output is evalu-
ated without any post-editing.

6https://taku910.github.io/mecab/
7https://clrd.ninjal.ac.jp/unidic/
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Method Synthetic (Ja→En) Synthetic (En→Ja) Repetition Omission
BLEU ∆ BLEU ∆ BLEU ∆ BLEU ∆

1 No Correction 31.69 −14.72 32.63 −6.46 21.49 −4.79 19.09 −45.40

2 LLM-only Correction 47.25 +0.84 40.35 +1.26∗ 26.70 +0.42 62.50 −1.99

3
LLM Detection (GEMBA-MQM, 0-shot)
+ LLM Correction

43.88 −2.53 37.58 −1.51 26.16 −0.12 62.31 −2.18

4
Baseline: LLM Detection (GEMBA-MQM, 3-shot)
+ LLM Correction

46.41 − 39.09 − 26.28 − 64.49 −

5
Proposed: mBERT Detection
+ LLM Correction

48.44 +2.03∗ 39.10 +0.01 27.42 +1.14∗ 59.73 −4.76

6
Proposed: XLM-RoBERTa Detection
+ LLM Correction

48.83 +2.42∗ 39.21 +0.12 27.41 +1.13∗ 56.38 −8.11

7
Proposed: mDeBERTa Detection
+ LLM Correction

48.03 +1.62∗ 39.22 +0.13 28.15 +1.87∗ 57.73 −6.76

(a) Unrestricted post-editing: the LLM may modify any part of the MT output. ∆ is computed as the difference from the
baseline’s score (line 4).

Method Synthetic (Ja→En) Synthetic (En→Ja) Repetition Omission
BLEU ∆ BLEU ∆ BLEU ∆ BLEU ∆

1 No Correction 31.69 −14.72 32.63 −6.46 21.49 −4.79 19.09 −45.40

2 LLM-only Correction 47.25 +0.84 40.35 +1.26∗ 26.70 +0.42 62.50 −1.99

3
LLM Detection (GEMBA-MQM, 0-shot)
+ LLM Correction

44.05 −2.36 39.96 +0.87 27.25 +0.97 62.82 −1.67

4
LLM Detection (GEMBA-MQM, 3-shot)
+ LLM Correction

48.14 +1.73∗ 42.05 +2.96∗ 26.58 +0.30 65.62 +1.13∗

5
Proposed: mBERT Detection
+ LLM Correction

49.76 +3.35∗ 42.61 +3.52∗ 23.46 −2.82 28.00 −36.49

6
Proposed: XLM-RoBERTa Detection
+ LLM Correction

50.71 +4.30∗ 43.76 +4.67∗ 23.15 −3.13 25.57 −38.92

7
Proposed: mDeBERTa Detection
+ LLM Correction

50.69 +4.28∗ 43.76 +4.67∗ 22.63 −3.65 22.60 −41.89

(b) Restricted post-editing: the LLM is allowed to modify only spans detected as erroneous. ∆ is computed as the difference
from the baseline’s score (line 4 of Table 2a).

Table 2: Translation correction BLEU scores under unrestricted and restricted post-editing settings. ∗ on ∆ indicates
a statistically significant difference from the baseline (p < 0.05).

2. LLM-only Correction: Translation correc-
tion in a single step using only LLM (GPT-4o),
without prior error detection.

3. LLM Detection (GEMBA-MQM, 0-shot) +
LLM Correction: Error detection with LLM
(GPT-4o) using GEMBA-MQM (0-shot), fol-
lowed by translation correction with LLM
(GPT-4o).

4. LLM Detection (GEMBA-MQM, 3-shot) +
LLM Correction: Error detection with LLM
(GPT-4o) using GEMBA-MQM (3-shot), fol-
lowed by translation correction with LLM
(GPT-4o).

5. mBERT Detection + LLM Correction: Er-
ror detection with mBERT (token-level tag-
ging), followed by translation correction with
LLM (GPT-4o).

6. XLM-RoBERTa Detection + LLM Correc-
tion: Error detection with XLM-RoBERTa
(token-level tagging), followed by translation
correction with LLM (GPT-4o).

7. mDeBERTa Detection + LLM Correction:
Error detection with mDeBERTa (token-level
tagging), followed by translation correction
with LLM (GPT-4o).

Baseline LLM Detection (GEMBA-MQM, 3-shot)
+ LLM Correction (unrestricted). The LLM
performs error detection with GEMBA-MQM
(3-shot), and the subsequent correction step
allows edits to any part of the translation (unre-
stricted).

Proposed Encoder-based Detection + LLM Cor-
rection (restricted). Error detection is per-
formed by an encoder model (mBERT, XLM-
RoBERTa, or mDeBERTa), and the correction
step is restricted to only the spans flagged as
erroneous by the detector; all other tokens must
remain unchanged.

For Japanese target sentences in English-
Japanese translation correction, the corrected out-
puts sometimes contained tokenized text with
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Source Sentence:
ステップＳ１１において、プライマリプーリ１１への入力トルクを計算する。

Reference Translation:
In a step S11 , an input torque to the primary pulley 11 is calculated .
Synthetic Error Sentence:
In a processing stepd , The input torque to be primary pulley 11 is achieved :
Proposed Method:
In step S11, the input torque to primary pulley 11 is calculated.

Table 3: Correction Examples of Synthetic Errors by the Proposed Method

spaces between characters, so we removed these
spaces. A comparison of results before and after
space removal is provided in Appendix D.

The corrected translations are evaluated us-
ing BLEU scores computed with sacreBLEU
(v2.4.3) (Post, 2018). BLEU measures the n-gram
overlap between a system translation and reference
translations, and is widely used as an automatic
metric for translation quality. Since BLEU is of-
ten prioritized in domains requiring highly faithful
translations, such as patents, we adopt this metric
for our evaluation. To assess whether the BLEU
score improvements reported in Table 2 are sta-
tistically significant, we used the paired-bootstrap
resampling test implemented in SacreBLEU (via
the –paired-bs option).

5.3 Evaluation Results
5.3.1 Mistranslation Detection Evaluation
On the synthetic-error evaluation (Table 1), fine-
tuned encoder models significantly outperform
LLM-based detection in both directions. mDe-
BERTa yields the best performance (Ja→En: F1 =
0.923, MCC = 0.834; En→Ja: F1 = 0.924, MCC =
0.835), followed by XLM-RoBERTa and mBERT.
In contrast, using GPT-4o as a detector —even
with 3-shot prompting (Ja→En: F1 = 0.454, MCC
= 0.141; En→Ja: F1 = 0.558, MCC = 0.132; 0-shot
is lower). An analysis of GPT-4o’s output revealed
that it tended to assign the BAD tag to most to-
kens. As a result, while the recall for BAD tags
was relatively high, the recall for OK tags dropped
significantly.

These results confirm that supervised fine-tuning
of compact encoders using synthetically generated
error data is more effective for token-level mis-
translation detection than prompting an LLM. As
human-annotated data in the patent domain is not
publicly available, we further report experiments
on the WMT21 QE dataset (Specia et al., 2021) in
the En→Ja direction, and the results are provided

in Appendix E.

5.3.2 Mistranslation Correction Evaluation
As shown in Table 2, the best-performing approach
depends on the error type and language direction.
Detector–corrector pipelines consistently improve
over the No Correction baseline, while our encoder
models-based detector with an LLM corrector is
competitive but not uniformly superior to all alter-
natives.

For synthetic errors (Ja→En), our proposed
methods outperform the LLM-only corrector and
LLM-based detector methods. The strongest re-
sult is obtained with XLM-RoBERTa detection +
LLM correction (48.83 BLEU / 50.71), with our
mBERT detection + LLM correction close behind
(48.44 / 49.76), both surpassing the LLM-only cor-
rector (47.25 / 47.25). The qualitative example in
Table 3 show that these pipelines reliably fix mis-
translations in the manipulated inputs, indicating
that token-level error tags are effective cues for the
LLM corrector.

For synthetic errors (En→Ja), when the prompt
instructs the LLM to revise the translation with ref-
erence to the first-stage error detection results, the
LLM-only correction achieves the highest BLEU
(40.35). However, when the prompt is modified to
instruct the LLM to correct only the spans identi-
fied in the first-stage detection (leaving other parts
unchanged), our proposed method surpasses the
LLM-only methods, achieving the highest BLEU
(43.76 with XLM-RoBERTa or mDeBERTa detec-
tion). This trend is also observed for synthetic
errors (Ja→En), where the second prompt formu-
lation yields higher scores than the first. These
results suggest that the high accuracy of the first-
stage detection contributes positively to the overall
translation correction quality.

For repetition errors, the highest BLEU is
achieved by mDeBERTa detection + LLM correc-
tion (28.15), followed by our mBERT detection +
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Source Sentence:
a.配電ハードウェアの構成部品として、少なくとも1つの受動電磁センサをインストールする
ステップと、 b.
Reference Translation:
a.Installing at least one Passive Electromagnetic Sensor as a component of distribution hardware;b.
Machine Translation Sentence:
a. installing at least one passive electromagnetic sensor as a component part of the electrical distribution
hardware;b. controlling the at least one passive electromagnetic sensor to emit electromagnetic radiation;c.
controlling the at least one passive electromagnetic sensor to emit electromagnetic radiation;d. controlling
the at least one passive electromagnetic sensor to emit electromagnetic radiation;e. controlling the at least
one passive electromagnetic sensor to emit electromagnetic radiation;f. controlling the at least one passive
electromagnetic sensor to emit electromagnetic radiation;g. controlling the at least one passive electro-
magnetic sensor to emit electromagnetic radiation;g. controlling the at least one passive electromagnetic
sensor to emit electromagnetic radiation;g. controlling the at least one passive electromagnetic sensor
to emit electromagnetic radiation;g. controlling the at least one passive electromagnetic sensor to emit
electromagnetic radiation;g. controlling the at least one passive electromagnetic sensor to emit electro-
magnetic radiation;g. controlling the at least one passive electromagnetic sensor to emit electromagnetic
radiation;g. controlling the at least one passive electromagnetic sensor to emit electromagnetic radiation;g
Proposed Method:
a. installing at least one passive electromagnetic sensor as a component part of the electrical distribution
hardware; b.

Table 4: Correction Examples of Repetition Errors by the Proposed Method

Source Sentence:
前記NK細胞は、血液または細胞株に由来し、好ましくは、細胞株に由来し、より好ましく
は、前記細胞株に由来するNKはNK92細胞株であることを特徴とする請求項12に記載の免疫
細胞。

Reference Translation:
The immune cell of claim 12, wherein the NK cell is derived from blood or a cell line; preferably, from a
cell line; and more preferably, the NK cell from a cell line is NK92 cell line.
Machine Translation Sentence:
The immune cell of claim 12, wherein the NK cell is derived from blood or a cell line.
Proposed Method:
The immune cell of claim 12, characterized in that the NK cell is derived from blood or a cell line,
preferably from a cell line, and more preferably from the aforementioned cell line, specifically the NK92
cell line.

Table 5: Correction Examples of Omission Errors by the Proposed Method

LLM correction (27.42). The example in Table 4
confirm that proposed method remove duplicated
spans while preserving punctuation and other for-
matting. These findings suggest that the proposed
method is also effective in handling repetition er-
rors. While unrestricted edits generally yield higher
BLEU scores, restricting edits to detector-identified
spans leads to a performance drop across most en-
coder–LLM configurations. This suggests that it
is important to balance the use of detection out-
puts with the LLM’s inherent correction capability.
Based on the detection results, this decline is likely
due to the first-stage detection failing to identify

repetition errors with sufficient accuracy, leading
to a drop in performance when relying too heavily
on these detection outputs. Therefore, improving
both precision and recall in error detection is essen-
tial for the restricted-edit pipeline to match or ex-
ceed the performance of the unrestricted approach.
Patent claims often contain longer sentences than
general patent text, so it may be necessary to train
the encoder model on longer sentences to better
handle lengthy sentences such as repetitions.

In contrast, for omission errors, the strongest
performance comes from LLM detection (3-shot)
+ LLM correction (64.49 / 65.62), with the LLM-
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only corrector next. As shown in Table 2a, the
BLEU score of the uncorrected translations was
19.09, whereas the proposed method achieved a sig-
nificantly higher score of 59.73. Table 5 presents
the example of omission error corrections, illus-
trating cases where the proposed method success-
fully recovers missing content in patent transla-
tions. However, our encoder-based detector lags
on this error type. Unlike mistranslations or repe-
titions—which are anchored to existing target to-
kens—omissions are not directly observable on the
target side via token tags. This likely limits target-
side tagging, whereas sequence-/alignment-aware
detection (e.g., identifying source tokens without
target alignments) is better suited to omissions. In-
corporating alignment-based signals is therefore a
promising direction to broaden omission coverage
in future work.

6 Conclusion

This study demonstrated that the combination
of pre-trained multilingual transformer encoder
model, trained on patent texts for mistranslation
detection, and LLM-based correction led to statis-
tically significant improvements in BLEU scores,
outperforming other methods in handling mistrans-
lations and repetition errors. In particular, the high-
precision error detection achieved by encoder mod-
els supported the LLM in correcting erroneous to-
kens, contributing to overall improvements in trans-
lation quality.

Moreover, by training on synthetically gener-
ated patent data, we showed that it is possible to
train an error detection model without relying on
human-annotated data. These findings suggest that
an encoder-based model, when trained with high-
quality data, can outperform LLMs—which typi-
cally excel in a wide range of tasks—in specific
scenarios such as error detection in patent transla-
tion.

On the other hand, for omission errors, the model
that performed both detection and correction solely
with an LLM outperformed the proposed method,
highlighting a limitation in the current use of token-
level tagging. These results indicate that optimiz-
ing correction strategies and error representation
methods based on the type of error is essential for
further improving translation quality.

Limitations

While our proposed two-step method achieves
promising results in detecting and correcting trans-
lation errors in patent documents, several limita-
tions remain.

First, our study focuses on mistranslations, rep-
etitions, and omissions. While these types are
critical in patent translation, other important cate-
gories—such as terminology misuse and grammat-
ical inconsistencies—remain unexamined. Prior
work has shown that comprehensive MT evaluation
requires explicit error analysis across diverse cate-
gories, as formalized in the MQM framework (Fre-
itag et al., 2021). Motivated by this, future work
will investigate improved methods for constructing
synthetic data that more faithfully capture a broader
range of error types.

Second, all experiments were conducted in the
Japanese–English patent domain. Thus, the gen-
eralizability of our approach to other domains or
language pairs remains unverified. We plan to ap-
ply our method to diverse translation settings to
evaluate its robustness.

Third, our evaluation used relatively small
datasets, due to the limited availability of high-
quality, domain-specific parallel data. Larger-scale
validation would help confirm the effectiveness of
our approach.

Finally, token-level tagging was less effective for
omissions, likely due to their broader contextual
nature. To improve this, we will explore incorporat-
ing alignment-based signals and increase training
data diversity to better capture omission patterns.
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A Effectiveness of the Constructed
Training Data

To evaluate the effectiveness of the constructed
training data, we compare the tagging performance
of the following models:

1. mBERT without fine-tuning

2. mBERT trained on low-quality synthetic data

3. mBERT trained on high-quality synthetic data
(proposed model)

The low-quality training data is generated by
inserting or replacing tokens using the most likely
candidates predicted by mBERT. As these tokens
tend to be highly similar to the original tokens,
tagging them as BAD degrades the quality of the
training data.

As shown in Table 6, our proposed method
achieves the highest error detection accuracy,
demonstrating the effectiveness of the constructed
training data.

B Prompt Template for Translation
Correction

This appendix presents the prompts used in the sec-
ond stage of our method, where the LLM generates
corrected translations (Japanese-English) based on
the source sentence, the initial translation, and
token-level error tags. In this experiment, we tested
two types of prompts: one instructing the LLM to
perform translation correction with reference to
the first-stage error detection results (shown in Ta-
ble 9), and another instructing it to correct only
the segments identified as erroneous in the first
stage, leaving all other parts unchanged (shown in
Table 10). By incorporating the detection outputs
from the encoder model, we aim to further improve
the accuracy of translation correction.

C Dataset Statistics

In this appendix, we provide detailed statistics of
the datasets used in our experiments. We report
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Model Label Precision Recall F1

mBERT
before fine-tuning

OK 0.673 0.140 0.232
BAD 0.372 0.882 0.523
TOTAL F1: 0.338, MCC: 0.031

Low-quality
Training Data

OK 0.707 0.913 0.797
BAD 0.694 0.342 0.459
TOTAL F1: 0.673, MCC: 0.320

Proposed Model
OK 0.855 0.883 0.869
BAD 0.785 0.740 0.762
TOTAL F1: 0.830, MCC: 0.631

(a) Japanese-English Translation

Model Label Precision Recall F1

mBERT
before fine-tuning

OK 0.667 0.002 0.004
BAD 0.362 0.998 0.531
TOTAL F1: 0.195, MCC: 0.002

Low-quality
Training Data

OK 0.747 0.873 0.805
BAD 0.681 0.478 0.562
TOTAL F1: 0.717, MCC: 0.388

Proposed Model
OK 0.870 0.880 0.875
BAD 0.784 0.769 0.776
TOTAL F1: 0.839, MCC: 0.655

(b) English-Japanese Translation

Table 6: Tagging Accuracy Evaluation of mBERT

Ja→En En→Ja

Dataset Sent. Tokens (Ja) Tokens (En) Sent. Tokens (En) Tokens (Ja)

Training 8,000 268,247 254,239 8,000 246,885 280,313
Development 1,000 37,062 34,128 1,000 33,160 38,670

Test (Mistranslation) 200 7,016 6,869 200 6,680 7,278
Test (Repetition) 200 26,454 19,805 - - -
Test (Omission) 200 67,613 11,545 - - -

Table 7: Statistics of the datasets used in this study

the number of sentences and tokens for the train-
ing, development, and test sets. For the test data,
we further break down the statistics by error type:
mistranslation, repetition, and omission.

As shown in Table 7, the training and devel-
opment sets are derived from synthetic error cor-
pora constructed from Japanese–English patent sen-
tences. The test sets include both synthetic errors
(mistranslation) and human-annotated patent claim
data (repetition and omission).

D Impact of Space Removal in Japanese
Translations

In the Japanese target sentences produced during
English–Japanese translation correction, some out-
puts contained tokenized text with spaces inserted
between characters. To ensure accurate BLEU cal-
culation and fair comparison, we removed spaces
between characters in Japanese outputs prior to
scoring. Table 11 shows the comparison of BLEU
scores before and after space removal, demonstrat-
ing that removing extraneous spaces can lead to
score variations due to changes in tokenization.

Model Label Precision Recall F1

GPT-4o (0-shot)
OK 0.757 0.957 0.845
BAD 0.280 0.052 0.087
TOTAL F1: 0.660, MCC: 0.018

GPT-4o (3-shot)
OK 0.766 0.945 0.846
BAD 0.390 0.108 0.169
TOTAL F1: 0.681, MCC: 0.091

mDeBERTa
OK 0.808 0.891 0.847
BAD 0.506 0.346 0.411
TOTAL F1: 0.741, MCC: 0.272

Table 8: Mistranslation Detection Evaluation on
WMT21 En→Ja QE Dataset

E Results on the WMT21 En→Ja QE
Dataset

To further evaluate our method on human-
annotated data, we conducted experiments using
the WMT21 quality estimation (QE) dataset in the
En→Ja direction. From the dataset, 800 sentences
were used for training and 100 sentences for eval-
uation. We compared the performance of the fine-
tuned mDeBERTa model with GPT-4o under the
same conditions. The results are presented in Ta-
ble 8.

From the results, we observed that the fine-tuned
mDeBERTa achieved the highest detection accu-
racy. This suggests that, even on human-annotated
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System Prompt
You are a translation checker.
You will be given:
1) A Japanese sentence (source text).
2) An English sentence (the current translation).
3) A list of token-level annotations (BAD/OK) for the English sentence.
Your tasks are:
1. Identify translation errors or inaccuracies in the English sentence relative to the Japanese source.
- Use the BAD/OK annotation list as a reference, but also rely on your own judgment.
2. Propose corrections or improvements for each identified error.
3. Provide a final, corrected English translation that reflects all improvements.
Output Format:
[Translation Errors]
- (1) <具体的にどの部分が誤りか、どのように修正すべきか>
- (2) <...>
...
[Corrected Translation]
<最終的に修正を反映した正しい英文>
Constraints:
- Do not provide explanations or commentary beyond what is requested in the Output Format.
- Keep your output concise and organized.
User Prompt
Japanese source sentence:
{source_text.strip()}
English translation to check:
{translated_text.strip()}
Token-level annotation:
{annotation_list.strip()}
Please:
1. List errors and their corrections under [Translation Errors].
2. Provide the corrected translation under [Corrected Translation].

Table 9: Prompt for translation correction with reference to the encoder-based error detection results, without
restrictions on the parts to be corrected

data, encoder-based models can surpass LLMs
in error detection accuracy. Compared to the
synthetic-error evaluation results in Table 1, the
scores are lower for two reasons. First, the amount
of human-annotated training data is limited, as only
a small portion of such data has been made pub-
licly available. Second, human-annotated data is
inherently more challenging than synthetic data.
Therefore, constructing synthetic data that more
closely approximates human annotations represents
an important future direction.
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System Prompt
You are a translation checker.
You will be given:
1) A Japanese sentence (source text).
2) An English sentence (the current translation).
3) A list of token-level annotations (BAD/OK) for the English sentence.
Your tasks are:
1. Based only on the BAD/OK annotation list, identify the tokens marked as BAD in the English
translation.
2. Propose corrections or improvements only for the BAD tokens. Do not introduce corrections for tokens
marked as OK.
3. Provide a final, corrected English translation that reflects only the necessary changes.
Output Format:
[Translation Errors]
- (1) <具体的にどの部分が誤りか、どのように修正すべきか>
- (2) <...>
...
[Corrected Translation]
<最終的に修正を反映した正しい英文>
Constraints:
- Do not consider or correct any parts of the translation other than the tokens marked as BAD.
- Do not provide explanations or commentary beyond what is requested in the Output Format.
- Keep your output concise and organized.
User Prompt
Japanese source sentence:
{source_text.strip()}
English translation to check:
{translated_text.strip()}
Token-level annotation:
{annotation_list.strip()}
Please:
1. List errors and their corrections under [Translation Errors].
2. Provide the corrected translation under [Corrected Translation].

Table 10: Prompt for correcting only the segments identified as erroneous by the encoder-based error detection,
leaving all other parts unchanged

Method Before After
1 No Correction 32.63 32.63
2 LLM-only Correction 40.35 40.35

3
LLM Detection (GEMBA-MQM, 0-shot)
+ LLM Correction

37.58 / 39.96 37.58 / 39.96

4
LLM Detection (GEMBA-MQM, 3-shot)
+ LLM Correction

39.09 / 42.05 39.09 / 42.05

5
mBERT Detection
+ LLM Correction

39.10 / 42.62 39.10 / 42.61

6
XLM-RoBERTa Detection
+ LLM Correction

39.21 / 43.64 39.21 / 43.76

7
mDeBERTa Detection
+ LLM Correction

39.21 / 43.70 39.22 / 43.76

Table 11: Effect BLEU of removing extra spaces in Japanese target sentences. Each cell shows x/y, where x is the
LLM correction with unrestricted edits (may modify any part) and y is the LLM correction restricted to correcting
only the errors detected. "Before" denotes the raw corrected outputs containing spaces between characters, and
"After" denotes the same outputs with these spaces removed.
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