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Abstract
Large language models have the potential to
generate explanations for their own predictions
in a variety of styles based on user instructions.
Recent research has examined whether these
self-explanations faithfully reflect the models’
actual behavior and has found that they often
lack faithfulness. However, the question of
how to improve faithfulness remains underex-
plored. Moreover, because different explana-
tion styles have superficially distinct character-
istics, it is unclear whether improvements ob-
served in one style also arise when using other
styles. This study analyzes the effects of train-
ing for faithful self-explanations and the extent
to which these effects generalize, using three
classification tasks and three explanation styles.
We construct one-word constrained explana-
tions that are likely to be faithful using a fea-
ture attribution method, and use these pseudo-
faithful self-explanations for continual learning
on instruction-tuned models. Our experiments
demonstrate that training can improve self-
explanation faithfulness across all classification
tasks and explanation styles, and that these im-
provements also show signs of generalization
to the multi-word settings and to unseen tasks.
Furthermore, we find consistent cross-style gen-
eralization among three styles, suggesting that
training may contribute to a broader improve-
ment in faithful self-explanation ability.

1 Introduction

Instruction-tuned large language models (LLMs)
appear capable of generating natural language ex-
planations about their own decisions (i.e., self-
explanations) in a variety of styles (Calderon and
Reichart, 2025). Users can instruct the models
to identify the key information in the input that
drives their predictions or to construct counterfac-
tual inputs that invert the original predictions. Self-
explanations have the potential to give explainabil-
ity to LLMs, converting their black-box processing
into interpretable expressions.

Train - Attribution Style

User:
Text: “I hate waking up early.”
What is the sentiment of the text?

Assistant: Negative

User:
List the most important word for
determining the sentiment.

Assistant: “hate”

Test - Counterfactual Style

User:
Text: “my room walls are boring”
What is the sentiment of the text?

Assistant: Negative

User:
Edit the text so that the predicted
sentiment would change.

Assistant: “my room walls are exciting”

Table 1: Training and test examples used to evaluate
cross-style generalization. The training style instructs
models to output words that strongly support their pre-
dictions, whereas the test style requires generating sen-
tences that contradicts the predictions.

Recent studies have investigated the extent to
which self-explanations faithfully reflect actual
model behavior. They have designed evaluation
protocols for each explanation style: checking the
model’s prediction change when editing the input
according to the self-explanations (Atanasova et al.,
2023; Siegel et al., 2024; Madsen et al., 2024), and
checking whether the Chain-of-Thought reason-
ing steps accurately reflect their biases in predic-
tions (Turpin et al., 2023; Chen et al., 2025). These
studies show that self-explanations produced by
LLMs are often unfaithful and unreliable across
styles, underscoring the need for improvement.

However, it remains unclear how, and to what
extent, the self-explanation faithfulness of LLMs
can be improved. Because the faithfulness of a
model’s self-explanation should be evaluated based
on observations of its own behavior (Jacovi and
Goldberg, 2020), it is inherently challenging to
provide general supervised signals of faithful self-
explanations that can apply to any model. More-
over, explanation styles exhibit distinct surface

193



Text: I hate waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Attribution

Negative

List the single most important word for
determining the sentiment of the text,
such that without this word the sentiment
cannot be determined.

hate

Text: I [REDACTED] waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Positive

Text: I hate waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Redaction

Negative

Redact one word in the text by replacing
the single most important word for
determining the sentiment with
'[REDACTED]'.

I [REDACTED] waking up early.

Text: I [REDACTED] waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Positive

Text: I hate waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Counterfactual

Negative

Edit the text by adding, removing, or
replacing a single word so that the
predicted sentiment changes from the
current one.

I love waking up early.

Text: I love waking up early.
What would you classify the sentiment?
Answer only "Positive" or "Negative"

Positive

Prediction

Self-
Explanation

Faithfulness
Evaluation

Session 1

Session 2

Figure 1: Examples of one-word-constrained self-explanations and faithfulness evaluation for each explanation style.
Self-explanations are generated in the same session as the classification task: Attribution and Redaction require
listing and redacting the most important input words affecting the prediction, respectively, while Counterfactual
requires editing the input text so that the predicted label will flip. Faithfulness evaluation involves a separate session,
in which a self-explanation is considered faithful if editing the input according to it indeed flips the prediction.

characteristics: an attribution-style self-explanation
consists of words that support the model’s predic-
tion, whereas a counterfactual-style explanation is
expressed through a sentence that contradicts the
original prediction (Table 1). It remains an open
question how the faithfulness of self-explanations
in each explanation style can be effectively im-
proved, and whether such improvements are trans-
ferable across styles.

In this paper, we construct pseudo-faithful self-
explanations in three explanation styles (Figure 1)
and examine how training LLMs on these con-
structed explanations affects their faithfulness. We
further investigate how well the resulting improve-
ments generalize along three dimensions: uncon-
strained multi-word settings (Section 4.2), unseen
classification tasks (Section 4.3), and cross-style
generalization (Section 4.4). We construct train-
ing datasets of pseudo-faithful self-explanations
for three classification tasks using a feature attri-
bution method under a one-word constrained set-
ting. We then train the instruction-tuned models
by mixing the constructed self-explanations with
their original instruction tuning data, and evaluate
the self-explanation faithfulness before and after
training.

Our experimental results show that training im-
proves faithfulness across almost all classification
tasks and explanation styles. We also find that, for
one explanation style, the improvement generalizes
to unseen classification tasks and to unconstrained
multi-word settings. Furthermore, we observe gen-

eralization of faithfulness improvements across dis-
tinct explanation styles. For example, a model
trained to identify words that support its prediction
can also modify the input sentence by deleting or re-
placing those words to invert the prediction. These
findings suggest that training on pseudo-faithful
self-explanations may improve self-explanation
faithfulness across explanation styles, even without
access to truly faithful self-explanations.

2 Explanation Styles and Faithfulness

Previous work has proposed a variety of explana-
tion styles and corresponding protocols for assess-
ing their faithfulness to model behavior. A common
style requires models to produce self-explanations
consisting of input words identified as contributing
to predictions (Atanasova et al., 2023; Huang et al.,
2023; Madsen et al., 2024), while more free-form
explanations have also been explored (Siegel et al.,
2024). Another line of research adopts a counter-
factual style, in which explanations take the form
of sentences similar to the original input but in-
tended to induce different predictions (Singh et al.,
2024; Calderon and Reichart, 2025). In this setting,
faithfulness can be evaluated by checking whether
the generated counterfactuals indeed produce the
prediction change.

We focus on three styles of self-explanations,
namely attribution, redaction, and counterfactual,
and evaluate their faithfulness primarily through
the self-consistency check protocol (Madsen et al.,

194



2024), as illustrated in Figure 1. We describe the
details as follows:

Attribution In this style, the model lists input
words that it considers important for its prediction,
thereby simulating feature attribution methods. If
the explanation is faithful, the listed words should
have a substantial impact on the prediction being
explained. Faithfulness is therefore assessed by
examining whether the prediction changes when
the listed words are removed from the original in-
put. Following Madsen et al. (2024), we create
such redacted inputs by automatically replacing the
listed input words with the “[REDACTED]” tokens
rather than deleting them, in order to preserve the
grammatical structure.

Redaction In this style, the model directly gen-
erates a redacted version of the input in which
the words it deems important for its prediction
are replaced with “[REDACTED]”. Unlike attri-
bution, which requires the model to list important
words, the redaction style requires the model to
erase them while preserving the rest of the input
sentence. We evaluate faithfulness by checking
whether the model’s prediction changes when it is
given the redacted input sentence it produced.

Counterfactual This style requires the model to
edit the input sentence such that the resulting sen-
tence changes the model’s original prediction. The
model may add, remove, or replace input words,
subject to editing-distance constraints specified in
a prompt. To evaluate faithfulness, we feed the
generated counterfactual sentences back into the
model and test whether the predicted label changes
accordingly.

It is important to note that these explanation
styles differ substantially in their surface forms:
whether a self-explanation is a sentence or a list
of words, whether it involves adding new content
beyond the original input, and whether it supports
or contradicts the original prediction.

3 Training for Faithful Self-Explanations

Our goal is to analyze how training models with
faithful self-explanations improves faithfulness and
how these improvements generalize. We do not
have access to the ground truth of truly faithful self-
explanations as a principle (Jacovi and Goldberg,
2020); faithfulness is defined through the model’s
black-box behavior and evaluated by checking the

consistency of generated self-explanations in a post-
hoc manner. We therefore consider pseudo-faithful
self-explanations that are more likely to be judged
as faithful, rather than attempting to construct gen-
uinely faithful ones. We first create datasets of
pseudo-faithful self-explanations for each of the
three styles, using influential words estimated via a
feature attribution method. We then train models
on these datasets in a continual learning setup and
evaluate the effects using the faithfulness evalua-
tion protocols for each style.

3.1 Training Dataset Construction
For all of our experiments, we construct train-
ing datasets of pseudo-faithful self-explanations
using instruction-tuned Llama-2 (Touvron et al.,
2023) models, specifically Tulu-2 (Ivison et al.,
2023) 7B and 13B, and three classification tasks:
Sentiment140 (Go et al., 2009), SNLI (Bowman
et al., 2015), and AGNews1. We assume that faith-
ful explanations, including attribution, redaction,
and counterfactual styles, are generally expected
to capture the causal influence of input words on
model predictions. For this reason, we hypothe-
size that pseudo-faithful self-explanations can be
constructed from the most influential input word
identified by a feature attribution method.

Influential Word Estimation The influence of
each input word is estimated using an erasure-based
attribution method (Li et al., 2017). Let the input
sentence be x = (w1, w2, . . . , wm) and the model
prediction be ŷ = argmaxy pθ(y | x), where θ
denotes the model. We compute the influence of an
input word w on the prediction ŷ:

Iθ(w | x) = pθ(ŷ | x)− pθ(ŷ | x−w), (1)

where x−w is obtained by replacing w with the
“[REDACTED]” token. We then identify the word
w∗ with the highest value as the most influential
word on their prediction:

w∗ = argmax
w∈x

Iθ(w | x). (2)

Construction of Pseudo-Ground Truth Using
the identified influential word w∗, we construct
pseudo-ground truth of faithful self-explanations
for each style. For all styles, we constrain the self-
explanations to a one-word setting (Figure 1). The
construction procedure is as follows:

1https://www.kaggle.com/datasets/amananandrai/
ag-news-classification-dataset
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User:
Text: {input x}
What is the sentiment of text?

Assistant: {model prediction ŷ}
User: {self-explanation instruction for style S}
Assistant: {constructed self-explanation}

Table 2: Template of the training data. The loss is com-
puted solely from the responses of self-explanations.

• Attribution: The pseudo-ground truth self-
explanation is simply the influential word w∗

corresponding to the model’s prediction ŷ
(e.g., hate).

• Redaction: The pseudo-ground truth self-
explanation is the redacted input x−w∗ , cre-
ated by replacing w∗ with “[REDACTED]”
(e.g., I [REDACTED] waking up early.).

• Counterfactual: The pseudo-ground truth
self-explanation is constructed by replacing
w∗ with another word wȳ associated with the
second most probable prediction ȳ (e.g., I
love waking up early.). We obtain wȳ by
prompting the Tulu-2 models with the follow-
ing instruction:

Redacted sentence: {x−w∗}
Replace “[REDACTED]” with exactly
one word that would make the
completed sentence very likely to
be predicted with the {ȳ}.
Output word:

We then convert the pseudo-ground truth self-
explanations for each style into training examples
using a template exemplified in Table 2. Self-
explanation instructions follow the format shown
in Figure 1, with additional details provided in Ap-
pendix B.

Our dataset construction procedure aims to gen-
erate pseudo-ground truth self-explanations that
are more faithful than originally produced self-
explanations, rather than attempting to obtain fully
faithful explanations, which are unavailable. As
shown in Table 3, we validate the quality of our
constructed datasets by ensuring that the faithful-
ness scores (Section 3.3) of the training samples
exceed those of the originally generated ones2.

2The constructed self-explanations for the attribution and
redaction styles are expected to yield the same faithfulness
scores, as they are evaluated using the same redacted inputs.

Attribution Redaction Counterfact
One-word One-word One-word

Tulu-2 7B

Original 0.124 0.124 0.186
Constructed 0.342 0.342 0.331
Tulu-2 13B

Original 0.134 0.090 0.335
Constructed 0.304 0.304 0.435

Table 3: Comparison of faithfulness scores between
self-explanations originally generated by the models
and constructed ones included in the training dataset,
each evaluated on 1,000 samples from Sentiment140.

3.2 Continual Learning

We train the Tulu-2 7B and 13B models using the
constructed self-explanation datasets in a continual
learning setting. Preventing catastrophic forget-
ting (Luo et al., 2023) is particularly important
in our experiments, as the faithfulness evaluation
and our analysis of generalization require the mod-
els to maintain performance on multiple tasks be-
yond the training setting. To mitigate forgetting,
we mix the instruction-tuning data originally used
for training the Tulu-2 models during continual
learning (Scialom et al., 2022). We apply Low-
Rank Adaptation (LoRA; Hu et al., 2021), training
for one epoch with 50,000 samples from the con-
structed self-explanation dataset and 10,000 sam-
ples from the instruction-tuning data.

3.3 Evaluation

We evaluate the faithfulness of the models’ self-
explanations before and after training as the pro-
portion of self-explanations judged faithful using
the self-consistency check (Section 2). Specifically,
we first collect the model’s predictions on 5,000
samples that do not overlap with the training data,
together with self-explanations for each style. For
each style, we then edit the inputs according to the
generated self-explanations and compute faithful-
ness as the proportion of cases in which the model’s
prediction changes.

We exclude instances that violate either the style
condition or the number-of-word condition3. The
style condition requires that self-explanations: (i)
list only the input words in the attribution style, (ii)
include the “[REDACTED]” tokens without alter-
ing the remaining input in the redaction style, and
(iii) edit the input without using “[REDACTED]”
tokens or the classification label itself (e.g., “Pos-

3The number of evaluation instances retained for each
experiment is reported in Table 10
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Attribution Redaction Counterfactual
One-word One-word One-word

Sent140 SNLI AGNews Sent140 SNLI AGNews Sent140 SNLI AGNews
Tulu-2 7B

No-Training 0.120 0.199 0.248 0.102 0.244 0.237 0.173 0.076 0.087
w/ Predictions 0.126 0.161 0.127 0.099 0.282 0.136 0.129 0.079 0.035
w/ Explanations 0.300 0.457 0.199 0.271 0.355 0.323 0.241 0.170 0.249
Tulu-2 13B

No-Training 0.140 0.177 0.185 0.110 0.317 0.149 0.303 0.243 0.049
w/ Predictions 0.141 0.182 0.099 0.080 0.335 0.077 0.270 0.216 0.027
w/ Explanations 0.255 0.299 0.281 0.204 0.306 0.265 0.595 0.192 0.417

Table 4: Faithfulness scores, measured as the proportion of faithful self-explanations (Section 3.3) before and after
training. “No-Training” refers to the off-the-shelf model before training, “w/ Predictions” refers to models trained
with ground-truth predictions for the classification tasks, and “w/ Explanations” refers to models trained with the
constructed pseudo-faithful self-explanations for each style conditioned on their own predictions.

itive”) in the counterfactual style. Because the
prompts explicitly instructed the models to satisfy
these requirements, violations indicate failures in
instruction following rather than evidence of un-
faithfulness. The number-of-word condition retains
only the self-explanations in which the model lists
N words in the attribution style, redacts N words
in the redaction style, and modifies the input with
an edit distance of N in the counterfactual style
(N = 1, 2, 3, 4, 5). This condition ensures fair
comparison; for example, if a model lists, redacts,
or edits an excessively large number of words in
its self-explanation, it may be judged faithful in an
unfair manner. We set N = 1 in most experiments,
instructing the model to produce one-word con-
strained self-explanations for each style to match
the training setup. In Section 4.2, we also evalu-
ate faithfulness for N = 2, 3, 4, 5 in a generalized
multi-word setting, using prompts that instruct the
model to list, redact, or edit any number of input
words for each style.

4 Results

4.1 Training Effects
We first examine the interpolation effects of train-
ing by evaluating the faithfulness of the models
before and after training under the same settings
used during training. In addition to the off-the-shelf
models, we include a baseline in which models are
trained using the ground-truth predictions for the
classification tasks.

Table 4 shows that models trained with the con-
structed self-explanation datasets produce more
faithful self-explanations than the off-the-shelf
models in most settings. For example, the 13B
models trained with self-explanations improve by
0.115, 0.094, and 0.292 points in the attribution,

Attribution Redaction Counterfactual
Multi-word Multi-word Multi-word

Tulu-2 7B

No Training 0.216 0.074 0.246
w/ Explanations 0.451 0.154 0.231
Tulu-2 13B

No Training 0.234 0.125 0.345
w/ Explanations 0.435 0.174 0.497

Table 5: Faithfulness scores for the Sentiment140
dataset in the unconstrained multi-word setting. “w/ Ex-
planations” models are trained using one-word con-
strained self-explanations for each style.

redaction, and counterfactual styles, respectively,
on the sentiment analysis task (Sentiment140).
These results empirically confirm that training with
pseudo-faithful self-explanations can enhance self-
explanation faithfulness, even without access to
true “ground-truth” faithful explanations.

By contrast, models trained with the ground-
truth predictions for the classification tasks often
show improvements of less than 0.01 or even a de-
crease in self-explanation faithfulness. This demon-
strates that faithfulness is improved specifically by
training on the constructed self-explanations con-
ditioned on the models’ own predictions, rather
than by training on ground-truth predictions for the
classification tasks4.

4.2 Generalization to Multi-Word Setting

During training, the models learn to generate self-
explanations in the one-word setting, where they
are permitted to list, redact, or edit only a single
input word. However, self-explanations in prac-
tice are not necessarily restricted to a single word,
since interactions among multiple words may be

4The performance on the classification task is reported in
Appendix D, and is not significantly changed after training.
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Figure 2: Evaluation of the generalization to the multi-word setting (Section 4.2) on the Sentiment140 dataset. We
report the proportion of faithful self-explanations for each number of words that are used in the self-explanations for
each style. Data plots marked with “×” indicate that the number of evaluation instances is less than 50.

Figure 3: Evaluation of the generalization across different classification tasks. For each training-evaluation task pair,
we measure the faithfulness score gain before and after training with self-explanations, defined as the increase or
decrease in the proportion of faithful self-explanations. Results are reported using the Tulu-2 13B model.

required to express certain meanings. We therefore
introduce a multi-word setting using prompts that
permit the model to use any number of words in its
self-explanations, rather than enforcing a one-word
constraint, as illustrated below:

List all and only the most
important words for determining the
sentiment.

We focus on the Sentiment140 dataset because the
trained models consistently exhibit improvements
across all three styles on this dataset.

We first measure faithfulness as the proportion
of self-explanations that are judged as faithful (Sec-
tion 2) and satisfy the style condition, while remov-
ing the number-of-word condition (Section 3.3).
As shown in Table 5, the models trained with one-
word self-explanations achieve higher faithfulness
scores even when multi-word self-explanations are
allowed. This suggests that their advantage is main-
tained beyond the one-word setting.

We further examine whether improvements
in faithfulness occur for each word count that

the model lists, redacts, or edits in its explana-
tions (N = 1, 2, 3, 4, 5). Specifically, we group
self-explanations by the number of words listed,
redacted, or edited for each style, and compute
the proportion of faithful self-explanations within
each group. Figure 2 shows that, only in the at-
tribution style, models trained with one-word self-
explanations consistently generate more faithful ex-
planations across different numbers of used words.
These findings indicate that generalization to multi-
word settings depends on the style and may emerge
exclusively in the attribution style.

4.3 Generalization across Classification Tasks

We have observed that, for a given classification
task, training improves the faithfulness of the
model’s self-explanations for each style. A natural
question is whether such training also improves
faithfulness on unseen classification tasks.

Figure 3 reports the gains in faithfulness scores
relative to the off-the-shelf models, evaluated
across different combinations of training and eval-
uation tasks. We find consistent faithfulness im-
provements in the attribution style: for example,
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Figure 4: Evaluation of generalization across explanation styles. Each value represents the faithfulness score
obtained under a given evaluation style, and each training condition specifies the explanation style used for training.
Values marked with “*” indicate that the number of evaluation instances is less than 50. Results are reported using
the Tulu-2 13B model.

models trained with attribution-style explanations
on the Sentiment140 dataset achieve increases of
0.072 points on SNLI and 0.044 points on AGNews.
In contrast, under the redaction and counterfactual
styles, the models struggle to generate faithful self-
explanations for unseen classification tasks. These
results indicate that, mirroring the trend observed
in the multi-word setting, whether the training ef-
fects generalize across classification tasks depends
on the explanation style; generalization is most
reliably observed in the attribution style.

4.4 Generalization across Explanation Styles

We have examined the effects of training and its
generalization within each explanation style. We
next investigate whether training generalizes across
explanation styles. Such cross-style generalization
is practically important, as real-world explanation
styles are often more diverse and more free-form
than those included in our experiments.

We evaluate self-explanation faithfulness using
styles that the models did not encounter during
training. As before, faithfulness is measured as
the proportion of self-explanations that are judged
faithful and that satisfy the conditions; for instance,
if a model trained on the redaction style produces
a self-explanation containing the “[REDACTED]”
token in the counterfactual style, that instance is ex-
cluded because it violates the prompt instructions.

Figure 4 shows the proportion of faithful self-
explanations for each training–evaluation style pair,
comparing the results before and after training. We
observe improvements in faithfulness even when

the training and evaluation styles differ. For in-
stance, on the Sentiment140 dataset (top row),
models trained using attribution-style explanations
(blue bars) generate more faithful self-explanations
than the untrained models (black bars) even when
evaluated using the redaction or counterfactual
styles, which were unseen during training. These
improvements are notable given that the attribution
style requires the model to output input words that
support their predictions, whereas the redaction
and counterfactual styles require the model to gen-
erate sentences that contradict them. This suggests
that the training effects can transfer across different
styles, rather than being confined to the style used
during training.

5 Discussion

We observe that the improvements from training
can generalize across classification tasks and across
explanation styles. However, one might suspect
that models simply acquire heuristics tailored to
the evaluation protocol and therefore behave con-
sistently across different evaluation settings. Al-
though a truly faithful self-explanation cannot be
predefined in principle, trained models are not ex-
pected to produce self-explanations in a uniform
manner across conditions, even when these expla-
nations are judged as faithful. This raises a ques-
tion: do the trained models rely on fixed heuristics
regardless of the setting, or do they acquire a more
general capability for generating faithful explana-
tions across different conditions?
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Explanation
Style

Classification
Task

Top-10 Frequent Words in
Faithful Self-Explanations

Attribution Sentiment140
not, no, good, don’t, miss, hate, sad,
can’t, love, bad

Attribution AGNews
Iraq, Afghan, Arafat, Iran, Oracle, Putin,
Google, Baghdad, Microsoft, Stocks

Counterfactual Sentiment140
DELETION*, happy, hate, good, bad,
love, terrible, worse, great

Table 6: Examples of the most frequent words appearing in faithful self-explanations for each setting, generated
by the Tulu-2 13B model trained with attribution-style self-explanations on the Sentiment140 dataset. For the
counterfactual style, the listed words correspond to words replaced or added relative to the original input, and
“DELETION*” indicates that a certain word is removed from the input.

To answer this question, we qualitatively analyze
the generated self-explanations that are judged as
faithful during evaluation. Table 6 reports the lem-
matized words generated in self-explanations from
the Tulu-2 13B model trained with attribution-style
explanations on the sentiment analysis task (Sen-
timent140). In the training setting of attribution-
style explanations for sentiment analysis, the model
tends to generate negation expressions (e.g., “no”,
“can’t”), as well as words associated with emo-
tions (e.g., “hate”, “love”). In self-explanations
for the unseen topic classification task (AGNews),
however, the same model generates different types
of words, including proper nouns (e.g., “Iraq”,
“Google”) and business words (e.g., “Stocks”). We
also observe such vocabulary differences across
explanation styles. In unseen counterfactual-style
explanations for sentiment analysis, the model fre-
quently produces sentiment-bearing words (e.g.,
“hate”, “terrible”) as expected; however, it does not
use negation expressions, which are common in the
attribution-style setting used during training. These
observations may suggest that the models after
training could generate faithful self-explanations
generally to the given classification tasks and styles,
rather than depending on fixed heuristics tailored
to the evaluation protocol of the training style.

6 Related Work

Researchers have investigated how faithfully the
intermediate reasoning chains generated by LLMs
reflect their final decisions under Chain-of-Thought
prompting (Turpin et al., 2023; Chen et al., 2025).
In evaluations of CoT faithfulness, prior work in-
troduces typical forms of bias that alter the model’s
prediction, such as inserting phrases like “I think
the answer is (A),” and shows that the resulting CoT
reasoning steps often fail to reflect these inserted

biases (Turpin et al., 2023; Matton and Kiciman,
2024). Recent studies have suggested that reason-
ing models, which are trained via reinforcement
learning to improve general CoT performance, ex-
hibit higher CoT faithfulness than non-reasoning
models, though there remains room for improve-
ment. (Chen et al., 2025; Chua and Evans, 2025).

Our study focuses on three explanation styles
other than CoT and examines both the training
effects and their generalization when using super-
vised signals explicitly designed to promote faithful
self-explanations. It is worth noting that construct-
ing pseudo-faithful CoT reasoning steps is inher-
ently difficult, because each intermediate reasoning
step must influence subsequent steps as well as the
final prediction.

7 Conclusion

We investigated how training affects the faithful-
ness of LLM self-explanations and the extent to
which these effects generalize. To address the
lack of access to truly faithful explanations, we
constructed pseudo-ground truth data of faithful
self-explanations under a one-word constrained set-
ting using an attribution method. Our experiments
demonstrated that training generally improves self-
explanation faithfulness across classification tasks
and explanation styles. We further found evidence
that these improvements can generalize to the un-
constrained multi-word setting and to unseen clas-
sification tasks. In addition, we observed consis-
tent cross-style generalization, indicating that the
benefits of training extend beyond individual ex-
planation styles. We believe that our findings on
faithfulness contribute to advancing the understand-
ing and improvement of LLM trustworthiness.
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Limitations

The training procedure in our experiments requires
access to the trained model’s instruction-tuning
data. This requirement limits the applicability of
similar investigations to models for which such
training data is publicly available. Although we
incorporate multiple classification tasks commonly
used in the faithfulness evaluation literature, the
scope of tasks remains limited, excluding more
complex settings such as generative tasks. More-
over, our training and evaluation primarily focus
on simple explanations involving single-word op-
erations, with existing but only limited assessment
of generalization to more complex, freer-format
setups. Finally, as our primary scope is the eval-
uation of self-explanation faithfulness, we leave
other evaluation perspectives for future work, par-
ticularly examining whether the observed improve-
ments contribute to human-centered explainability,
such as simulatability (Hase and Bansal, 2020).

Ethics Statement

Although our procedures for constructing the self-
explanation dataset do not involve any explicit gen-
der bias or abusive language, there remains the
possibility that such biases could be inherited from
the models or datasets used in our experiments. We
caution that users of LLMs should not place unwar-
ranted trust in a model’s self-explanations without
careful consideration, regardless of whether the
model was trained following our procedures. We
hope that this work will contribute to future re-
search aimed at analyzing and enhancing the trust-
worthiness of LLMs, thereby supporting sound and
responsible human decision-making.
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A Dataset

We employ three classification datasets in Table 8:
Sentiment140 for the binary sentiment analysis,
SNLI for the ternary NLI task, and AGNews for
the quaternary topic classification. For our exper-
iments, we sample almost 50,000 examples for
training and nearly 5,000 samples for evaluation
from each dataset, ensuring that the class labels
are balanced. The statistics of these examples are
shown in Table 9.

B Prompt

We present prompt templates for classification and
self-explanation tasks on Sentiment140 in Table 11,
and those for SNLI and AGNews in Table 12. Al-
though all prompt designs largely follow those in-
troduced by Madsen et al. (2024), we include ad-
ditional instructions for the response format in the
self-explanation tasks, such as “one word follow-
ing Answer:” and “answer in JSON format.” The
Tulu-2 models sufficiently adhere to these format
instructions in the experiments, enabling a fair eval-
uation of their performance in the self-explanation
task without major formatting issues.

In Table 13, we show the prompts used for ob-
taining the word wȳ, which is expected to be associ-
ated with the second probable prediction ȳ, to con-
struct the counterfactual self-explanation datasets.
The instruction includes prohibiting the use of the
prediction label itself or the “[REDACTED]” token,
to prevent a skeptical shortcut for the counterfac-
tual self-explanations. We also automatically filter
out such instances to ensure exclusion.

C Hyperparamters

For text generation, the temperature is set to 0, and
the number of beam searches is 1, enabling the
Tulu-2 models to generate tokens one by one in
a deterministic greedy manner. This setting en-
sures reproducibility without any randomness; we
conduct the experiments only once. For continual
learning, we mainly adopt the setting used for in-
struction tuning with LoRA in the Tulu-2 models.
Specifically, the learning rate is set to 1e-4, the
LoRA rank is set to 64, the value of α is set to
16, and the dropout rate is set to 0.1. All attention
layers are designated as trainable modules, and the
model is trained for one epoch.

Sent140 SNLI AGNews
Tulu-2 7B

No Training 0.737 0.760 0.750
w/ Predictions 0.896 0.911 0.904
w/ Attribution 0.804 0.685 0.532
w/ Redaction 0.780 0.706 0.743
w/ Counterfactual 0.700 0.740 0.634
Tulu-2 13B

No Training 0.712 0.814 0.815
w/ Predictions 0.901 0.918 0.905
w/ Attribution 0.788 0.653 0.597
w/ Redaction 0.773 0.703 0.807
w/ Counterfactual 0.795 0.698 0.818
Chance Rate 0.500 0.333 0.250

Table 7: Classification accuracy before and after train-
ing. “No-Training” and “w/ Predictions” refer to the
off-the-shelf models and those trained with ground-truth
predictions, respectively. “w/ Attribution”, “w/ Redac-
tion” and “w/ Counterfactual” refer to models trained
with self-explanations constructed for each style.

D Classification Task Performance

Before evaluating self-explanation faithfulness, we
validate whether the models used in the experi-
ments could perform a classification task, for which
they are required to generate self-explanations.

Table 7 reports classification accuracy of the
models before and after training, including those
trained with the ground-truth predictions intro-
duced in Section 4.1. The off-the-shelf Tulu-2 mod-
els score around 0.7 ∼ 0.8, while the prediction-
trained models perform the best as expected, scor-
ing around 0.9. As for the models after training
with the constructed self-explanations, we do not
observe a significant drop in their prediction accu-
racies regardless of style, maintaining their classi-
fication performances sufficiently for faithfulness
evaluation without serious catastrophic forgetting.

E Implementation Details

We implemented the codes for the experiments
using Python v3.10.12, Py-Torch v2.5.1 (Paszke
et al., 2019), and Transformers v4.44.2 (Wolf et al.,
2020). For word lemmatization, we used NLTK
v3.9.1 (Bird et al., 2009). Our study was conducted
under the licenses and terms of the scientific arti-
facts.

We conducted the experiments with eight
NVIDIA A100 (40GB) GPUs for dataset construc-
tion and training, and a single NVIDIA A100
(40GB) GPU for evaluation. The construction of
training datasets took approximately 21 GPU hours
with Tulu-2 7B, and 30 GPU hours with Tulu-2
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13B. Training with instruction-tuning data com-
bined with either ground-truth prediction responses
or a self-explanation dataset takes approximately
8.19 GPU hours for Tulu-2 7B and 12.9 GPU hours
for Tulu-2 13B. Evaluation in each explanation
style takes approximately 0,02 GPU hours for Tulu-
2 7B, and 0.03 GPU hours for Tulu-2 13B, regard-
less of whether the model has been trained or not.
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Input Second Input Ground Truth Predicton

Sentiment140
@cocodkr Not even superman
can save me now

-
Positive
Negative ✓

SNLI
A fisherman using a cellphone
on a boat.

A fisherman is sleeping on his
boat.

Entailment
Contradiction ✓
Neutral

AGNews
Next space station crew to
launch

-

World politics
Sports
Business
Science and technology ✓

Table 8: Examples of each prediction dataset. “Input” refers to social networking posts in Sentiment140, premise
sentences in SNLI, and news titles in AGNews, respectively. SNLI also includes hypothesis sentences as the second
input.

Split # of Examples Input
Avg. Length

Second Input
Avg. Length

Sentiment140
Train 50,000 13.17 -
Test 5,000 13.09 -

SNLI
Train 49,998 12.84 7.43
Test 4,998 13.88 7.53

AGNews
Train 50,000 6.78 -
Test 5,000 6.76 -

Table 9: Statistics of the classification datasets used for our experiments.

Attribution Redaction Counterfactual
Sent140 SNLI AGNews Sent140 SNLI AGNews Sent140 SNLI AGNews

No Training 4600 4925 4528 886 1330 1743 529 659 691
w/ Explanations 4952 4992 4980 4706 4984 4978 4215 4834 4895

(a) Tulu-2 7B

Attribution Redaction Counterfactual
Sent140 SNLI AGNews Sent140 SNLI AGNews Sent140 SNLI AGNews

No Training No Training 4618 4865 4204 1291 685 2743 1072 536 1094

w/ Attribution
Sent140 4964 4773 4908 175 - - 1069 - -
SNLI 4861 4991 4901 - 1382 - - 783 -
AGNews 4927 4971 4978 - - 1 - - 622

w/ Redaction
Sent140 3293 - - 4719 3454 4599 96 - -
SNLI - 3371 - 4032 4983 4443 - 410 -
AGNews - - 4776 4197 4589 4972 - - 30

w/ Counterfactual
Sent140 4793 - - 617 - - 4516 1579 3272
SNLI - 4266 - - 46 - 2096 4874 2254
AGNews - - 4683 - - 1 3200 1253 4867

(b) Tulu-2 13B

Table 10: The number of evaluation instances used for faithfulness assessment of Tulu-2 7B and 13B. Instances
in which generated self-explanations did not meet the requirements specified in the prompts were excluded from
evaluation (see Section 3.3).
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Dataset Task Prompt
Sentiment140 Classification Text: {input}\n\n Question: What would you classify the sentiment

of the text as? The text can contain redacted words marked with
[REDACTED]. Answer either ‘Positive’ or ‘Negative’ in a single
word. Do not explain the answer.

Attribution
(one-word)

Question: List the single most important word for determining the
sentiment of the text, such that without this word the sentiment
cannot be determined. Answer one word following ‘Answer:’. Do
not explain the answer.

Attribution
(multi-word)

Question: List all and only the most important words for determining
the sentiment of the text, such that without these words the senti-
ment cannot be determined. Answer in JSON format as {“words”:
[“word1”, “word2”, ..., “wordN”]}.

Redaction
(one-word)

Question: Redact one word in the text by replacing the single most
important word for determining the sentiment with ’[REDACTED]’.
Answer with the new redacted text following ’Answer:’. Do not
explain your answer.

Redaction
(multi-word)

Question: Replace all and only the most important words in the
text with ’[REDACTED]’, such as changing “AAA BBB CCC” into
“AAA [REDACTED] [REDACTED]”. Answer in JSON format as
{“redacted_text”: “<text with words replaced by [REDACTED]>”}.

Counterfactual
(one-word)

Question: Edit the text by adding, removing, or replacing a single
word so that the predicted sentiment changes from the current one.
Do not use either ’[REDACTED]’ or the sentiment label itself. An-
swer with the new edited text following ’Answer:’. Do not explain
your answer.

Counterfactual
(multi-word)

Question: Edit the text by adding, removing, or replacing words,
making sure to change all and only the words necessary so that the
predicted sentiment changes from the current one. Do not use either
’[REDACTED]’ or the sentiment label itself. Answer in JSON format
as {“edited_text”: “<text with exactly two words edited>”}

Table 11: Prompt templates we use for Sentiment140 in the experiments. The placeholders of {input} is replaced
with the appropriate strings for each instance.
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Dataset Task Prompt
SNLI Classification Sentence: {input}\n\n Question: Does this sentence imply that ‘{sec-

ond input}’? The sentence can contain redacted words marked with
[REDACTED]. Answer either ‘Yes’, ‘No’, or ‘Maybe’ in a single
word. Do not explain the answer.

Attribution
(one-word)

Question: List the single most important word in the sentence, for
determining the implication. Answer one word following ’Answer:’.
Do not explain the answer.

Redaction
(one-word)

Question: Redact one word in the sentence by replacing the single
most important word for determining whether it entails ‘{second in-
put}’ with ’[REDACTED]’. Answer with the new redacted sentence
following ’Answer:’. Do not explain your answer.

Counterfactual
(one-word)

Question: Edit the sentence by adding, removing, or replacing a
single word so that the predicted NLI relationship to ‘{second input}’
changes from the current one. Do not use either ’[REDACTED]’ or
the NLI label itself. Answer with the new edited sentence following
’Answer:’. Do not explain your answer.

AGnews Classification Title: {input}\n\n Question: What label best describes this news title?
The title can contain redacted words marked with [REDACTED].
Respond with one of the following single words: ’World’, ’Sport’,
’Business’, or ’Tech’. Do not explain the answer.

Attribution
(one-word)

Question: List the single most important word in the title for deter-
mining its topic label. Answer one word following ’Answer:’. Do
not explain the answer.

Redaction
(one-word)

Question: Redact one word in the title by replacing the single most
important word for determining the topic label with ’[REDACTED]’.
Answer with the new redacted title following ’Answer:’. Do not
explain your answer.

Counterfactual
(one-word)

Question: Edit the title by adding, removing, or replacing a single
word so that the predicted topic label changes from the current one.
Do not use either ’[REDACTED]’ or the topic label itself. Answer
with the new edited title following ’Answer:’. Do not explain your
answer.

Table 12: Prompt templates we use for SNLI and AGNews in the experiments. The placeholders of {input} and
{second input} are replaced with the appropriate strings for each instance.
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Dataset Prompt
Sentiment140 You are given an English sentence with one redacted part, represented as [REDACTED],

and a target sentiment prediction (’Positive’ or ’Negative’). Replace [REDACTED] with
exactly one word that would make the completed sentence very likely to be predicted with
the target sentiment. Keep the sentence natural and fluent, do not mention the sentiment
label itself. Output only the replacement word. Do not explain the answer.\n\nSentence
with redaction: {redacted_input}\nTarget label: {target_label}\nOutput word:

SNLI You are given a premise–hypothesis pair in English. The premise contains one
redacted part, represented as [REDACTED], and a target NLI prediction (’Yes,’ ’No,’
or ’Maybe’). Replace [REDACTED] with exactly one word that would make the
completed premise–hypothesis pair very likely to be predicted with the target answer.
Keep both sentences natural and fluent, and do not mention the answer itself. Out-
put only the replacement word. Do not explain the answer.\n\nPremise with redaction:
{redacted_input}\nHypothesis: {second_input}\nTarget label: {target_label}\nOutput
word:

AGNews You are given an English news title with one redacted part, represented as [REDACTED],
and a target topic prediction (’World’, ’Sport’, ’Business’, or ’Tech’). Replace
[REDACTED] with exactly one word that would make the completed title very likely to
be predicted with the target topic. Keep the title natural and fluent, and do not mention the
topic label itself. Output only the replacement word. Do not explain the answer.\n\nTitle
with redaction: {redacted_input}\nTarget label: {target_label}\nOutput word:

Table 13: Prompt templates we use for obtaining the word wȳ during the construction of the counterfactual self-
explanation datasets. The placeholders of {redacted_input} and {target_label} are replaced with the appropriate
strings of the redacted input x−w∗ and ȳ, respectively, for each instance. In SNLI, {second_input} is also replaced
with adequate strings for each instance. See Section 3 for the details.
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