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Abstract

Developing effective healthcare dialog systems
requires controlling conversations to offer clear
insight into the system’s understanding and to
address the lack of patient-oriented conversa-
tional datasets. Moreover, evaluating these sys-
tems is equally challenging and requires user
studies for robust evaluation. These challenges
are even more pronounced when addressing the
needs of minority populations with low health
literacy and numeracy. This thesis proposal fo-
cuses on designing conversational architectures
that deliver self-care information to African
American patients with heart failure.

Neuro-symbolic approaches provide a promis-
ing direction by integrating symbolic reasoning
with the generative capabilities of Large Lan-
guage Models (LLMs). In this proposal, we ex-
plore various approaches to creating a hybrid di-
alog model by combining the strengths of task-
oriented dialog systems with the integration of
neuro-symbolic rules into a Language Model
(LM)/LLM-based dialog system, thereby con-
trolling the dialog system. We propose a hybrid
conversational system that uses schema graphs
to control the flow of dialogue, while leverag-
ing LLMs to generate responses grounded in
these schemas. We will also conduct a user
study to evaluate the system’s effectiveness.

1 Introduction

Heart Failure (HF) predominantly affects individ-
uals aged 65 and older (Lewsey and Breathett,
2021). Apart from regular visits to the doctor, pa-
tients with HF need to self-care. Self-care (Barlow
et al., 2002) encompasses managing symptoms,
treatments, emotions, and lifestyle changes. Tra-
ditionally, the design of self-care technologies has
been medically focused, using an approach that
prioritizes medical measurements while neglecting
patients’ lived experiences of their illness (Habibi
etal., 2019).
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Individuals from minority communities (African
American (AA) and Hispanic/Latino (H/L)) of-
ten face worse outcomes due to genetic variations,
healthcare access disparities, socioeconomic con-
ditions, and lower health literacy and numeracy
levels (Nayak et al., 2020). Moreover, most self-
care materials lack the cultural nuances (Barrett
et al., 2019), which leads to poor self-care practices
(Dickson and Riegel, 2009). Providing patients
with education that respects and incorporates cul-
tural backgrounds can enhance their understanding
of self-care requirements and lead to better health
outcomes (Habibi et al., 2019).

While significant progress has been made in
areas like clinical documentation (Wang et al.,
2019b), using Natural Language Processing (NLP)
for self-care, patient education is not much ex-
plored (Cunha et al., 2024; Gupta et al., 2020).
Moreover, evaluation remains challenging due to
the lack of standardized metrics tailored to medical
text (Chowdhury et al., 2023).

To understand how patient educators (PE) con-
vey self-care strategies, (Gupta et al., 2020)
recorded PE sessions. These sessions revealed that
patients spoke very little and did not contribute
much to the conversation. The key topics discussed
during these sessions included salt intake, exercise,
fluid intake, symptom management, sleep, weight
management, and familial aspects. An excerpt of
the conversation collected from one of the PE ses-
sions is shown in Table 1.

Drawing motivation from this dataset, we aim
to explore conversational architectures that deliver
self-care information to African American heart
failure patients. Unlike traditional dialog agents or
question-answering systems, we propose a conver-
sational model that supports multi-turn interactions
in which the patient takes initiative, and the agent
asks clarification questions (Walker and Whittaker,
1990).

Conversational assistants in the healthcare do-
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Speaker

Patient:

Patient Educator:

Patient Educator:

Utterance

You have to ask. Um, exercise, regularly. You know, it sounds with this one to two
miles you’re walking on a daily basis, we’re going to get you back up to that.
Okay.

That’s a great way to keep that going. There’s no reason to stop, once we get
you feeling better. Um, it used to be back in the day, maybe 20 years ago, people
would say, “Well, you know, I’ve got to take it easy.” That’s not the case with heart
failure. We want you to get up where you can do it. We don’t want you to push

yourself. . .
Patient: Right.

Patient Educator:

day. Do you own a scale?

If you’re short of breath, but. .. and then, we want you to check your weight every

Figure 1: Excerpt of Patient-educator conversation

main are as old as NLP, since in 1966 ELIZA was
already playing the role of a psychiatrist (Weizen-
baum, 1966). More recently, models such as T5
(Raftel et al., 2020), BERT (Devlin et al., 2019),
and LLMs like GPT-4 (OpenAl et al., 2024) have
revolutionized healthcare NLP by significantly en-
hancing the ability to process and understand com-
plex medical data. LLMs offer unique advantages,
including contextual understanding and scalabil-
ity across diverse datasets. Additionally, LLMs
have shown strong potential in generating synthetic
datasets (Wang et al., 2024).

Given the lack of real-world patient-oriented con-
versational data from AA HF patients, (Tayal et al.,
2025b) explored the potential of ChatGPT to gen-
erate simulated conversations (section 3). The find-
ings indicate that prompting alone is insufficient to
control or personalize conversations, leaving such
models unsuitable for direct deployment in patient-
centric settings.

As we aim to develop a conversational system
tailored to the healthcare domain, relying solely on
LMs or LLMs is insufficient. To ensure accurate
and reliable information, a provision of control is
needed that addresses these limitations. Integrating
neuro-symbolic approaches offers a solution by
combining the inference capabilities of symbolic
systems with the robustness of neural networks,
creating a composite Al framework adept at reason-
ing, learning, and cognitive modeling (Garcez and
Lamb, 2023). This blend addresses the inherent
weaknesses of each system, promising enhanced
performance and robustness (Mehri and Eskenazi,
2021; Zhou et al., 2020; Tayal et al., 2024, 2025a).

By modeling a neuro-symbolic task-oriented di-
alogue system (TODS), (Tayal et al., 2024) demon-

strated that training a language model (T5) alone
is insufficient for building a conversational sys-
tem that requires numerical reasoning. This lim-
itation can be addressed by incorporating neuro-
symbolic rules externally to control the system’s
output (Section 3, Table 3). Moreover, a compari-
son with an LLM-based system involving African
American heart failure patients (Tayal et al., 2025a)
revealed that the two systems complement each
other (Table 1), underscoring the promise of a hy-
brid approach that combines the strengths of both
LLMs and neuro-symbolic methods. Building on
these findings, our goal is to design a hybrid task-
oriented dialogue model that unifies the advan-
tages of task-oriented systems and language mod-
els (LMs/LLMs).

2 Related Work

This section provides an overview of the back-
ground literature that contextualizes our work on
conversational assistants. We begin with a review
of healthcare dialogue systems, followed by a dis-
cussion of the limitations of existing evaluation
metrics—particularly in the healthcare domain —
and the importance of conducting a user study. Fi-
nally, we introduce neuro-symbolic systems, which
draw inspiration from dual-process theory by com-
bining neural intuition with symbolic reasoning,
and highlight prior dialogue systems that have suc-
cessfully integrated neuro-symbolic methods.

Healthcare Dialog Systems Medical dialogue
systems have been developed for a wide range of
medical conditions, including heart failure (Moulik,
2019; Gupta et al., 2020), cancer (Belfin et al.,
2019), mental health disorders (Ali et al., 2020),
and public anxiety (Wang et al., 2020). Their appli-
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cations span disease diagnosis (Wei et al., 2018),
patient education (Cai et al., 2023; Gupta et al.,
2020), and health coaching (Zhou et al., 2022),
among others. A comprehensive survey in (Val-
izadeh and Parde, 2022) analyzes these systems
from a computational perspective and highlights
their diverse user groups. The authors analyzed
these systems based on various objectives, includ-
ing language, application, audience, architecture,
modality, and evaluation metrics.

Healthcare dialogue systems have generally fol-
lowed the same timeline and developments as di-
alogue systems, though with a delayed adoption.
One of the major constraints is the International Re-
view Board (IRB), due to which most healthcare di-
alogue datasets are often not publicly available. As
these systems interact with real stakeholders—such
as clinicians and patients—the need for models to
be explainable and interpretable has become criti-
cally important.

Dialog System Evaluation Evaluating the true
conversational capabilities of TODS is inherently
challenging. Evaluation methods typically fall into
two categories: automated metrics and human eval-
uation.

Automated metrics can assess both individual
components and the overall system. For Natural
Language Understanding (NLU), intent classifica-
tion accuracy (i.e., the percentage of user utter-
ances where the predicted intent matches the true
intent) and entity F1 score (based on precision and
recall) are commonly used. Dialog State Track-
ing (DST) is evaluated using joint goal accuracy,
which checks if the predicted belief states exactly
match the ground truth for a given user turn. Natu-
ral Language Generation (NLG) is assessed using
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) scores,
which measure overlap between the generated out-
put and the reference, but these metrics do not
capture the meaning of responses.

End-to-end metrics include Inform (whether the
system provides an appropriate entity that meets
the user’s constraints) and Success Rate (whether
the system both provides a correct entity and fulfills
all requested information, such as address or price).

However, task performance is just one dimension
of dialogue system evaluation. As demonstrated by
the PARADISE framework (Walker et al., 1998),
user satisfaction is influenced by both task success
and interaction cost. Consequently, human evalua-

tion remains the gold standard, especially for medi-
cal dialogue systems (Yeh et al., 2021; Deriu et al.,
2021). Human evaluators can provide insights into
subjective qualities such as coherence, informative-
ness, and user satisfaction—factors that are difficult
to capture with automated metrics alone. The evalu-
ation of medical dialog systems also follows a sim-
ilar structure (Chowdhury et al., 2023) to TODS,
but often requires comprehensive user studies for
robust assessments. As conducting a user study
is costly, researchers have explored alternative ap-
proaches, such as simulating users for evaluation
(Yun et al., 2025; Park et al., 2023). With the rise of
LLMs, there is growing interest in using them as au-
tomated judges (Zheng et al., 2023); however, their
reliability remains under scrutiny. Despite these
advancements, no current method fully captures
the complex and multifaceted nature of dialogue
system evaluation.

Neuro-Symbolic Methods The foundation of
Neuro-Symbolic Systems (Nye et al., 2021) is in-
spired by the "dual process" theory from cognitive
science, which distinguishes between two types
of reasoning: System 1, which is fast, intuitive,
and associative (akin to large language models),
and System 2, which is slower, more deliberate,
and logical—representing the symbolic reasoning
component.

Neuro-Symbolic methods combine the general-
ization strengths of neural networks with the struc-
ture and interpretability of symbolic reasoning. For
instance, (Romero et al., 2021) introduced sym-
bolic representations into GPT-2 outputs to enhance
structural awareness. DILOG (Zhou et al., 2020)
leveraged inductive logic programming to learn
dialogue policies from limited data, enabling zero-
shot transfer. Similarly, (Arabshahi et al., 2021)
showcased how multi-hop and commonsense rea-
soning can be incorporated into dialogue systems
using neuro-symbolic techniques.

Lately, Symbol-LLM (Xu et al., 2024) discusses
the challenges of integrating symbolic knowledge
into LLMs and posits that since LLMs are pre-
trained on general text without symbolic structure,
using a symbolic interface is difficult. To address
this, the authors explore the possibility of treat-
ing symbols in a unified manner by compiling 34
text-to-symbol generation tasks covering around
20 symbolic forms (Xu et al., 2024).
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[usr] Fresh green collard greens.

[sys] how much green collard greens are you having ?
[usr] 'Mm-hmm. 2 pound.

[sys] what type of green collard greens are you having ?

Translate dialog to belief state: )
[usr] FRESH

|

{ )

)

[food] {food:collard greens, nutrient: salt, foodweight:2,
metric: pound, type: fresh, value: 10, saltmetric: mg}

By

bleum Symbalic Rules

{ {value: 163, saltmetric: mg} l

!

[Final Response: [sys] You can expect to havé
‘apprcximately one hundred and sixty-three miligrams (8%)

of salt in that green collard greens. It is around one pinch of
salt. Thats a good choice. But can have better alternate
‘_opticns

Figure 2: HFFood-NS Model interaction with the pa-
tient

3 Motivation and Research Questions

To model a conversational system for heart failure
self-care domains, training data is required. How-
ever, a notable challenge remains: the lack of real-
world, patient-driven conversational data from AA
HF patients. With the advent of ChatGPT (OpenAl
et al., 2024) and other LLMs, which have demon-
strated strong capabilities in synthetic data gener-
ation, (Salunke et al., 2023; Tayal et al., 2025b)
investigated their effectiveness in generating self-
care conversations between patients and PEs. Chat-
GPT was used to generate simulated conversations
using five distinct approaches of Race, Domain,
African American Vernacular English (AAVE), So-
cial Determinants of Health (SDOH), and SDOH-
informed Reasoning. For each approach, conver-
sations were generated with varying numbers of
conversation rounds {5, 10, 15} and across differ-
ent domains of food, water, exercise, which was
a topic of discussion in the patient educator con-
versations. The conversational dataset is publicly
available !.

The findings suggested that prompting alone is
insufficient to control or personalize conversations.
The model struggled to follow even basic instruc-
tions, such as adhering to a set number of dialogue
rounds, limiting word count, or asking appropri-
ate follow-up questions. While it can incorpo-
rate SDOH features and improve dialogue quality
through reasoning prior to generation, it remains
unsuitable for direct deployment in patient-centric
settings due to the lack of controllability.

Moreover, as salt consumption was a central
topic in patient—educator conversations, (Tayal

"https://github.com/anujatayal/HF-Dataset

et al., 2024) designed a task-oriented dialogue sys-
tem in which the users initiate the conversation
by asking about the salt content of food. The sys-
tem then posed clarification questions (cook, type,
foodweight) to determine sodium values accurately.
A template-based conversational system was con-
structed using the USFDC dataset (USFDC, 2022),
a publicly available resource from the U.S. Depart-
ment of Agriculture (USDA) that ensures cultural
diversity and provides extensive food descriptions
and nutritional values.

However, even after fine-tuning a T5-based lan-
guage model (PPTOD) (Su et al., 2022), the system
struggled to predict correct salt values—achieving
only a 2% success rate—despite correctly identi-
fying slot values (Table 3). These findings were
consistent with Wei et al. (2022), which noted that
large pre-trained language models (PLMs) such as
GPT-3 and TS5 (Brown et al., 2020; Raffel et al.,
2020) are proficient at complex arithmetic reason-
ing but still make calculation errors. By integrating
neuro-symbolic rules, a 20% improvement was ob-
served in joint accuracy compared to the fine-tuned
model, highlighting the necessity of incorporating
neuro-symbolic rules to control system outputs (as
shown in Table 3).

To further examine the practical implications
of these improvements, Tayal et al. (2025a) con-
ducted a within-group user study comparing the
neuro-symbolic-based TODS system (HFFood-NS)
with an LLM-based system (HFFood-GPT), in-
volving 20 African American patients hospitalized
with heart failure. Figure 2 shows an interaction
with HFFood-NS while Table 4 shows an excerpt
of the interaction with HFFood-GPT. The evalu-
ation combined intrinsic measures of task perfor-
mance with extrinsic analyses (Sparck Jones and
Galliers, 1995) based on pre- and post-interaction
surveys. Table 1 summarizes the two systems by
comparing performance, design, usability, reliabil-
ity, and flexibility. The two systems complement
each other, highlighting the potential of a hybrid
approach that leverages the strengths of both LLMs
and neuro-symbolic systems. The neuro-symbolic
TODS system is more accurate, completes more
tasks, and produces concise responses, whereas the
LLM-based system makes fewer speech errors, re-
quires fewer clarifications, and handles complex
queries more effectively. This direction is partic-
ularly promising for healthcare dialogue systems
and motivates our research question:
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* RQ1: How can we effectively combine the
strengths of TODS and LMs/LLMs to create a
hybrid dialog model?

* RQ2: How do users/patients/older adults per-
ceive such a system?

HFFood-NS | HFFood-GPT

Task completion
Accuracy

Slot Accuracy

Fewer Speech Error
Less Processing Time
Error Analysis
Controlled

Reliable

Predictable

Complex query

Gave Options

Fluent

Concise

Create easily with less time

R TR T N N NN N SN

AR NN RN R R TN N

Table 1: Pros and Cons of HFFood-NS and HFFood-
GPT comparing on performance, design usability, relia-
bility, and flexibility.

Although HFFood-NS relied on template-based
sentences, the resulting conversations were more
controllable but lacked flexibility. While ChatGPT-
generated conversations were diverse and more
natural-sounding, they lacked predictability and
controllability, raising questions such as whether
the system would mention the salt amount, which
questions it would ask, or whether follow-up ques-
tions would remain relevant. This unpredictability
made the dialogue less explainable.

Moreover, the neuro-symbolic rules were ap-
plied externally to control the model’s output, for
correcting the salt value. While this approach im-
proved accuracy, it kept symbolic reasoning sepa-
rate from the neural model. An alternative strategy
involves embedding symbolic rules directly into a
language model through fine-tuning, enabling the
model to internalize and apply these patterns dur-
ing generation. In the context of TODS, dialog
acts function as symbolic representations of user
intent. By incorporating dialog acts as symbols dur-
ing training, we aim to integrate these rules more
seamlessly into the model’s reasoning process.

We hypothesize that training models using
schema graphs, rather than solely on dialog re-
sponses, will lead to better performance and im-
proved generalization. Schemas (Mehri and Eske-
nazi, 2021; Zhao et al., 2023), originally known
as frames (Fillmore, 1976), have a longstanding
presence in the literature (Baker et al., 1998; Booij,
2010) and have recently regained attention as a

structured approach for guiding the flow of task-
oriented dialogues. They can be integrated either
into the DST component or within end-to-end di-
alogue modeling. However, the definition and im-
plementation of “schema” vary across the literature.
A summary of different models—highlighting their
associated tasks, schema types, and training strate-
gies—is provided in Table 2.

Imrattanatrai and Fukuda (2023) adopts a
lightweight approach, interpreting schemas pri-
marily as slot descriptions, without modeling the
full conversational trajectory. Similarly, TSDST
(Lin et al., 2021) enhances zero-shot cross-domain
DST by providing slot descriptions, while IC-DST
(Hu et al., 2022) uses schema prompting with slot
names and value examples. Schema graphs intro-
duced in (Mehri and Eskenazi, 2021) abstract task
representations to facilitate domain transfer.

SAM (Mehri and Eskenazi, 2021) employs
schema-based reasoning to guide conversation flow
in task-oriented dialogue systems. While effective
in zero-shot settings, SAM relies on template-based
generation, which can limit the naturalness and flex-
ibility of responses. In contrast, our approach en-
visions schema graphs similar to SAM but utilizes
dialog acts instead of templates. By integrating
dialog acts and employing prompting techniques,
the system aims to generate more dynamic and
contextually appropriate responses. This method
seeks to combine the structured control offered by
schema-based reasoning with the adaptability of
LLM:s.

When models are trained on dialog responses,
they must learn the underlying logic and structure
of conversations implicitly from datasets. This re-
quires significant data, and the learned logic may
not always be consistent or transferable across do-
mains. In contrast, schema-graphs explicitly en-
code the structure and flow of a conversation and
possible user paths. By training on these structured
representations, the model does not need to infer
the logic on its own. As a result, models trained
with schema-graphs are likely to be more robust.

4 Proposed Work

This thesis will focus on the exercise domain of
self-care strategies and examine how users per-
ceive and interact with such a system. Regular
exercise plays a significant role in reducing hos-
pitalizations for heart failure patients (Morris and
Chen, 2019). The Physical Activity Guidelines
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Model Task Schema Type Training Strat-
egy

TSDST (Lin et al., 2021) DST slot names/descriptions Fine-tuning

IC-DST (Hu et al., 2022) DST slot names/value examples Prompting

SAM (Mehri and Eskenazi, 2021) | E2E dialog | user-aware policy skeletons Fine-tuning

ANYTOD (Zhao et al., 2023) E2E dialog | policy programs, slot | Fine-tuning and
names/value examples, slot | pretraining
descriptions,  user action
names/states/descriptions

SGP-TOD (Zhang et al., 2023) E2E dialog | policy programs,slot | Prompting
names/value examples

Table 2: Schema-type distinction along with their associated tasks, and training strategies as taken from (Zhang

et al., 2023)

for Americans recommend at least 150 minutes
of moderate-intensity exercise per week (Piercy
etal., 2018). New York Heart Association (NYHA)
(Committee, 1979) classified heart failure patients
based on their physical activity limitations due to
HF symptoms:

* Class I: No limitation of physical activity. Or-
dinary activity does not cause symptoms.

e Class II: Slight limitation. Comfortable at rest,
but ordinary activity causes symptoms.

e Class III: Marked limitation. Comfortable
at rest, but less than ordinary activity causes
symptoms.

* Class IV: Unable to carry on any physical ac-
tivity without discomfort; symptoms present
even at rest.

Designing a dialog system for exercise is very
complex. There is no pre-existing ontology for
exercise-related dialogs. Moreover, exercise is a
routine activity that demands constant motivation, a
gradual build-up, and personalized guidance (Mar-
cus and Pekmezi, 2024). Individual differences in
physical abilities and fitness levels further heighten
the complexity.

To establish a starting point, we consulted health-
care professionals to gain insights into how the con-
versation should be initiated. Initially, we (along
with the healthcare professionals ) decided to focus
on class I and class II patients, as they can engage
in exercise without direct supervision from a doc-
tor. In contrast, class III and IV patients require a
doctor’s intervention while exercising.

The initial dialog paths were created to better
understand how PE navigate exercise-related con-

versations, with the goal of using these insights
to construct a synthetic dataset. The conversation
begins with a patient-initiated question, such as,
"Can I exercise with heart failure?" and alternates
between the PE and the user, where the PE poses
follow-up questions. The PE aims to establish a
baseline understanding of the patient’s condition
and physical capabilities in order to provide action-
able guidance. The resulting dialog graph consists
of 16 unique paths, each corresponding to a leaf
node. While this provides a solid foundation, the
limited number of paths is inadequate for training a
robust conversational system, highlighting the need
for data augmentation.

Since these were simulated conversations, user
responses were constrained to simple "yes" or "no"
answers (see Figure 3(a)). However, real-world
conversations are rarely so constrained. Patients
often provide more nuanced responses, such as “I
used to exercise but not anymore,” or “I can walk
short distances but need breaks because I get short-
ness of breath” (see Figure 3(b)). In such cases,
predefined follow-up questions may become redun-
dant, as users have already provided the required
information.

To address this limitation, we structured these
interactions as rule-based dialog graphs and con-
verted each dialog path into a structured sequence
of dialog acts (see Figure 3(c)), or symbolic rep-
resentations/schema graphs (Section 2). This ab-
straction enabled systematic augmentation by gen-
erating all possible subsequences of each dialog
path. Through this method, the number of distinct
dialog states expanded from 16 to 1,078, signifi-
cantly enriching the dataset. As a result, the system
is now better equipped to accommodate the more
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Are you able 1o walk on a regular basis for 2 blocks
without stopping in last 1 month/4 weeks?

l yes

do you get any symptoms when you walk?

yes

‘which symptom?
other symptoms

pain or
dizziness

How many blocks can you walk|
before you get SOB?

(a) A sample conversation path

Are you able to walk on a regular basis for 2 blocks
without stopping in last 1 month/4 weeks?

Y

yes, but | do get shortness of breath.

(b) An augmented conversation path

request (activity=walking, distance =
2 blocks, condition = without

lstopping, time-period= last 1 month/4|
weeks, frequency=regular)

infarm (activity=walking, distance = 2 blacks,
condition = without Stopping, time-period=
last 1 month/4 weeks, frequency=regular)

H

‘ request (symptom, activity=walking) ‘

inform (negation)

Tform {symptam=
dizziness/ chest pain, inform (symptam=
activity = wakin S08B,

activity=walking)

(c) Dialog act representation that supports both Figure
3(a) and Figure 3(b)

Figure 3: An example of a conversation flow, an aug-
mented conversation, along with the dialog act represen-
tation that accommodates both conversation flows

varied and complex conversational flows observed
in real-world interactions (Figure 3(b)).

Two key challenges arise when modeling an
exercise-domain dialog system: dialog manage-
ment and response generation. As we plan to
effectively combine the strengths of TODS and
LMs/LLMs to create a hybrid dialog model, we
propose to decouple the dialog management and re-
sponse generation and ask the following questions:

* How can we integrate dialog acts to control
the flow of the conversation?

* How can different persuasion strategies be

integrated to enhance the generation of patient
education responses?

For dialog management, we will approach the
problem by training a model (TS5 or symbol-1lm
(Xu et al., 2024) on the schemas to predict the
next dialog act rather than generating full responses
directly. For pretraining, we will use the patient-
educator (Gupta et al., 2020) dialogues (Section 1),
the dataset generated in (Tayal et al., 2025b), and
the health coaching dialog datasets (Gupta et al.,
2021). Response generation will then be handled
using LLMs. Using schema models will provide
more control over the conversation flow, be more
aligned, and make the system more reliable, while
using LLM to generate responses will make the
responses more diverse.

We will compare our schema approach with
other schema approaches (Zhang et al., 2023; Zhao
et al., 2023). We will try different models to train
schema-graphs, including T5-based PPTOD (Su
et al., 2022) and Symbol-LLM (Xu et al., 2024).
Symbol-LLM may work better than T5 as it is
trained on symbols. We believe that the dialog
schema alone may be sufficient to effectively train
dialog models, making additional data augmenta-
tion techniques unnecessary. To validate this hy-
pothesis, we will conduct experiments comparing
various augmentation strategies (Gritta et al., 2021),
demonstrating that schema-based training provides
strong generalization and performance.

For response generation, we will examine
patient-educator conversations (Section 1) for the
presence of persuasive communication strategies
(Cialdini, 2001; Cialdini and Goldstein, 2004; Gass
and Seiter, 2022; Knapp and Daly, 2011; Goffman,
1974). For example, in Figure 1, the PE attempts
to persuade the patient to exercise regularly, and
by doing so, reaffirms that the patient can return to
previous activity levels. Upon identifying persua-
sive intent, we will analyze the specific strategies
used (Gollapalli and Ng, 2025; Zeng et al., 2024;
Wang et al., 2019a) by the PE.

PIRsuader (Gollapalli and Ng, 2025) offers a rel-
evant framework, introducing dialog act categories
such as logical_appeal and emotional_appeal,
specifically designed to persuade diabetes patients
to manage insulin resistance. A more detailed list
of the dialog acts used can be found in Table 10
of (Gollapalli and Ng, 2025). We will start from
this and if needed, we will also draw upon the
taxonomy presented in Table 1 of (Zeng et al.,
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2024), which organizes 13 categories of ethical
strategies—including information-based, emotion-
based, and credibility-based methods—grounded
in research across disciplines such as Social Sci-
ence (Goffman, 1974), Psychology (Cialdini, 2001;
Cialdini and Goldstein, 2004), Marketing (Gass
and Seiter, 2022), and Communication Studies
(Knapp and Daly, 2011). Although these strate-
gies were proposed for different use cases, we will
adapt them to the patient-educator conversations.
Building on this analysis, we will explore how such
strategies can be integrated for the generation of
responses for the exercise domain.

Additionally, we will incorporate a readability
parameter during LLM response generation, en-
abling the model to adjust its language complex-
ity according to the patient’s reading grade level.
Our core hypothesis is that an exercise dialog sys-
tem can be effective for patients when it is both
actionable and can adapt to both communication
strategies and reading level (Burns, 1991).

Evaluation To evaluate our dialog agent, we
will follow a three-step process. First, we will use
automatic metrics of joint goal accuracy, inform,
and success rate (Budzianowski et al., 2018)). Sec-
ondly, we will assess model performance using
simulated users (Yun et al., 2025; Park et al., 2023).
This will allow us to efficiently test multiple model
variants and observe their behavior across a range
of interaction styles. Based on this evaluation, the
top two performing models will then be selected
for testing with real users.

In the final phase, we will conduct a user study
with older adults, as recruiting patients from a hos-
pital setting poses logistical constraints. However,
our study is still valid for two reasons. First, heart
failure predominantly affects individuals aged 65
and older. Second, the system is intended for use in
post-hospital environments, where older adults are
expected to engage with it independently. This
three-stage evaluation—starting with automatic
metrics, evaluating using synthetic users, and pro-
gressing to real users—offers a more robust and
scalable way to refine the dialog agent.

Our core hypothesis is that an exercise dialog
system can be effective for patients when it is
actionable and can adapt to both communication
strategies and reading level.

5 Conclusion

We aim to develop a task-oriented dialogue sys-
tem specifically designed to support the self-care
needs of African-American patients with heart fail-
ure. The widespread use of large language mod-
els (LLMs) often lacks scrutiny, raising concerns
in healthcare settings. Greater control is needed,
as relying solely on prompting is not enough.
Neuro-symbolic methods, which offer greater trans-
parency, reliability, and explainability, should be
further explored and integrated into future systems.
In this thesis, we propose to develop hybrid con-
versational systems that combine the strengths of
both systems. The conversational system will use
schema graphs to control the flow of dialogue and
leverage LLMs to generate responses grounded in
these schemas. We will also conduct a user study
to evaluate the system’s effectiveness and to deter-
mine how older adults perceive such a system.

6 Limitations

We recognize that large language models (LLMs)
are continually evolving, and improvements in fu-
ture architectures may address some of the lim-
itations observed in our study. Moreover, while
we attempt to evaluate the systems comprehen-
sively—our evaluation is not exhaustive and can-
not capture all the aspects of interactions. Human
evaluation remains the gold standard for assessing
dialogue quality and patient-centered outcomes;
however, conducting user studies is costly, time-
intensive, and limited in scale, which constrains
the generalizability of our findings.
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A Appendix

Train Size Epochs Joint Accuracy
PPTOD NS-PPTOD

100 6 55.56 73.08

300 4 51.92 72.8

500 6 58.75 83.2

1000 6 58.53 85.2

Table 3: Increase in Joint Accuracy when using the
neuro-symbolic model (NS-PPTOD) compared to the
fine-tuned model (PPTOD) across different training
sizes.

Speaker | Turn

System Thank you for specifying the preparation method. Now, could you
please tell me the portion size of the grilled turkey sausage in
grams?

User S milligrams.

System It seems there might be a misunderstanding with the portion size.
Typically, food portion sizes are measured in grams (g) and would
be much larger than 5 milligrams (mg). Could you please provide
the portion size again in grams? For reference, a common serving
size for sausage might be around 50 to 150 grams.

User 100 milligrams

System It looks like we’re still not quite accurate on the portion size.
‘When we're talking about turkey sausage, the realistic portion size
is usually around 100 grams (g), not milligrams (mg). One gram
is equal to 1000 milligrams, so a portion size of turkey sausage
might be 100 grams (which is 100,000 milligrams), for instance.
Could you clarify the portion size in grams for the turkey sausage?

Figure 4: Excerpt of an HFFood-GPT Conversation
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