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Abstract

Inference-time computation is a critical yet
challenging paradigm for enhancing the rea-
soning performance of large language models
(LLMs). While existing strategies improve rea-
soning stability and consistency, they suffer
from notable limitations: self-correction often
reinforces the model’s initial biases, and Multi-
Agent Collaboration (MAC) often fails due to
the lack of efficient coordination mechanisms,
leading to collective errors. Although high-
performing verifiers can detect reasoning errors,
making them reliable requires substantial train-
ing. To address these challenges, we introduce
a novel inference-time framework - Adaptive
Coopetition (AdCo) - in which LLM agents
utilize an adaptive, UCB-based ‘coopetition’
mechanism. At each round, agents leverage
coarse verifier signals to determine whether
to collaborate or compete, further iteratively
refining their reasoning based on peer feed-
back. Without relying on high-performance
verifiers, our adaptive strategy achieves signif-
icant performance gains on mathematical rea-
soning benchmarks, yielding a 20% relative
improvement over baselines on the more chal-
lenging dataset. Our approach remains robust
and consistent in terms of accuracy under dif-
ferent sample sizes and configurations. This
adaptive, signal-guided ‘coopetition’ frame-
work enhances reasoning robustness by lever-
aging both model knowledge diversity and
reasoning trace measure, while also promot-
ing uncertainty-driven exploration, especially
when participants have comparable capabilities.
From this perspective, our work offers a fresh
lens on inference-time computation and paves
the way for more resilient multi-agent LLM
systems.

1 Introduction

Nowadays, LLMs exhibit strong reasoning capabil-
ities but remain limited in certain scenarios due to
inherent pre-trained knowledge scope (Mirzadeh
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et al., 2025; Yan et al., 2025). Although model
scaling and self-correction techniques further ex-
tend their capabilities, these approaches are either
computationally expensive or prone to self-bias.
To address these limitations, multi-agent frame-
works emerge to facilitate collective intelligence
among LLM agents through coordinated orches-
tration. A good case in point is the use of debate-
based systems (Du et al., 2023; Liang et al., 2024)
and autonomous orchestration frameworks (Wu
et al., 2024). However, this line of work often suf-
fers from reasoning collapse, stemming from rigid
strategies and reasoning contamination from low-
quality peer feedback. To mitigate this, many meth-
ods were proposed: leveraging strong verifiers to
evaluate outputs (Lifshitz et al., 2025; Wang et al.,
2024), and optimizing multi-agent architecture and
reasoning processes (Zhou et al., 2025; Lee et al.,
2025; Tran et al., 2025; Qi et al., 2024). Unfor-
tunately, these methods often lack inference-time
adaptability and either require extensive training or
assume a symmetric role for each agent, limiting
their practicality for deployment at inference time.

To overcome these challenges, we propose Adap-
tive Coopetition - a lightweight inference-time,
multi-round multi-agent framework that enhances
collective reasoning through adaptive decision-
making guided by coarse verifier signals. Specif-
ically, after one step of reasoning, each agent em-
ploys a coarse verifier to evaluate the current rea-
soning trace from multiple perspectives, producing
what we term "verifier signals". Using these sig-
nals, AdCo applies a revised Upper Confidence
Bound (UCB) algorithm (Auer et al., 2002) to let
each agent decide whether to collaborate (absorb
a peer’s reasoning trace) or compete (invite peer
criticism). With the strategy determined, agents
engage in peer-to-peer (P2P) interactions and asyn-
chronously refine their reasoning based on peer
feedback. This design deliberately isolates low-
quality reasoning traces (Zhang et al., 2024; Qiu
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Figure 1: Overview of adaptive coopetition

et al., 2024) and iteratively improves the reasoning
before integrating it into the cluster, thereby en-
hancing reasoning quality and mitigating reasoning
collapse (Pan et al., 2025).

Experiments on mathematical datasets, particu-
larly the more challenging DeepMath-103K (He
et al., 2025) in terms of model capacity, demon-
strate the effectiveness of our approach. The best-
performing heterogeneous AdCo cluster outper-
forms both the State-of-the-Art (SOTA) LLMs and
conventional multi-agent frameworks by approx-
imately 20% in accuracy, while maintaining con-
sistently strong performance across different data
scales. Further ablation studies underscore the ne-
cessity of key components in AdCo, reinforcing
our belief that AdCo offers a practical and effective
solution that enhances collective reasoning.

2 Adaptive coopetition

Figure 1 illustrates how AdCo Worker Cluster
solves problems through multi-round optimiza-
tion. At each turn, worker agents advance rea-
soning by one step and determine their strat-
egy—collaboration or competition—via a UCB-
based algorithm guided by verifier signals. For-
mally, we estimate coarse verifier signals by differ-
ent reasoning trace measures: reasoning progress
(via process reward (Zhang et al., 2025)), the di-
versity of reasoning trace (via semantic similarity
of reasoning trace (Estornell and Liu, 2024)), their
weighted combination. Then, the chosen measure
is used in the revised UCB algorithm to decide the
strategy for the current round, prompting agents
to exchange feedback with peers selectively and
refine the original reasoning. This process repeats
until a final solution is reached through a majority-
vote algorithm (Chen et al., 2025). The following
sections detail our core components.

Coarse verifier signals: Coarse verifier signals
refer to verifier outputs of moderate precision in
estimating reasoning progress at inference time.
High-precision verifiers often require substantial
resources to train, and obtaining a sufficiently ac-
curate verifier can be infeasible. Interestingly, our
empirical results show that even mediocre-quality
signals from coarse verifiers can still serve the in-
tended purpose under AdCo: filter out bad or in-
consistent feedback while amplifying good and
consistent ones in the reasoning process.

Model Diversity: Model diversity is introduced
in AdCo through worker cluster configurations,
aiming to reduce the risk of static debate dynamics,
wherein the debate procedure directly converges
to the majority opinion (Estornell and Liu, 2024).
AdCo supports two model configurations: homo-
geneous (the same LLM model is used across all
agents) and heterogeneous (different LLM models
are used within the cluster). The heterogeneous
configuration promotes diversity by incorporating
distinct LLM models and resulting in broader pre-
trained knowledge, as further evidenced by our
experiments.

Low-quality feedback isolation: We use a cus-
tomized filter mechanism and peer-to-peer com-
munication to prevent reasoning collapse caused
by the dissemination of unqualified informa-
tion (Zhang et al., 2024; Qiu et al., 2024). In the
collaborative strategy, agents choose the highest-
scoring feedback to merge with to avoid regressing
in solution quality. In the competitive strategy,
agents isolate low-quality critique by requesting
feedback only from the highest-scoring peer agents.

Iterative adaptive coopetition: AdCo models
each agent’s problem-solving process as a Markov
decision process. At the turn ¢, state s; is the cur-
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rent agent’s reasoning trace. Our action space is
defined as A = {c¢o, c1}, where ¢y is to collabo-
rate and c; is to compete. Given the chosen ac-
tion a; at turn ¢, state transition is deterministic:
T(s¢+1]8¢,a¢) = 1. Reward r(sy,ay) € [—1,1] is
measured by the change in the estimation value of
coarse verifier signals.

Essentially, our revised UCB algorithm serves
as the action policy m(s;), formulated as a vari-
ant of the multi-armed bandit problem (Auer et al.,
2002) in which rewards are assumed to be inde-
pendent and identically distributed according to
an unknown distribution with unknown expecta-
tion p;. Inspired by UCT (Kocsis and Szepesvari,
2006), we replace the state-independent exploita-
tion term in UCB with a heuristic approximation
that includes s;. Specifically, the chosen action a;
is the candidate action a that maximizes:

nN
W,a S A
(D

where (s, a) is the estimated payoff of action
candidate a at state s;, N is the total number of
executed actions, and N (a) is the number of times
that action candidate a has been executed so far.
We then measure (s, a) by the average verifier
signal value changes caused by action candidate a:

Q(st,a) = ZKt]é(‘;)(Si’a),

UCB'(st,a) = Q(s,a) + C x

acA (2

where AV (s;,a) is the change of verifier signal
estimation at state s; where the chosen action is a.
More algorithm details refer to A.1.

3 Experiments

We  evaluate AdCo’s performance on
GSMSK (Cobbe et al., 2021), GSMS8K-
Symbolic (Mirzadeh et al., 2025) and DeepMath-
103K (He et al., 2025). Preliminary tests for the
chosen models reveal a clear performance satura-
tion of AdCo on the former two, as shown in A.2.
Consequently, we focused on the more challenging
DeepMath-103K dataset, exploring multiple data
scales and assessing (1) the effectiveness of the
iterative adaptive coopetition strategy; (2) the
effect of low-quality feedback isolation using
coarse verifier signals; and (3) the impacts of
model diversity. More details, please check A.3.
Using the Microsoft AutoGen framework (Wu
et al., 2024), we set up a heterogeneous

Agent Worker Cluster using three LLMs:
DeepSeek/DeepSeek-v3-0324 (Liu et al., 2024),
Google/Gemma-3-27b-it (Team et al., 2025), and
GPT-40 (Hurst et al., 2024). We employ reasoning
progress as the verifier signal. Qwen2.5-Math-
PRM-7B (Zhang et al., 2025) is used as the verifier
model, and its output Process Reward (PR) serves
as the verifier signal value. In Equation 1, we
empirically choose C' = /1.5 = 1.22. More
details are included in A.1 and A.5.

We compared AdCo against two baseline cate-
gories using the same LLMSs: (1) individual LLMs
with self-correction mechanisms and (2) a plain
multi-agent debate approach (AutoGen) represent-
ing multi-agent collaboration: either collaborate or
compete with appropriate peers. We also evaluated
AdCo in both homogeneous and heterogeneous set-
tings to assess the impact of model diversity. For
more details, refer to A.4.

3.1 Performance evaluation

Accuracy & stability: We measured accuracy
using the percentage of correct final answers and
stability using the standard deviation across runs.
As shown in Figure 2 and Figure 3, AdCo improved
the accuracy from 37%—-44% (across individual
and plain multi-agent baselines) to 54%. Moreover,
the standard deviation remained low (<1%) across
various dataset sizes, indicating consistently robust
performance.

Model diversity: AdCo also performs better un-
der the heterogeneous configuration than homo-
geneous ones, highlighting the positive impact of
model diversity. In contrast, the observed accura-
cies of homogeneous setups were: 52% with 3 x
DeepSeek-V3-0324, 51% with 3x Gemma-3-27B-
IT, and 42% with 3x GPT-40—all falling short of
the 54% accuracy achieved by the heterogeneous
counterpart.

Efficiency: We measured efficiency using the
number of successful switches from incorrect to
correct answers using each strategy. In AdCo,
agents are more likely to switch from incorrect
to correct answers than vice versa, showing its ef-
fectiveness in guiding agents toward meaningful
progress. For instance, under collaborative strate-
gies, at 2,000 samples, agents made 1,016 switches
from incorrect to correct answers, compared to only
102 switches from correct to incorrect.
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Figure 2: AdCo shows clear improvement over the base-
line performances of individual models, plain Multi-
Agent collaborative and competitive frameworks, and
homogeneous cluster.
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Figure 3: AdCo shows stability (STDEV < 1%) from
600-4000 data points. We only acquired results of 200
datapoints using homogeneous clusters, not pictured in
this graph.

3.2 Ablation study

Revised UCB-based action policy: Replac-
ing the revised UCB with a simple flipping
rule—where agents collaborate only when the PR
exceeds 0.5 and compete otherwise—led them to
make nearly three times as many corrections from
incorrect to correct decisions (1,401 vs. 509 under
UCB’ at 1,000 samples) while yielding lower accu-
racy (54.08% vs. 55.70%). These results confirm
that UCB effectively leverages verifier signals to
guide agents toward better decisions. For more
statistics, refer to Table 2.

Impact of agent capability: We tested AdCo
with stronger models to assess whether it improves
the accuracy beyond the already high accuracy of
the baselines. Using 3x Qwen/QWQ-32B (stan-
dalone accuracy: 74.75%), AdCo improved accu-
racy to 80.5%, showing that even high-accuracy
models benefit from AdCo. Replacing Gemma-
3-27B-IT with Qwen/QWQ-32B in our current

configuration yielded no significant gain (52.25%),
likely because majority voting diluted its influence.
These findings suggest AdCo achieves the best
relative performance improvement when agents
have comparable capabilities and diverse reasoning
styles.

4 Conclusion and future works

In this paper, we introduced Adaptive Coopetition,
a lightweight inference-time multi-round, multi-
agent framework that enhances LLM multi-step
reasoning through self-evolution with peer feed-
back from adaptive collaboration and competi-
tion. AdCo adopts a reinforcement learning-based
reflection for adaptive strategic selection, using
a modified two-armed UCB-1 algorithm guided
by coarse verifier signals. Experiments demon-
strate that AdCo significantly outperforms self-
correction standalone LLM and conventional multi-
agent baselines in reasoning accuracy, stability,
and strategy efficiency. Future improvements in-
clude state-aware exploration along reasoning tra-
jectories, weighted result aggregation, strategy-
specific parameter tuning, lightweight architectures
for resource-limited settings, expansion to broader
domains, experimenting using different datasets,
scaling up with more agents or larger datasets, and
improving the algorithm (see A.8) Overall, we
expect AdCo to enhance inference-time reasoning
via adaptive strategy selection, while producing
diverse reasoning traces with the verifier signals
to inform future training and extend its impact to
broader reasoning domains.
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A Appendix and supplemental materials

A.1 Algorithm derivation

As shown in Equation 1, determining the next
action strategy of a worker agent — to compete
or collaborate with appropriate peers — is equiva-
lent to maximizing its chosen reasoning trace mea-
sure. This setting resembles a traditional multi-
armed bandit problem, where the Upper Confi-
dence Bound (UCB) algorithm (Auer et al., 2002)
selects an arm a to maximize the accumulated re-
ward according to

In N

Ng

UCB(a) = X, +c

3)

where X, is the mean reward of arm a, n, is
the number of times arm a has been pulled, NV is
the total number of pulls, and c is a exploration
hyperparameter. The first exploitation term encour-
ages exploiting actions with high observed rewards,
while the second exploration term incentivizes ex-
ploring less frequently used actions.

Here, the key distinction between the traditional
UCB algorithm and our problem framing is: the
reward in our case — defined as the change in the
verifier signal value after executing an action — is
state-dependent. This motivates drawing inspira-
tion from a UCB variation applied to the tree search
space (UCT) (Kocsis and Szepesviri, 2006), which
extends it to sequential decision processes over
structured state spaces. Correspondingly, the ac-
tion selection in UCT at each state s is given by

In N(s)
N(s,a)

UCT(s,a) = Q(s,a) +c 4)

where ()(s,a) denotes the estimated action-
value at state s, N(s) is the visit count of state
s, and N (s,a) is the count of selecting action a
from s. According to Equation 4, the stateful na-
ture of UCT is evident: both the exploitation and
exploration terms depend on the current state s.

To adapt UCB for AdCo, we revised the orig-
inal algorithm by replacing its state-independent
exploitation term with the state-dependent term
Q(st,a) in Equation 1, and leaving the state-
dependent exploration term as future work (See
AB).

To measure Q(s¢, a), our hypotheses are as fol-
lows:

* The estimated payoft of action candidate a at
state s; is proportional to the average of mea-
surable reasoning progress and information di-
versity increases, which reflects on Q(s;, a):

> i<t AProgress(s;, a)

Qo) x SR,
Qlsr.a) > i<t ADiversity(s;, a)
ty N(CL)

* The estimated payoff of action candidate
a at state s; grows proportionally with the
weighted combination of reasoning progress
and the degree of information diversity gains:

Q(s¢,a) > ict AProg.(si, a) © ADiv.(s;, a)

N(a)

(6)
where AProgress(s;, a) measures the reason-
ing progress at state s; when the chosen action
is a, and ADiversity(s;, a) captures the result-
ing increase in information diversity when the
chosen action is a, © is the weighted combi-
nation operator.

Since we focus on reasoning progress and as-
sume that PRM offers a rough estimate of reason-
ing progress, the revised UCB can be simplified as
follows:

UCB'(s¢,a) = Dict ]Avfj(si, a)

In N

W,a S {C(),Cl}

@)
C x

A.2 GSMSK and GSMS8K-Symbolic

GSMS8K (Cobbe et al., 2021) is a dataset of 8.5K
high-quality, grade-school-level math problems.
It features high linguistic diversity while relying
on relatively simple mathematical concepts. Each
problem requires between 2 and 8 steps to solve,
typically involving a sequence of elementary cal-
culations with basic arithmetic operations (4, —,
X, +). The dataset is carefully curated, with fewer
than 2% of problems containing critical errors, and
each problem is designed to be relatively unique,
ensuring both quality and diversity.

150



GSMS8K-Symbolic (Mirzadeh et al., 2025) is char-
acterized by its templated problem structure based
on the GSM8k dataset, and enables the system-
atic generation of different problems from a single
template by varying numerical values. This miti-
gates the risk of pattern matching or memorization,
which can inflate performance metrics on bench-
marks with a limited number of fixed examples.
Consequently, this dataset can provide a more re-
liable measure of an LLM’s mathematical reason-
ing capabilities, compared to the original GSM8k
dataset.

To evaluate whether the GSM8K and GSM8K-
Symbolic datasets are suitable for our experiment,
we assessed the performance of the following mod-
els on these datasets: DeepSeek/DeepSeek-v3-
0324, Google/Gemma-3-27b-it, and GPT-4o, as
well as AdCo in a heterogeneous setup using these
three models. The results on GSM8K-Symbolic
(with similar results observed for GSM8K) are sum-
marized in Table 1.

As shown in the Table 1, each base model al-
ready achieves ~ 90% accuracy for the GSM8K
Symbolic dataset. This suggests that the underlying
patterns of the GSMB8K series are largely captured
by the chosen models. Therefore, they leave little
room to push the capability boundary of the un-
derlying LLM with these datasets, which drives us
to choose a more challenging dataset without such
performance saturation.

A.3 DeepMath-103K

DeepMath-103K (He et al., 2025) is a large-scale
mathematical reasoning dataset released in April
2025, due to its distinctive characteristics:

e Unique Data Acquisition: Unlike many
open-source math datasets that predomi-
nantly repackage well-known, pre-formatted
problems from standardized sources
such as AIME(Patel et al.,, 2024) and
AMC(Hendrycks et al., 2021), DeepMath-
103K curates problems from more diverse
and less-structured origins. For example,
it extracts and reformulates problems from
community-driven platforms like Math
StackExchange into a clean, well-structured
question—answer format. This results in a
broader and more original problem distri-
bution, significantly reducing overlap with
prior datasets and encouraging generalizable
reasoning.

* Verifiable Answers: Each problem includes
a final, rule-verifiable answer that facilitates
automated correctness checks, making the
dataset well-suited for evaluating the accu-
racy and stability of our AdCo across multiple
baselines.

* Rigorous Decontamination: The dataset un-
derwent a comprehensive decontamination
process to remove any overlap with estab-
lished math benchmarks such as MATH, Min-
erva, AIME, and OlympiadBench, making it a
trustworthy resource for evaluating true gen-
eralization.

Preliminary tests of the chosen models achieved
only 36.7%-44.0% accuracy, highlighting their lim-
ited pre-trained knowledge and the substantial per-
formance gap that AdCo can address. To ensure un-
biased evaluations, we randomly sampled a scaled-
size 200, 400, 600, 1,000, 2,000, and 4,000 prob-
lems with numeric answers from the DeepMath-
103K. All samples were selected through uniform
random sampling without replacement to avoid se-
lection bias.

A.4 Baseline configurations

We evaluate Heterogeneous AdCo against two cat-
egories of baselines, as well as its Homogeneous
counterpart:

* Individual LLMs with Self-Correction: Each
model operates independently with itera-
tive self-refinement (DeepSeek-v3, Gemma-3,
GPT-40).

* Plain Multi-Agent (AutoGen):

— Collaborative-only setting: All agents
collaborate based on peers’ partial so-
lutions to refine their reasoning without
AdCo.

— Competitive-only setting: All agents cri-
tique peers’ partial solutions to refine
their reasoning without AdCo.

* Homogeneous AdCo: 3 identical LLM agents
(e.g., 3x DeepSeek) applying AdCo under the
same model type used in the corresponding
heterogeneous setting.

A.5 Implementation details

A.5.1 Verifier model

Qwen2.5-Math-PRM-7B (Zhang et al., 2025) is
chosen as our verifier model, because 1) it can
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200

1000 5000

gemma-3-27b-it

86.25% =+ 0.4%

85.25% £ 0.5% 86.35% £ 0.1%

apt-40 91.5% =+ 0.5% 92.50% £ 0.3% 91.94% + 0.4%
deepseek-v3-0324 89.00% +2.1% 91.10% £ 0.7% 91.26% + 0.1%
AdCo 89.75% + 1.1% 92.58% £ 0.1% 91.84% + 0.3%

Table 1: Performance evaluation on GSM8K Symbolic dataset

evaluate intermediate reasoning steps and not just
the final answer 2) it shows suitable performance
identifying errors in standard benchmarks (such
as ProcessBench, etc.) and Best-of-N evaluations.
Moreover, we evaluated its performance on several
different datasets, and found that the reported PR
accuracy on the DeepMath dataset is relatively low
(<50%), making it a good candidate to act as a
coarse signal provider.

A.5.2 LLM client setting

In the experiment, each LLM client was configured
using the default AutoGen hyperparameter settings.
While tuning these parameters for each LLM client
would be preferable—and we initially attempted to
do so—we ultimately kept defaults for consistency.
For example, under the competitive strategy, we
considered increasing the temperature to encour-
age exploration of alternative reasoning paths and
raising the sampling rate to identify better and pur-
sue high-confidence candidates. Conversely, under
the collaborative strategy, lower temperatures and
reduced sampling would be more appropriate.

However, we were unable to implement further
hyperparameter tuning due to the practical con-
straints of our chosen framework. Confidence
scores are only supported by OpenAl or some self-
hosted models, excluding the other models in our
experiments, and the AutoGen framework does not
allow configurable sampling rates without source
code modification — forcing sequential exploration
that is prohibitively slow and costly at scale.

A.5.3 Worker agent design

To support efficient self-evolution and filter out
low-quality reasoning in the cluster, a general asyn-
chronous message-driven architecture with selec-
tive peer-to-peer communication has been built on
top of the AutoGen framework for AdCo, shown
in Figure 4. The following discussion concentrates
on how a typical worker agent — say, Agent A —
iteratively self-evolves.

Problem reception and initial reasoning Ini-
tially, Agent A subscribes to the problem topic
on the shared Pub/Sub channel and receives the
published problem once available. It then invokes
the corresponding LLM to generate its first rea-
soning step. Next, Agent A queries the Process
Reward Model, obtaining PR(0) (verifier signal)
for the current partial solution S(0). Both S(0)
and PR(0) are then published to Agent A’s work
status topic on the shared channel. Eventually, the
initial reasoning state S(0), PR(0) is persisted as
a cluster-accessible topic, serving as the starting
point for its subsequent reasoning. Unlike future
turns ¢ > 0, the initial reasoning step only gener-
ates the initial PR(0) without involving interactions
with other peers in the cluster.

Iterative reasoning After the initial step,
Agent A enters a cycle of iterative reasoning: step-
ping forward from S(t), PR(t) to S(t+1), PR(t+
1) until answer convergence. At each round ¢,
Agent A decides its action strategy using the re-
vised UCB algorithm, which takes the performance
gain APR = PR(t —1) — PR(t — 2),t > 1 at
the previous turn as input, and then executes the
chosen action accordingly:

» Competitive: Agent A selects the peer agent
with the highest average performance (exclud-
ing itself) to critique the current partial so-
lution. The average performance is defined
as the cumulative PRs up to round ¢ normal-

ized by the number of rounds, i.e., w.
Then, the selected peer interacts directly with
Agent A via AutoGen'’s peer-to-peer commu-
nication channel: it retrieves Agent A’s par-
tial solution S(¢ — 1), critiques it using the
prompt 7, and sends the feedback back di-
rectly to Agent A. Agent A then integrates
this critique feedback with the prompt 8 to
refine its reasoning at round t.

* Collaborative: Agent A retrieves all S(¢ —
1), PR(t — 1) from other peers via the shared
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Figure 4: Worker agent architecture: relying on Pub/sub channel to exchange information within the worker cluster,
each agent individually carries out initial reasoning and continues iterative reasoning until the cluster consensus is

reached via majority voting.

work status topic, but only incorporates the
S(t—1) with the highest PR (¢t — 1) from peer
agents into the prompt 6 at the current round
t.

After this round, the updated partial solution
S(t) and its corresponding PR(t) are published
back to their own worker status topic.

Convergence check At the end of round ¢, a mon-
itoring daemon reviews the worker status topic to
access outputs from all worker agents and deter-
mine whether convergence has been reached. If so,
outputs are aggregated through majority voting to
produce the final answer (see A.5.4).

Iterating until convergence If convergence has
not been reached, a new round ¢ 4+ 1 begins, with
the agent’s state updated to S(¢), PR(t), following
the aforementioned logic. This cycle continues iter-
atively until all agents converge on a final answer.

A.5.4 Majority voting and final answer

determination

AdCo uses the following criteria to determine
whether a final answer has been reached:

* All agents have reached a final answer after at
least two rounds; or

* A quorum of agents have converged on the
same final answer, and more than 5 rounds
have been completed. (We chose 5 rounds
to ensure adequate debate among the three
agents while also keeping costs manageable.
As future work, we plan to conduct further
testing to identify the optimal number of de-
bate rounds.); or

e If the number of rounds exceeds 20, the fi-
nal answer is determined via majority voting
among the agents. We limited the rounds to
20 to manage inference time costs.

A.6

This section includes the prompts each worker
agent uses to 1) perform initial reasoning, see Fig-
ure 5; 2) refine reasoning using peer feedback under
collaborative strategy, see Figure 6; 3) critique a
peer’s partial response under competitive strategy,
see Figure 7; 4) refine reasoning via peer critique
under competitive strategy, see Figure 8.

Worker agent prompts

A.7 Ablation study - the revised UCB vs.
simple flipping rule

200 600 1000
UCB 54.3% + 2.5% 55.9% +0.1% 55.7% + 0.3%
Flipping  52.0% £ 4.2% 54.6% +0.1% 54.1% + 0.3%

Table 2: Performance comparison of the revised UCB
vs. simple flipping

A.8 Limitations & future improvements

Despite promising preliminary results, we plan to
introduce following improvements in the future:

State-aware exploration While modifying the
UCB-1 exploitation term provides a reasonable
heuristic approximation, the algorithm doesn’t fully
capture state-dependent exploration dynamics. We
will enhance state-aware exploration by incorpo-
rating the agent’s reasoning state and history. This
would enable the evaluation of the benefit of explor-
ing alternative reasoning paths under the current
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You are assisting with a math reasoning problem by providing
the next step in the solution process. Your explanation should
be clear, concise, and generate only one extra step.

#Steps:

1. Analyze the given math problem and the previous steps
provided.

2. Create a clear summary of the previous steps and include

them in your response.

Identify the next logical step to progress the solution.

4. Explain the step clearly, showing how it advances the
problem-solving process.

5. If this step leads to the final answer, present it using the
format: The answer is #### [numerical answer].

&

#Output Guidelines:

* Create a clear summary of the previous steps, and in-
clude only one additional step in the response.

¢ Use the final answer format if the solution is complete:
The answer is ####[numerical answer]

* Keep your response under 100 words.

#Notes:

* Focus on clarity and logical reasoning.
¢ Ensure continuity by building directly from previous
steps.

Now given the following math problem and previous steps, add
the next step.

Problem: {content}\n
Previous steps: {prev_steps}\n

Figure 5: Initial reasoning prompt

You are a math reasoning assistant. Your role is to solve a
problem step by step by integrating the best parts of two given
partial solutions.

#Steps:

1. Carefully read and understand the math problem.

2. Review both partial solutions thoroughly.

3. Extract and combine the strongest reasoning from each
partial solution to create a unified solution.

4. If the final answer hasn’t been reached, provide only the
next logical step.

#Output Format:

¢ Rewrite the combined solution. If the final answer is
still incomplete, provide just one additional step per
response.

¢ Keep your response under 100 words.

« If this step solves the problem, present the answer as:
The answer is ###Ht[numerical answer]

Now given the following math problem, two partial solutions,
please generate the next step.

Problem: {content}\n
solution_1: {solution_1}\n
solution_2: {solution_2}\n

Figure 7: Competitive strategy - provide critique on

Your task is to review a partial solution to a math problem and
identify any errors.
#Steps:

1. **Understand the Problem**: read and comprehend the
math reasoning problem.

2. **Review the Partial Solution**: Check for mistakes in
logic or calculation.

3. **Critique**: explain any errors found clearly.

#Output Format:

« Provide a concise critique to the partial solution; do not
provide the final answer in the response.
* Keep your response under 100 words.

#Notes:

* Focus on accuracy in identifying mistakes.
« Ensure your explanation is clear and to the point.

Now given the following math problem and partial solution,
please carefully inspect the solution and point out any mistakes.

Problem: {content}\n
Partial solution: {peer_response}\n

peer’s partial response

Your task is to review a partial solution and its critique for a
math reasoning problem, correct any errors, and provide the next
correct step in the solution.

#Steps:

1. **Understand the problem**: read and interpret the
math problem.

2. **Review the partial solution**: identify any mistakes

or gaps.

. **Evaluate the Critique**: assess the critique’s accuracy.

4. **Address the Critique**: replace the partial solution
with a corrected solution. If the final answer hasn’t been
reached, provide only the next logical step.

W

#Output Format:

* Add only one step per response.

Clearly explain your reasoning.

If reaching the final answer, use the format: The answer
is ##HH[numerical answer]

* Keep your response under 100 words.

Now given the following math problem, previous steps and
critique, please carefully consider the critique and correct any
mistakes as the next step.

Problem: {content}\n
Previous steps: {prev_steps}\n
Critique: {critique}\n

Figure 8: Competitive strategy - refine reasoning using

Figure 6: Collaborative strategy - refine reasoning using peer critique

peer feedback
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context. This approach is capable of more effec-
tively balancing exploration and exploitation based
on the trajectory of reasoning, potentially leading
to more accurate and efficient outcomes.

Weighted result aggregation The majority vot-
ing mechanism diminished the impact of stronger
agents in heterogeneous settings, as evidenced
when a weaker model is replaced by a compa-
rably stronger one. This indicates that our cur-
rent aggregation strategy may under-utilize high-
performing agents. We plan to explore alternatives
to majority voting, such as confidence-weighted or
performance-based aggregation, which may better
leverage the strengths of high-performing agents.

Strategy-specific parameter tuning Currently,
each LLM client is configured with its default hy-
perparameters due to practical constraints of the
AutoGen framework on the non-OpenAl models.
This limitation prevents us from adapting parame-
ters such as temperature and sampling rate to better
optimize reasoning performance. In future work,
we plan to conduct additional trials to enable pa-
rameter tuning across models, to improve reasoning
performance and efficiency.

Lightweight architectures & expansion to
broader domain Furthermore, we will explore
the adoption of lightweight-trained or distilled
agent models to make the framework more accessi-
ble in resource-constrained environments. We also
plan to extend the framework to other reasoning-
intensive domains beyond mathematics, such as
scientific discovery and legal analysis, to evaluate
its versatility and robustness.
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