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Abstract
Large language models (LLMs) excel across
diverse natural language processing tasks but
remain opaque and unreliable. This thesis in-
vestigates how LLM reasoning can be made
both interpretable and reliable through system-
atic analysis of internal dynamics and targeted
interventions. Unlike prior work that exam-
ines reasoning broadly, this research focuses
on two representative domains: puzzle solv-
ing, where reasoning steps can be precisely
tracked, and ontological inference, where hi-
erarchical structures constrain valid reasoning.
The central questions are: (1) How can sys-
tematic error patterns in domain specific rea-
soning be detected through layer wise probing
and mitigated through targeted interventions?
(2) How can probing frameworks and middle
layer analyses reveal and enhance the compu-
tational mechanisms underlying inference? By
combining probing methods, middle layer in-
vestigations, and probe guided interventions,
the work aims to uncover interpretable reason-
ing patterns, identify systematic failure modes,
and develop adaptive enhancement strategies.
The expected outcome is a domain grounded
framework that advances both theoretical un-
derstanding of neural reasoning and the design
of practical, trustworthy AI systems.

1 Introduction

Large language models (LLMs) achieve state-of-
the-art performance across diverse natural language
processing tasks, demonstrating capabilities in rea-
soning, inference, and problem solving (Brown
et al., 2020; Wei et al., 2022; Touvron et al., 2023).
Yet these abilities remain unreliable and poorly
understood, limiting safe deployment in critical ap-
plications (Berglund et al., 2023; Schaeffer et al.,
2023; Huang et al., 2025). LLMs often generate
plausible but unfaithful explanations (Radhakrish-
nan et al., 2023; Turpin et al., 2023), highlighting
the gap between observed outputs and internal de-
cision processes.

Recent work on chain-of-thought (CoT) prompt-
ing improves reasoning performance by encourag-
ing explicit reasoning steps (Wang et al., 2022b;
Wei et al., 2022; Hao et al., 2023). However,
whether these external traces reflect genuine inter-
nal computation remains uncertain (Lanham et al.,
2023). Meanwhile, empirical studies suggest that
the middle layers of transformer architectures play
a crucial role in reasoning, showing dynamic trans-
formations linked to reasoning complexity (Vig
and Belinkov, 2019; Li et al., 2024; Sharma et al.,
2024).

This thesis addresses the following specific re-
search questions:

1. RQ1 (Localization): Do reasoning rele-
vant computational patterns cluster in specific
transformer layers during puzzle solving and
ontological inference? Can we identify dis-
tinct layer wise specialization for constraint
satisfaction versus hierarchical reasoning?

2. RQ2 (Mechanism): What specific neural cir-
cuits mediate multi step reasoning in these
domains? Do puzzle solving and ontologi-
cal reasoning share common computational
pathways, or do they employ domain specific
mechanisms?

3. RQ3 (Failure Modes): What systematic fail-
ure patterns emerge in puzzle and ontological
reasoning, and can these be detected through
layer specific probing before they manifest in
outputs?

4. RQ4 (Intervention): Can targeted interven-
tions in middle layers, guided by probing
classifiers, improve reasoning reliability with-
out degrading general language capabilities?
What is the trade-off between intervention
strength and preservation of creative problem
solving?
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These two domains were selected for their com-
plementary characteristics that together cover fun-
damental reasoning patterns encountered in broader
AI applications. Puzzle solving exemplifies con-
straint reasoning, where solutions must satisfy ex-
plicit rules and logical dependencies a pattern ubiq-
uitous in planning, code generation, mathematical
problem solving, and scientific hypothesis testing
(Cobbe et al., 2021; Hendrycks et al., 2024). The
traceable solution paths in puzzles enable precise
verification of whether model reasoning aligns with
ground truth inference steps, addressing the faith-
fulness challenge identified in broader reasoning
research (Turpin et al., 2023). Ontological reason-
ing, conversely, represents structured knowledge
manipulation, requiring models to navigate hier-
archical relationships, perform inheritance infer-
ence, and maintain consistency across taxonomic
structures. This reasoning pattern underlies ques-
tion answering, knowledge base completion, com-
mon sense reasoning, and semantic understanding
tasks (Petroni et al., 2019; Wang et al., 2021). To-
gether, these domains instantiate two core reason-
ing paradigms, procedural constraint satisfaction
and declarative knowledge inference whose combi-
nation characterizes complex real world reasoning.

2 Related Works

2.1 Interpretability in Large Language
Models

Probing classifiers have become a fundamental
tool for investigating what linguistic information
is encoded in neural representations (Belinkov and
Glass, 2019; Clark et al., 2019a; Hewitt and Man-
ning, 2019; Rogers et al., 2021). The develop-
ment of tools like LogitLens and TunedLens has
enabled researchers to examine how predictions
evolve across transformer layers, revealing that
meaningful predictions often emerge in intermedi-
ate layers rather than only in final outputs (nostalge-
braist, 2020; Belrose et al., 2023). Circuit analysis
approaches have attempted to identify specific com-
putational pathways within models, though these
methods face significant challenges when applied
to the dense, distributed representations found in
large language models (Wang et al., 2022a; Conmy
et al., 2023; Syed et al., 2023; Kramár et al., 2024).

Mechanistic interpretability has emerged as a
particularly promising direction, focusing on un-
derstanding the specific algorithms and computa-
tional mechanisms that models use to solve tasks

(Olah et al., 2020; Elhage et al., 2021; Nanda et al.,
2023). This approach has yielded insights into how
models handle tasks like arithmetic, factual recall,
and simple logical operations (Power et al., 2022;
Bereska and Gavves, 2024). Recent work has also
explored the use of attention visualization and anal-
ysis to understand reasoning processes (Clark et al.,
2019b; Kovaleva et al., 2019; Gould et al., 2023).
However, attention patterns do not always correlate
with reasoning processes, and models can attend
to irrelevant information while still producing cor-
rect outputs (Jain and Wallace, 2019; Serrano and
Smith, 2019).

2.2 Reasoning in Transformer Models and
Chain-of-Thought Methods

Recent theoretical analysis has begun to explain
why chain-of-thought is effective, showing that it
fundamentally expands the computational power of
transformer architectures by providing additional
computation time and intermediate storage (Merrill
and Sabharwal, 2023; Li et al., 2024). Self consis-
tency methods aggregate multiple reasoning chains
to improve reliability (Wang et al., 2022b). Tree-
of-thought approaches explore multiple reasoning
paths simultaneously (Yao et al., 2023). Zero-shot
chain-of-thought methods eliminate the need for
hand crafted examples while maintaining perfor-
mance improvements (Kojima et al., 2022). Recent
work has also explored enhancing chain-of-thought
reasoning through logic integration and formal rea-
soning frameworks (Pan et al., 2023; Paul et al.,
2024; Zhang et al., 2025).

While chain-of-thought can improve reasoning
performance, studies have shown that models can
generate plausible but ultimately unfaithful expla-
nations that do not reflect their actual decision mak-
ing processes (Saparov and He, 2022; Turpin et al.,
2023). Models can exhibit inconsistent reasoning
performance across similar problems, struggle with
novel reasoning patterns not seen during training,
and fail to maintain logical consistency across long
reasoning chains (Dziri et al., 2023; Zhang et al.,
2023, 2024). This raises important questions about
whether the explicit reasoning chains correspond
to the computational processes that actually drive
model behavior, or whether they are merely post-
hoc rationalizations.
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Figure 1: Overview of the probe guided intervention framework: mechanistic interpretability tools analyze middle
layer representations to detect reasoning errors, enabling targeted interventions that enhance domain specific
reasoning in puzzle solving and ontological tasks.

2.3 Middle Layer Dynamics and Transformer
Analysis

Recent empirical investigations have revealed in-
triguing patterns in the intermediate layers of trans-
former models, particularly during reasoning tasks
(Clark et al., 2019a; Jawahar et al., 2019). Stud-
ies using techniques like activation patching and
causal intervention have shown that middle lay-
ers play crucial roles in reasoning tasks, with dif-
ferent layers contributing to different aspects of
the reasoning process (Meng et al., 2022; Wang
et al., 2022a; Geiger et al., 2025). Recent work
has begun to address this challenge through more
sophisticated analysis methods, including sparse
autoencoders for feature discovery and specialized
probing techniques for reasoning specific repre-
sentations (Cunningham et al., 2023; Bills et al.,
2023). These approaches have revealed that models
develop specialized circuits for different types of
reasoning, with some circuits being shared across
tasks and others being task specific (Olsson et al.,
2022; Ameisen et al., 2025).

If reasoning processes can be characterized and
localized within specific layers, it may be possi-
ble to design targeted interventions that enhance
reasoning performance while maintaining overall
model coherence (Li et al., 2023). This possibility
has motivated recent research into activation edit-
ing and representation manipulation techniques,
though these approaches are still in early stages of

development (Mitchell et al., 2021; Ilharco et al.,
2022).

2.4 Puzzle and Ontological Reasoning in
Language Models

Mathematical and logic puzzles provide controlled
environments for studying reasoning processes, as
they often have well defined solution paths and
allow for precise evaluation of reasoning steps
(Cobbe et al., 2021; Dutta et al., 2024; Hendrycks
et al., 2024). Recent work has shown that mod-
els can solve increasingly complex puzzles through
chain-of-thought prompting, but they often struggle
with novel puzzle types or variations that require
creative insight (Welleck et al., 2021; Hao et al.,
2023).

Ontological reasoning, involving the understand-
ing and manipulation of concept hierarchies and
relationships, is fundamental to many AI applica-
tions (Petroni et al., 2019; Hogan et al., 2021; Wang
et al., 2021). Language models have shown remark-
able ability to perform taxonomic reasoning and
understand concept relationships learned during
pre-training (Clark et al., 2019a; Hohenecker and
Lukasiewicz, 2020; Rogers et al., 2021). However,
they often struggle with systematic ontological in-
ference and can be inconsistent in their applica-
tion of hierarchical knowledge (Elazar et al., 2020;
Kassner et al., 2021). Puzzle solving tasks often
have traceable solution paths that can be compared
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with model reasoning chains, while ontological
reasoning provides structured knowledge domains
where concepts and relationships can be systemati-
cally varied and analyzed (Ribeiro et al., 2020; Wu
et al., 2024).

3 Aims

This research is structured around two major aims
to be pursued over the course of the PhD:

3.1 Aim 1: Developing Domain Specific
Probing Methods and Evaluation
Frameworks

3.1.1 Probing Architectures for Puzzle and
Ontological Reasoning

The approach will involve creating hierarchical
probing structures specifically designed to capture
reasoning patterns in puzzle solving and ontologi-
cal domains. We will implement multi layer percep-
tron (MLP) probes with 2-3 hidden layers trained
on frozen transformer representations. For puzzle
specific tasks, we employ constraint satisfaction
probes that classify whether intermediate represen-
tations encode valid puzzle states and multi-step
probes that predict the next valid operation from
a discrete action space. Rather than relying solely
on linear classifiers, the methodology will incorpo-
rate attention probing mechanisms using scaled dot
product attention over sequence representations to
identify relationships between different reasoning
steps specific to these domains and track the flow
of information across layers during puzzle solving
and concept manipulation tasks (Beyer and Reed,
2025). As illustrated in Figure 1, these probing
mechanisms form the foundation of our Mecha-
nistic Interpretability Suite, which employs Token
Probability Trajectory Analysis, Computational Lo-
calization Mapping, and Attention Reasoning En-
tropy to extract reasoning relevant representations
from designated probe layers.

For ontological reasoning tasks, probes will fo-
cus on hierarchical relationship detection, concept
inheritance patterns, classification consistency, and
taxonomic inference processes. These specialized
probes will monitor how models represent con-
cept hierarchies, perform inheritance reasoning,
resolve taxonomic conflicts, and maintain consis-
tency across ontological inferences. The probing
objectives will include parent child relationship
detection, sibling concept identification, multiple
inheritance resolution, and concept boundary deter-

mination. Cross domain analysis between puzzle
and ontological reasoning will examine whether
shared or distinct mechanisms underlie structured
problem solving and concept manipulation. Us-
ing unified methods including shared MLP probes,
cross domain transfer testing, representational simi-
larity (CKA) analysis, and aligned intervention and
evaluation protocols, we will identify convergent
or specialized processing pathways, guiding the
design of general yet domain grounded reasoning
enhancement methods.

3.1.2 Specialized Dataset Creation and
Evaluation Frameworks

A critical component of this research involves cre-
ating comprehensive datasets specifically designed
for evaluating reasoning in puzzle and ontologi-
cal domains (Shojaee et al., 2025). These datasets
will go beyond existing benchmarks by providing
fine grained annotations of reasoning steps, mul-
tiple solution paths, and systematic variations in
problem complexity. For puzzle solving evalua-
tion, datasets will include mathematical puzzles
with step-by-step solution annotations, logic puz-
zles with constraint satisfaction tracking, spatial
reasoning problems with transformation sequences,
and creative puzzles requiring insight and novel ap-
proach generation. Each puzzle will be annotated
with ground truth reasoning steps, alternative solu-
tion paths, common failure modes, and difficulty
gradations based on required reasoning depth.

For ontological reasoning evaluation, datasets
will encompass taxonomic classification tasks with
hierarchical relationship annotations, concept in-
heritance problems with multiple inheritance sce-
narios, ontological consistency checking with sys-
tematic inconsistency patterns, and novel concept
introduction tasks requiring integration with exist-
ing knowledge. These datasets will include system-
atic variations in hierarchy depth, concept similar-
ity, and relationship complexity. The evaluation
framework will incorporate both quantitative met-
rics including step wise accuracy, reasoning consis-
tency, solution efficiency, and error pattern analysis,
and qualitative assessment methods including rea-
soning faithfulness evaluation, explanation quality
assessment, solution creativity scoring, and failure
mode categorization. This comprehensive evalua-
tion approach will enable precise measurement of
reasoning improvements and systematic identifica-
tion of remaining limitations.
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3.1.3 Middle Layer Analysis Framework for
Domain Specific Reasoning

The methodology will combine multiple comple-
mentary analysis techniques specifically tailored
for puzzle and ontological reasoning to provide a
complete picture of middle layer behavior in these
domains. Middle-layer dynamics refers to the trans-
formation of hidden representations in layers L/3
to 2L/3 of the transformer architecture, where L
is the total number of layers regions empirically
shown to mediate multi-step reasoning (Li et al.,
2024; Sharma et al., 2024). We operationalize this
through: (1) layer wise activation magnitude track-
ing (computing ℓ2 norms of hidden states across
layers), (2) representation drift analysis (measuring
cosine distance between consecutive layer outputs),
and (3) information flow quantification using mu-
tual information estimation between layer pairs.

For puzzle solving analysis, the framework will
investigate how middle layers represent puzzle con-
straints, track solution progress, maintain working
memory for multi-step problems, and implement
backtracking and search strategies. Special atten-
tion will be given to understanding how represen-
tations transform as puzzle complexity increases
and how models handle puzzle variants that require
creative insight. For ontological reasoning analy-
sis, the framework will examine how middle layers
encode concept hierarchies, perform inheritance
computations, resolve conflicting taxonomic infor-
mation, and integrate new concepts with existing
knowledge structures. The analysis will explore
how different types of ontological relationships
are represented and how models handle systematic
variations in concept similarity and hierarchy depth.
This analysis will reveal the computational path-
ways most critical for each reasoning domain and
inform the design of targeted interventions.

The framework will also investigate temporal
dynamics of middle layer processing during multi-
step reasoning, examining how representations
evolve across forward passes in models that en-
gage in iterative reasoning or self-correction within
these specific domains. This analysis will pro-
vide insights into whether models implement do-
main specific reasoning through parallel processing
across layers or through more sequential, step-by-
step computation.

3.2 Aim 2: Creating Domain Targeted
Interventional Frameworks

3.2.1 Probe Guided Intervention Strategies
for Specific Reasoning Domains

The methodology will involve developing moni-
toring systems that use domain-specific probing
classifiers to track reasoning processes in real-time
during puzzle solving and ontological inference.
Probe guided intervention is operationalized as
follows: probing classifiers (trained as described
in 3.1.1) evaluate intermediate representations at
inference time; when probe confidence drops be-
low a calibrated threshold τ (determined via held
out validation to balance precision recall), tar-
geted interventions modify the representation vec-
tor hl at layer l through direction specific steering:
h′
l = hl + α · vcorrect, where vcorrect is the mean

activation difference between correct and incor-
rect reasoning examples, and α is an intervention
strength parameter tuned to minimize reasoning
error while preserving perplexity on held out text.
The intervention architecture, depicted in Figure 1,
maintains an Intervention Embedding Representa-
tion Matrix that encodes domain specific reasoning
patterns across four categories: Constraint Satisfac-
tion, Solution Verification, Induced Mathematical
Operations, and General Reasoning. When the in-
terpretability suite detects anomalies such as probe
confidence below threshold τ or divergent proba-
bility trajectories the system retrieves the appropri-
ate intervention vector and applies the correction
h′
l = hl + α · vcorrect to steer the model toward

valid reasoning paths.

For ontological reasoning interventions, the sys-
tem will track hierarchical consistency, inheritance
computation accuracy, concept boundary mainte-
nance, and taxonomic inference validity. Interven-
tions may include hierarchy clarification, inheri-
tance correction, concept boundary reinforcement,
and consistency restoration. These interventions
will help models maintain coherent ontological
reasoning while preserving their ability to handle
novel concepts and relationships. The interven-
tion strategies will be adaptive, learning from the
success or failure of previous interventions within
each domain to improve future performance. This
adaptive capability will enable the system to handle
novel puzzles and ontological structures without re-
quiring manual reconfiguration while maintaining
domain specific expertise.
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3.2.2 Inference-Time Reasoning
Enhancement for Focused Domains

Building on domain specific probing insights, this
research will develop methods for inference time
reasoning enhancement specifically optimized for
puzzle and ontological reasoning domains. The
framework illustrated in Figure 1 demonstrates the
complete workflow: during inference on tasks such
as syllogistic reasoning (e.g., "None of the runners
is a teacher. All the attendees are runners. What
is the conclusion?"), the system monitors middle
layer representations, applies probing classifiers to
verify correct transitive inference, detects failures
in recognizing logical relationships, retrieves ap-
propriate intervention vectors, and validates that
corrections propagate to produce reliable outputs
like "Teachers are not attendees." For puzzle solv-
ing enhancement, the inference time system pro-
vides constraint checking (verifying puzzle rule
satisfaction), solution validation (detecting invalid
intermediate steps), and systematic search guidance
(redirecting toward valid solution spaces when dead
ends are detected via probe confidence thresholds).

For ontological reasoning enhancement, the real-
time system will offer hierarchy navigation as-
sistance, inheritance computation support, consis-
tency checking, and novel concept integration guid-
ance. This system will help models maintain co-
herent ontological reasoning while expanding their
capability to handle complex taxonomic structures
and novel concept relationships. The real-time en-
hancement framework will include domain specific
uncertainty quantification and confidence estima-
tion, allowing the system to determine when inter-
ventions are needed and how confident it should
be in its corrections within each reasoning domain.
This capability is crucial for avoiding over correc-
tion and maintaining model reliability in domain
specific contexts.

3.2.3 Comprehensive Evaluation Protocols for
Domain Specific Interventions

Developing robust evaluation methods for reason-
ing interventions in puzzle and ontological domains
is crucial for ensuring their effectiveness and safety.
This research will establish comprehensive evalu-
ation protocols specifically designed for these do-
mains that go beyond simple accuracy metrics to
assess the quality, faithfulness, and reliability of
domain specific reasoning processes. The evalua-
tion framework will include both quantitative and
qualitative assessment methods tailored to each do-

main. For puzzle solving evaluation, quantitative
measures will track solution accuracy, step effi-
ciency, creative insight generation, and robustness
across puzzle variations. Qualitative analysis will
examine solution elegance, reasoning faithfulness,
creative problem solving maintenance, and preser-
vation of human like puzzle solving strategies. For
ontological reasoning evaluation, quantitative mea-
sures will assess taxonomic accuracy, consistency
maintenance, inheritance computation correctness,
and scalability across ontology sizes. Qualitative
analysis will examine reasoning coherence, con-
cept boundary maintenance, novel concept integra-
tion quality, and preservation of flexible taxonomic
thinking.

Special attention will be given to evaluating in-
tervention robustness across different puzzle types
and ontological structures, assessing whether im-
provements generalize within domains and how
interventions handle edge cases and novel varia-
tions. The protocols will also assess potential nega-
tive effects of interventions, including reduction in
creative problem solving, introduction of domain
specific biases, and decreased flexibility in reason-
ing approaches. Human studies will assess whether
intervention enhanced reasoning in puzzle and on-
tological domains is more convincing, trustworthy,
and useful to human users compared to baseline
model outputs. These studies will focus on domain
experts including mathematicians, logicians, and
knowledge engineers to ensure that enhancements
align with expert reasoning patterns while main-
taining accessibility to non experts.

4 Timeline and Deliverables

The research will produce open source software
tools and libraries specifically designed for puzzle
and ontological reasoning analysis and enhance-
ment, making the methods accessible to researchers
working in these domains. Comprehensive evalu-
ation benchmarks and annotated datasets for both
puzzle solving and ontological reasoning will be re-
leased to enable future research in domain specific
reasoning interpretability.

Additional deliverables include educational ma-
terials and tutorials for applying the developed
methods to puzzle and ontological reasoning tasks,
collaboration with domain experts including math-
ematicians and knowledge engineers for real world
validation, and guidelines for responsible deploy-
ment of reasoning enhanced AI systems in educa-
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Year Deliverables and Milestones

Year 1

• Conduct comprehensive literature review on LLM reasoning, interpretability,
and puzzle/ontological reasoning.

• Develop preliminary datasets (500 annotated examples across domains) and
annotation protocols.

• Develop novel probing architectures for puzzle and ontological reasoning
tasks.

• Set up experimental frameworks and baseline models across selected reason-
ing benchmarks, testing on preliminary datasets.

• Deliverables: Pilot datasets with annotation guidelines, initial probing frame-
work tested on pilot data, baseline models, literature survey report, 1–2 review
paper publications or workshop papers.

Year 2
• Scale up and complete full annotated datasets for puzzle solving and ontolog-

ical reasoning, incorporating lessons from Year 1 pilot studies.
• Refine and validate probing classifiers on domain-specific reasoning tasks

using complete datasets.
• Conduct comprehensive middle layer analysis to investigate reasoning dy-

namics across model architectures.
• Deliverables: Complete annotated datasets (publicly released), validated and

refined probing classifiers, comprehensive middle layer analysis report, 1–2
conference publications on dataset methodology, annotation framework, and
probing results.

Year 3
• Identify and validate key reasoning representation patterns across domains.
• Develop cross-task reasoning pattern discovery methods and unified analysis

framework.
• Begin design and implementation of probe-guided intervention strategies.
• Deliverables: Analysis framework, cross-task pattern insights, initial inter-

vention prototypes, 1–2 major journal/conference publications on reasoning
patterns and middle layer analysis.

Year 4

• Implement and validate probe-guided intervention systems with real-time
reasoning enhancement.

• Establish comprehensive evaluation protocols, including human evaluation
studies.

• Conduct large-scale experiments to assess effectiveness and generalization of
interventions.

• Complete thesis writing, finalize datasets/tools, and prepare for defense.
• Deliverables: Fully validated intervention system, evaluation reports, final

datasets/tools, thesis document, 1–2 final publications summarizing interven-
tions, evaluation, and framework.

Table 1: Research timeline with milestones, deliverables, and expected publications aligned to puzzle and ontological
reasoning aims.
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tional and knowledge management applications.

5 Research Significance and Conclusion

This research advances both theoretical understand-
ing and practical applications of reasoning in large
language models. By focusing on puzzle solving
and ontological inference, it investigates how con-
sistent and interpretable reasoning patterns emerge,
particularly within the middle layers of transformer
architectures. These controlled yet rich domains
provide the structure needed for fine grained analy-
sis while retaining sufficient complexity to reveal
broader insights about reasoning mechanisms.

The study is expected to uncover distinct yet
partially overlapping neural circuits for different
types of reasoning, shedding light on the modular
nature of cognitive processes in LLMs. Such find-
ings would inform the design of reasoning systems
that combine creative problem solving with system-
atic inference. At the same time, the development
of interventional frameworks aims to enhance rea-
soning in real time, maintaining efficiency while
reinforcing coherence and reliability.

If successful, this work will establish probing
and intervention methods as practical tools for un-
derstanding and improving reasoning in language
models. Beyond theoretical contributions, it will
deliver datasets, evaluation frameworks, and en-
hancement strategies that benefit both research and
applied contexts. The outcomes are expected to
support applications in education, knowledge man-
agement, and creative problem solving, while also
providing a foundation for building more inter-
pretable and trustworthy AI systems.
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