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Abstract

Self-supervised speech models have demon-
strated the ability to learn rich acoustic repre-
sentations. However, interpreting which spe-
cific phonological or acoustic features these
models leverage within their highly polyseman-
tic activations remains challenging. In this pa-
per, we propose a straightforward and unsuper-
vised probing method for model interpretabil-
ity. We extract the activations from the final
MLP layer of a pretrained HuBERT model and
train a sparse autoencoder (SAE) using dictio-
nary learning techniques to generate an over-
complete set of latent representations. Ana-
lyzing these latent codes, we observe that a
small subset of high-variance units consistently
aligns with phonetic events, suggesting their
potential utility as interpretable acoustic detec-
tors. Our proposed method does not require
labeled data beyond raw audio, providing a
lightweight and accessible tool to gain insights
into the internal workings of self-supervised
speech models.

1 Introduction

Recent advances in self-supervised learning have
produced speech models whose hidden represen-
tations support a wide range of downstream tasks
without fine-tuning (Hsu et al., 2021; Baevski et al.,
2020a; Chen et al., 2022). However, these models
remain largely “black boxes”: it remains unclear
precisely which acoustic and linguistic aspects of
the input signal are captured by individual layers
or units. This lack of interpretability poses signifi-
cant challenges for both theoretical understanding
and practical applications, limiting our ability to
effectively control, edit, or explain model outputs.
Consequently, developing methods that show and
inspect the internal workings of self-supervised
models is an essential step toward more transparent
and flexible speech technologies.

Prior approaches to probing the internal repre-
sentations of self-supervised speech models have
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Figure 1: UMAP of a subset (10%) of TIMIT sparse rep-
resentations. These were obtained after sparse-encoding
the original 1024 dimensional MLP activations from
HuBERT’s last layer.

usually involved supervised classifiers trained to
predict explicit phonetic or prosodic labels from
hidden embeddings. Alternative methods have used
linear projection techniques, such as principal com-
ponent analysis (PCA) and canonical correlation
analysis (CCA), to identify correlations between
learned embeddings and linguistic categories (Mar-
tin et al., 2023; Pasad et al., 2021, 2024). While
these studies demonstrate that self-supervised fea-
tures correlate strongly with traditional linguistic
categories, they do not yield interpretable, tempo-
rally aligned, discrete signals (Pasad et al., 2024;
Gimeno-Gémez et al., 2025). Thus, they fall short
of providing the detailed unit-level insights neces-
sary for granular analysis or intervention.

In parallel, computational neuroscience has ex-
plored sparse coding models extensively, particu-
larly emphasizing the emergence of discrete, in-
terpretable “spiking” events. Such sparse repre-
sentations often naturally align with salient per-
ceptual phenomena and sensory boundaries in a
human-readable format, making them particularly
promising for probing complex activation patterns.
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Motivated by these insights, we introduce a
sparse autoencoder (SAE) probe specifically de-
signed to analyze self-supervised speech mod-
els. Our approach consists of three pri-
mary steps: (1) extracting the activations
from the final feed-forward multilayer percep-
tron (MLP) layer of a frozen HuBERT model
(facebook/hubert-large-1s960-ft!), yielding
an activation matrix of dimensions ( Nfames, D); (2)
training a lightweight SAE (linear encoder project-
ing activations to an over-complete latent space; set
to 4 x D dimensions), enforced by an L1 sparsity
penalty, and decoding back to the original dimen-
sionality; and (3) performing analyses on the result-
ing sparse latent representations, including ranking
latent units by variance, visualizing their temporal
firing patterns, conducting k-means clustering, and
embedding with uniform manifold approximation
and projection (UMAP).

Our contributions are as follows:

* We propose a straightforward, unsupervised
probing pipeline using sparse autoencoders to
dissect and interpret the latent structure within
pretrained HuBERT activations.

¢ We introduce the Q-SAE, a variant of the
sparse autoencoder that incorporates a con-
trollable low-dimensional continuous vector
for enhanced interpretability and control.

* We demonstrate that high-variance sparse
units behave analogously to neural “feature
detectors”, exhibiting discrete spiking behav-
iors.

* We provide our code for extraction, SAE train-
ing, and analysis, facilitating future research
aimed at interpretability and controllability in
self-supervised speech representations.’

The remainder of this paper is organized as
follows. Section 2 comments on related work
on speech representation probing, sparse coding
methodologies, and their intersections. Section 3
outlines our proposed architectures, training pro-
cedures, and analytic methods in detail. Section
4 presents qualitative and quantitative analyses of
the learned sparse codes. Section 5 situates these
results within a broader theoretical and applied con-
text. Finally, section 6 concludes by summarizing

'The model is openly available at Hugging Face.
2All materials available upon acceptance.

key insights and outlining limitations and potential
directions for future research.

2 Previous Work

Self-Supervised Speech Representations. Re-
cent years have seen rapid progress in self-
supervised learning for speech. Early models such
as Wav2Vec (Baevski et al., 2020a) and its suc-
cessor Wav2Vec 2.0 (Baevski et al., 2020b) learn
frame-level latent embeddings by masking and con-
trastive predictive coding. HuBERT (Hsu et al.,
2021) improved on these methods by iteratively
clustering acoustic features and using cluster as-
signments as targets, yielding representations that
match or exceed fully supervised baselines on
phoneme recognition. More recently, Data2Vec
(Baevski et al., 2022) unified self-supervised learn-
ing across modalities by predicting contextualized
representations rather than discrete units.

These models improved downstream perfor-
mance on speech recognition, speaker identifica-
tion, and emotion detection tasks. Still, their inter-
nal activation patterns remain largely opaque.

Probing and Representation Analysis. To un-
derstand the internal mechanisms of models, pre-
vious work applied supervised probes and linear
analysis techniques. Initially, the probes were used
in text-based models such as BERT (Tenney et al.,
2019). Linear probings demonstrated that models
are able to capture different aspects of language in
different layer depths (Tenney et al., 2019) or even
individual attention heads (Clark et al., 2019).

Phonetic and prosodic probes train lightweight
classifiers on frozen embeddings to predict linguis-
tic labels (Pimentel et al., 2020; English et al.,
2022). While such probes quantify which lay-
ers correlate with specific features, they require
annotated data and only provide coarse-grained,
timestep-agnostic scores. Unsupervised meth-
ods like PCA, CCA, and SVCCA examine sub-
space overlap between model layers (Raghu et al.,
2017; Morcos et al., 2018), revealing global geo-
metric structure but lacking temporal resolution.
Information-theoretic measures, such as mutual
information (MI) between representations and pho-
netic sequences, further characterize feature en-
coding but depend on explicit alignment (Pimentel
et al., 2020).

Sparse Coding and Autoencoders. Sparse cod-
ing offers an alternative framework for discovering



interpretable, monosematic features. Seminal work
showed that enforcing sparsity on natural images
yields Gabor-like filters similar to early visual cor-
tex (Olshausen and Field, 1996).

In deep learning, mainly in the textual modality,
sparse representations have been used for dictio-
nary learning (Bricken et al., 2023; Templeton et al.,
2024). Sparse autoencoders allow to do this com-
bining an encoder-decoder architecture with an L
penalty or KL-divergence constraint on the bottle-
neck (Ng et al., 2011), encouraging a small subset
of active units per input. Such models can learn
event-like activations without explicit supervision.

Clustering and Manifold Visualization. Clus-
tering learned codes provided a direct view of
emerging categories. K-means has long been ap-
plied to embeddings for unsupervised phoneme
and speaker clustering (MacQueen, 1967). Modern
work on self-supervised speech also leverages k-
means, both within HuBERTs iterative clustering
loop (Hsu et al., 2021) and as a post-hoc analysis
tool (Baevski et al., 2020a). To visualize high-
dimensional codes, techniques such as t-SNE and
UMAP reveal salient manifold structure (Mclnnes
et al., 2018), enabling qualitative assessment of
category separation.

Interpretability in Time. Few studies achieve
time-aligned, unit-level interpretability in self-
supervised speech models. Most probes aggregate
over time or collapse sequences to fixed vectors, ob-
scuring dynamic events like phoneme boundaries
or burst onsets. Sparse autoencoders can produce
firing patterns that align with salient acoustic tran-
sitions.

To our knowledge, no prior work applies sparse
encoding directly to HuBERT’s (or any other
speech model’s) internal MLP activations to extract
interpretable, monosemantic features. We have no
knowledge of the Q-SAE being applied in previous
work, where the main objective of the model is
providing a low-dimensional vector to manipulate
the monosemantic, sparse, feature space.

3 Methodology
3.1 HuBERT Activations

We analyze activations extracted from HuBERT
(Hsu et al., 2021) (see Appendix A for model de-
tails) during inference on the TIMIT (Garofolo
et al., 1993) dataset (see Appendix B for dataset
information). HuBERT takes raw audio waveforms

and outputs embedding representations which cor-
respond to 20ms frames (16kHz). An initial CNN
waveform encoder creates audio patches, which
are processed by a transformer encoder (BERT-
like; trained on masked token prediction). The
patches are linearly projected to obtain the em-
bedding representations that approximate discrete
phonetic units.

As in previous work in the text modality
(Bricken et al., 2023; Templeton et al., 2024),
we analyze the MLP activations from HuBERT s
last layer. We extract the activation using a for-
ward hook during inference on the training split
of TIMIT. For each waveform, we obtained 1024-
dimensional activation vectors of n frames. We
collapsed batch and n dimensions to form a dataset
with shape N x 1024, where N are the total acti-
vation examples (/N = 762, 438).

3.2 Models

We propose two architectures to extract sparse fea-
tures from dense activation vectors: a Sparse Au-
toencoder (SAE) and the Q-Autoencoder (Q-SAE).
We trained both architectures with dictionary learn-
ing purposes.

3.2.1 Sparse Autoencoder

Architecture. The SAE follows a vanilla imple-
mentation (Figure 2), where the input sequence x
is mapped into an over-complete latent space z,
and is later reconstructed into 2. The encoder is
encouraged to induce sparsity of z through an L1
penalty included in the optimization objective. The
decoder has to map the sparse representations back
to the original input.

Optimization Objective. The objective is de-
fined as a dual cost function with a tunable pa-
rameter A\ on the sparsity penalty:

N L1 Sparsity
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The first term forces the model to reconstruct the
input data as faithfully as possible while the second
forces the sparsity of features. The tuneable lambda
parameter allows to control the level of sparsity of
the over-complete latent space. Higher lambda val-
ues shrink the values to zero, while lower values
preserve more activations. We measure the percent-
age of active units through Ly and aim at a final
value of ~ 3% active units.
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Figure 2: Sparse Autoencoder architecture.

3.2.2 The Q-Sparse Autoencoder

Architecture. The Q-SAE follows a similar ar-
chitecture with additional components that allow
a general control over features in space z. We fol-
lowed a SAE architecture with the addition of a
Q-Net (Chen et al., 2016), a continuous vector c,
and a top-k feature selector mechanism on z (Fig-
ure 3). As in the SAE, an input sequence x is
mapped into a sparse representation z.

Top-k Mechanism. In this variant, we apply a
feature selector function Topk(-) on z, which con-
straints the decoder to access only the top-k£ most
prominent features in z. For a single latent vector
z € RP, the mechanism is defined as follows. Let
k = max(1, | kfac - D]) and S C {1,...,D} be
the set of indices of the k entries of z with largest
absolute value. Then, the top-k operator is defined
as

2, ifjes
[Topk(2)]; = 2; - ll{jes} = {Oj’ it s ]

where 1y is a masking operator.

Continuous Vector c. After the selection step,
a continuous vector ¢ ~ N(0, 1) is concatenated
to the resulting latent space Topk(z). The decoder
takes the concatenated representation as input and
outputs a reconstruction Z. The output is further
fed into the Q-net and is encouraged to predict the
continuous vector c. In this way, the decoder is
forced to rely on the sparse representation Topk(z)
and the continuous vector c to reconstruct the input
sequence.

Optimization Objective. The objective of the
Q-SAE is similar to that of the SAE: the model is
encouraged to reconstruct the input data x from a

sparse representation z. In the Q-SAE, the most
prominent features of z are selected through the
top-k selector, which acts on on z with the purpose
of passing only meaningful sparse features to the
decoder. In addition, a continuous vector ¢ is con-
catenated to the filtered z space, which is processed
by the decoder to predict Z.

The support Q-net predicts a continuous vector
¢ from % and is optimized using a mutual informa-
tion (MI) cost function to encourage c to include
meaningful information about x. This forces c to
be used during decoding, so that we can later use
low-dimensional continuous vectors to modify rel-
evant features of z. The final objective is defined
as

MSE Reconstruction

N
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where InfoNCE (Oord et al., 2018) is the con-
trastive loss function and MI term that pushes the
Q-net’s predictions ¢ to be informative.

Figure 3: Q-Sparse Autoencoder architecture.

Data and Training. We train our models on a
self-supervised regime using the activations ex-
tracted from HuBERT during inference on the
TIMIT dataset.

After training both architectures, we choose the
vanilla autoencoder for the following reasons. First,
the feature disambiguation is more straightforward
in the sense that it avoids an extra cost objective.
Second, the original objective of the study is more



aligned with the central purpose of the vanilla SAE:
disentangle polysemanticity. However, we propose
the Q-SAE (or potential variants) as promising al-
ternatives useful for causal interpretability.

Figure 4 shows three training runs of the SAE
architecture with different A values. Following
previous work (Bricken et al., 2023; Templeton
et al., 2024), we aimed at preserving 3% of active
units in the latent space. We use the model trained
with A = 0.09 as our model for experimentation.
Model selection was not mainly guided by a min-
imal test loss criterion, but rather as a mixed one
giving preference to the model with best z space
representations.
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Figure 4: L tracking of the SAE model across three
runs with different sparsity lambda values. The dashed
line indicates the 3% active units frontier.

Table 1 shows a high level summary of the train-
ing runs of each model. Following (Bricken et al.,
2023; Templeton et al., 2024) we use a latent space
four times the original input size.

4 Results

Sparse Features Capture Phonetic Events. To
verify that individual sparse dimensions behave
like discrete event detectors, we extracted the ten
features with highest activation variance and plot-
ted their supra-threshold spiking patterns in Figure
5.

These top features activated in distinct, tempo-
rally sparse bursts, consistent with a spiking code.
Several of these sparse codes showed structured,
bursty activation patterns rather than random or
uniformly distributed firing, suggesting they re-

Model SAE; SAE; SAE;
Epochs 10 10 10
Input 1024 1024 1024
Latent D 4096 4096 4096
Factor 4 4 4
Sparsity A 0.09 0.1 0.05
Optimizer Adam Adam Adam
GradClip 1.0 1.0 1.0

L1 Train 0.16 0.15 0.24
L1 Test 0.18 0.17 0.27
MSE Train  0.58 0.58 0.57
MSE Test  0.48 0.48 0.46

Table 1: Training parameters for each sparse autoen-
coder run.

sponded to recurring patterns in the input. Some
units fired densely in specific time ranges, poten-
tially corresponding to phonetic or acoustic units,
while others showed more distributed or selective
patterns. These observations supported the hypoth-
esis that individual sparse units serve as feature
detectors, encoding meaningful substructures in
the representation space.
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Figure 5: Temporal firing rasters of the top ten variance
sparse features. Each panel shows the frame indices (x-
axis) at which a given feature exceeds its 99th percentile
threshold, revealing spike-like activations.

High-level clustering indicates ‘“phonological
hubs”. To probe whether individual sparse di-
mensions acted like monosemantic feature detec-
tors, we performed k-means clustering of the latent,
over-complete, 2z representations. We show the
most prominent phonological categories per cluster
in Figure 6.

The heatmap analysis of phonological categories
versus sparse code clusters indicated variability in
how phonetic information was distributed across
latent units. Clusters 22, 40, 42, and 57 show dis-
tinctly stronger associations with specific phono-
logical categories, such as silence, vowels, and
stops. This suggests that a subset of sparse codes
preferentially encoded phonetic events more clearly



Figure 6: Confusion plot of the over-complete vectors z clusters vs phonological categories.

than others, highlighting their specialized role as
potential feature detectors. In contrast, other clus-
ters showed relatively uniform and lower activation
levels across categories, underscoring the sparsity
and selectivity of these high-variance units.

Features Can be Higher or Lower Order. We
quantified the category specificity of each high-
variance feature by averaging its activation over all
frames of each phonological class (Figure 7).
Features 3233, 385, 2026, and 3623 showed a
higher selectivity for affricates, while other dimen-
sions yielded mean activations higher in stops than
in vowels, indicating strong sensitivity to transient
bursts and turbulence. Conversely, features such as
1627, 3320, and 170 activated across all categories,
indicating polysemanticity. This indicated that the
features were classified into low-order (including
individualized category information) or high-order
(detectors for various categories) selective classes.
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Figure 7: Average activation of the highest-variance
sparse features, computed separately for each phono-
logical category. Rows correspond to categories and
columns to feature dimensions (sorted by variance).

5 Discussion

The primary objective of this study was to lever-
age sparse autoencoders (SAEs) as unsupervised
probes for interpreting phonological information
captured by self-supervised speech models, specif-
ically HuBERT. Our findings underscore the ef-
ficacy of SAEs in uncovering discrete, phonetic

events encoded within high-dimensional sparse
spaces, highlighting their potential as powerful in-
terpretability tools in speech processing.

One significant insight is the emergent nature of
the sparse features extracted from the final MLP
activations of HuBERT. High-variance sparse units
align with phonetic units, suggesting these en-
code acoustic-phonetic events. This aligns well
with classical phonetic theory, which emphasizes
the acoustic saliency of such transitional points
(Stevens, 2002). Low-variance units encode sub-
tler phonetic nuances distributed across broader
contexts, indicating a hierarchical structuring of
phonological information within the latent space.

Another critical observation is the partial rather
than complete monosemanticity of extracted fea-
tures. Although some sparse units exhibit speci-
ficity towards particular phonetic events, many
high-variance dimensions activate across multiple
classes. This polysemanticity implies that the Hu-
BERT model’s internal representation inherently
take advantage of phonetic information distributed
across dimensions, a phenomenon consistent with
previous findings in sparse coding research in other
modalities (Bricken et al., 2023; Templeton et al.,
2024). Consequently, future research might ex-
plore mechanisms to further disentangle these pol-
ysemantic representations, possibly via refined ar-
chitectures or additional regularization techniques.

Additionally, our experimental results empha-
size the limitations inherent to a purely unsuper-
vised approach. While the sparse autoencoder pro-
vides valuable qualitative insights, interpreting the
full phonetic scope of each unit’s activations re-
mains challenging without reference to external
linguistic labels. A hybrid approach integrating
sparse autoencoders with minimally supervised la-
beling or linguistic priors could enhance the inter-
pretability and practical applicability of the pro-
posed methodology.



The introduction of the Q-SAE, despite its in-
triguing potential for causal manipulation of sparse
features through continuous vectors, requires fur-
ther investigation. Our preliminary decision to fa-
vor the vanilla SAE was guided by simplicity and
clearer interpretability. However, the Q-SAE’s abil-
ity to manipulate sparse feature spaces via control-
lable vectors could significantly extend the frame-
work’s utility, especially in tasks requiring precise
feature-level intervention, such as speech editing
or targeted phoneme manipulation.

Finally, this study contributes methodologically
by demonstrating the compatibility of sparse cod-
ing techniques, traditionally used in computational
neuroscience, with contemporary deep learning
models for speech. This intersection offers fertile
ground for interdisciplinary research, potentially
enabling cognitive insights into speech perception
and informing the design of biologically inspired
machine learning models.

Future work should focus on scaling this ap-
proach to larger and more diverse speech corpora,
validating the robustness of our findings across lan-
guages and dialects. Additionally, exploring adap-
tive or dynamic sparsity constraints could refine
the granularity of phonological features captured,
further bridging computational techniques with lin-
guistic theory.

6 Conclusion

We introduced an unsupervised probing pipeline
that uses a sparse autoencoder to extract inter-
pretable features from the final MLP activations of
a pretrained HuBERT model. Our qualitative anal-
yses show that: (i) high-variance latent units fire at
linguistically meaningful phonetic events, and (ii)
clustering those sparse codes recovers broad class
groupings. These findings suggest that scaling the
presented pipeline and sparse coding can uncover
phonological structure in self-supervised speech
models without any explicit supervision, providing
a new tool for model interpretability and control.

Limitations

The performance of the models and the experimen-
tal results were heavily constrained by the available
data. Further work should incorporate activations
from different datasets and models to uncover po-
tential universal behaviors across models. In ad-
dition, the study is limited to the analysis of one
layer’s MLP activations. Internal layers may yield

more interpretable and comprehensive results. The
Q-SAE is still under development, which posed a
limitation to its usefulness for the case under study.

Ethics Statement

This work uses publicly available speech data and
does not involve any personally identifiable or sen-
sitive information. All analyses were performed on
aggregate model activations.
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A HuBERT Parameters

The following section summarizes the parameters
of the HUuBERT model used for inference in our
experimental setup.

Parameter Value
feat_extract_activation gelu
conv_bias true
conv_dim 512
conv_kernel [10, 3, 3, 3, 3, 2, 2]
conv_stride [5,2,2,2,2,2,2]
attention_dropout 0.1
ctc_loss_reduction sum
ctc_zero_infinity false
feat_proj_dropout 0.1
final_dropout 0.1
hidden_dropout 0.1
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 1024
intermediate_size 4096
layer_norm_eps le-5
layerdrop 0.1
mask_feature_length 10
mask_time_length 10
mask_time_prob 0.05
model_type hubert
num_attention_heads 16

num_conv_pos_embedding_groups 16

num_conv_pos_embeddings 128
num_feat_extract_layers 7
num_hidden_layers 24
vocab_size 32

Table 2: Hyperparameter configuration of the HuBERT
model used during experimentation. This information
is available on Hugging Face.

B Data Splits

The following table shows the size of the TIMIT
splits used during inference on HuBERT. For each
raw waveform, we extract the HuBERT’s last MLP
activations.

Split  Audio files

Train =~ 4,620
Test =~ 1,680

Table 3: Splits of the TIMIT dataset.



